Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.642
Filter
1.
Food Res Int ; 186: 114161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729685

ABSTRACT

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Subject(s)
Antioxidants , Caseins , Enzymes, Immobilized , Glutaral , Goats , Iridoids , Pepsin A , Peptides , Antioxidants/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Caseins/chemistry , Animals , Pepsin A/metabolism , Pepsin A/chemistry , Glutaral/chemistry , Peptides/chemistry , Iridoids/chemistry , Hydrolysis , Charcoal/chemistry
2.
Int J Biol Macromol ; 270(Pt 1): 132101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734354

ABSTRACT

Aspergillus oryzae ß-D-galactosidase (ß-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, ß-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, ß-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-ß-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of ß-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-ß-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-ß-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-ß-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-ß-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-ß-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.


Subject(s)
Aspergillus oryzae , Enzymes, Immobilized , Glutaral , Silicon Dioxide , beta-Galactosidase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Aspergillus oryzae/enzymology , Silicon Dioxide/chemistry , Glutaral/chemistry , Dioxoles/chemistry , Dioxoles/pharmacology , Magnetite Nanoparticles/chemistry , Porosity , Temperature , Hydrogen-Ion Concentration , Enzyme Stability , Furans
3.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762747

ABSTRACT

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Subject(s)
Dental Impression Materials , Glutaral , Materials Testing , Polyvinyls , Siloxanes , Dental Impression Materials/chemistry , Polyvinyls/chemistry , Siloxanes/chemistry , Time Factors , Glutaral/chemistry , Dental Disinfectants/chemistry , Sodium Hypochlorite/chemistry , Disinfectants/chemistry , Chlorhexidine/chemistry , Surface Properties , Humans
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 368-375, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686419

ABSTRACT

The freeze-drying is a technology that preserves biological samples in a dry state, which is beneficial for storage, transportation, and cost saving. In this study, the bovine pericardium was treated with a freeze-drying protectant composed of polyethylene glycol (PEG) and trehalose (Tre), and then freeze-dried. The results demonstrated that the mechanical properties of the pericardium treated with PEG + 10% w/v Tre were superior to those of the pericardium fixed with glutaraldehyde (GA). The wet state water content of the rehydrated pericardium, determined using the Karl Fischer method, was (74.81 ± 1.44)%, which was comparable to that of the GA-fixed pericardium. The dry state water content was significantly reduced to (8.64 ± 1.52)%, indicating effective dehydration during the freeze-drying process. Differential scanning calorimetry (DSC) testing revealed that the thermal shrinkage temperature of the pericardium was (84.96 ± 0.49) ℃, higher than that of the GA-fixed pericardium (83.14 ± 0.11) ℃, indicating greater thermal stability. Fourier transform infrared spectroscopy (FTIR) results showed no damage to the protein structure during freeze-drying. Hematoxylin and eosin (HE) staining demonstrated that the freeze-drying process reduced pore formation, prevented ice crystal growth, and resulted in a tighter arrangement of tissue fibers. The frozen-dried bovine pericardium was subjected to tests for cell viability and hemolysis rate. The results revealed a cell proliferation rate of (77.87 ± 0.49)%, corresponding to a toxicity grade of 1. Additionally, the hemolysis rate was (0.17 ± 0.02)%, which is below the standard of 5%. These findings indicated that the frozen-dried bovine pericardium exhibited satisfactory performance in terms of cytotoxicity and hemolysis, thus meeting the relevant standards. In summary, the performance of the bovine pericardium treated with PEG + 10% w/v Tre and subjected to freeze-drying could meet the required standards.


Subject(s)
Freeze Drying , Pericardium , Polyethylene Glycols , Trehalose , Animals , Pericardium/chemistry , Trehalose/chemistry , Trehalose/pharmacology , Cattle , Polyethylene Glycols/chemistry , Glutaral/chemistry , Calorimetry, Differential Scanning
5.
J Mater Sci Mater Med ; 35(1): 26, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683259

ABSTRACT

OBJECTIVE: Aortic valve neocuspidization (AVNeo) using autologous pericardium is a promising technique. Expected advantages are reduced immune response, appropriate biomechanics and lower treatment expenses. Nevertheless, autologous pericardium can be affected by patient's age and comorbidities. Usually, glutaraldehyde (GA) - fixed bovine pericardium is the basic material for aortic valve prostheses, easy available and carefully pre-examined in a standardized fabrication process. Aim of the study is the verification of autologous pericardial tissue homogeneity by analysing tissue thickness, biomechanics and extracellular matrix (ECM) composition. METHODS: Segments of human GA-fixed pericardium selected by the surgeon based on visual criteria for cusp pre-cut and remaining after surgical AV replacement were investigated in comparison to bovine standard tissue treated equivalently. Pericardium sampling was performed at up to three positions of each sutured cusp for histological or biomechanical analysis, according to tissue availability. RESULTS AND CONCLUSIONS: Human pericardia exhibited a higher heterogeneity in collagen content, density of vessel structures and elastic moduli. Thickness, vessel density and collagen and elastin content differed significantly between the species. In contrast, significant interindividual differences were detected in most properties investigated for human pericardial samples but only for tissue thickness in bovine tissues. Higher heterogeneity of human pericardium, differing vessel and collagen content compared to bovine state-of-the-art material might be detrimental for long term AV functionality or deterioration and have to be intensely investigated in patients follow up after autologous cusp replacement.


Subject(s)
Aortic Valve , Bioprosthesis , Heart Valve Prosthesis , Pericardium , Cattle , Humans , Aortic Valve/surgery , Animals , Biomechanical Phenomena , Male , Female , Aged , Extracellular Matrix/chemistry , Middle Aged , Collagen/chemistry , Glutaral/chemistry , Materials Testing , Heart Valve Prosthesis Implantation/methods
6.
Food Chem ; 449: 139168, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38574521

ABSTRACT

A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 µg L-1) with LODs over the range of 0.01-0.06 µg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.


Subject(s)
Chitosan , Glutaral , Plant Growth Regulators , Solid Phase Microextraction , Titanium , Chitosan/chemistry , Titanium/chemistry , Glutaral/chemistry , Plant Growth Regulators/chemistry , Plant Growth Regulators/analysis , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry
7.
J Biotechnol ; 388: 35-48, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38641136

ABSTRACT

Whey protein isolate (WPI) was incorporated within calcium pectinate (CPT) beads in order to boost their anionic qualities and meliorate their glutaraldehyde (GA)-polyethyleneimine (PEI) grafting process. The Box-Behnken Design (BBD) verified that WPI inclusion significantly raised the GA-PEI-CPT-WPI beads immobilized ß-D-galactosidase (iß-GLD) activity. The BBD also revealed the optimal settings for WPI concentration, PEI pH, PEI concentration, and GA concentration, which were 2.91 %, 10.8, 3.5 %, and 2.24 %, respectively. The GA-PEI-CPT-WPI beads grafting process was scrutinized via FTIR, EDX, and SEM. The optimal GA-PEI-CPT-WPI immobilizers provided fine ß-GLD immobilization efficiencies, which reached up to 65.28 %. The free and GA-PEI-CPT-WPI iß-GLDs pH and temperature profiles were scrutinized. It was also unveiled that the thermal stability of the iß-GLD surpassed that of its free compeer as it provided lesser kd and ΔS values and larger t1/2, D-values, Ed, ΔH, and ΔG values. Furthermore, the iß-GLD provided 92.00±3.39 % activity after 42 storage days, which denoted its fine storage stability. The iß-GLD short duration (15 min) operational stability was also inspected, and 82.70±0.78 % activity was provided during the fifteenth degradation run. Moreover, the iß-GLD long duration (24 h) operational stability was inspected while degrading the lactose of buffered lactose solution (BLS) and cheese whey (CW). It was unveiled that 81.86±0.96 % and 73.58±2.24 % of the initial glucose were detected during the sixth degradation runs, respectively.


Subject(s)
Enzymes, Immobilized , Polyethyleneimine , Thermodynamics , Whey Proteins , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Whey Proteins/chemistry , Kinetics , Polyethyleneimine/chemistry , Hydrogen-Ion Concentration , Pectins/chemistry , Pectins/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Glutaral/chemistry , Temperature , Enzyme Stability
8.
J Biotechnol ; 387: 23-31, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38548020

ABSTRACT

Enzyme immobilization in membrane bioreactors has been considered as a practical approach to enhance the stability, reusability, and efficiency of enzymes. In this particular study, a new type of hybrid membrane reactor was created through the phase inversion method, utilizing hybrid of graphene oxide nanosheets (GON) and polyether sulfone (PES) in order to covalently immobilize the Candida rugosa lipase (CRL). The surface of hybrid membrane was initially modified by (3-Aminopropyl) triethoxysilane (APTES), before the use of glutaraldehyde (GLU), as a linker, through the imine bonds. The resulted enzymatic hybrid membrane reactors (EHMRs) were then thoroughly analyzed by using field-emission scanning electron microscopy (FE-SEM), contact angle goniometry, surface free energy analysis, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, attenuated total reflection (ATR), and energy-dispersive X-ray (EDX) spectroscopy. The study also looked into the impact of factors such as initial CRL concentration, storage conditions, and immobilization time on the EHMR's performance and activity, which were subsequently optimized. The results demonstrated that the CRLs covalently immobilized on the EHMRs displayed enhanced pH and thermal stability compared to those physically immobilized or free. These covalently immobilized CRLs could maintain over 60% of their activity even after 6 reaction cycles spanning 50 days. EHMRs are valuable biocatalysts in developing various industrial, environmental, and analytical processes.


Subject(s)
Bioreactors , Enzyme Stability , Enzymes, Immobilized , Lipase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/metabolism , Lipase/chemistry , Membranes, Artificial , Graphite/chemistry , Saccharomycetales/enzymology , Glutaral/chemistry , Spectroscopy, Fourier Transform Infrared , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Temperature , X-Ray Diffraction
9.
Int J Biol Macromol ; 263(Pt 2): 130403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417754

ABSTRACT

Immobilization of enzymes on aminated supports using the glutaraldehyde chemistry may involve three different interactions, cationic, hydrophobic, and covalent interactions. To try to understand the impact this heterofunctionality, we study the physical adsorption of the beta-galactosidase from Aspergillus niger, on aminated supports (MANAE) and aminated supports with one (MANAE-GLU) or two molecules of glutaraldehyde (MANAE-GLU-GLU). To eliminate the chemical reactivity of the glutaraldehyde, the supports were reduced using sodium borohydride. After enzyme adsorption, the release of the enzyme from the supports using different NaCl concentrations, Triton X100, ionic detergents (SDS and CTAB), or different temperatures (4 °C to 55 °C) was studied. Using MANAE support, at 0.3 M NaCl almost all the immobilized enzyme was released. Using MANAE-GLU, 0.3 M, and 0.6 M NaCl similar results were obtained. However, incubation at 1 M or 2 M NaCl, many enzyme molecules were not released from the support. For the MANAE-GLU-GLU support, none of the tested concentrations of NaCl was sufficient to release all enzyme bound to the support. Only using high temperatures, 0.6 M NaCl, and 1 % CTAB or SDS, could the totality of the proteins be released from the support. The results shown in this paper confirm the heterofunctional character of aminated supports modified with glutaraldehyde.


Subject(s)
Enzymes, Immobilized , Sodium Chloride , Glutaral/chemistry , Enzyme Stability , Adsorption , Cetrimonium , Enzymes, Immobilized/chemistry
10.
Biochem Biophys Res Commun ; 702: 149567, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38335701

ABSTRACT

Glutaraldehyde (GA) is a protein crosslinker widely used in biochemical and pharmaceutical research because it can rapidly stabilize and immobilize substrates via amine group interactions. However, controlling GA crosslinking is challenging owing to its swift reactivity and the influence of various solution conditions, such as pH and concentrations of the substrate and crosslinker. Although extensive research has focused on GA cross-linking mechanisms, studies on quenching, which is critical for preventing non-specific aggregation during prolonged storage, remain sparse. This study examines the quenching efficiency of a combined amino acid mixture of glycine, histidine, and lysine, which are commonly used as individual quenchers. Our findings, confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, demonstrate that this amino acid blend offers superior quenching compared to single amino acids, enhancing quenching activity across a wide pH spectrum. These results provide a novel approach for mitigating the high reactivity of GA with implications for improving sample preservation and stabilization in a range of biochemical applications, including microscopy and cell fixation.


Subject(s)
Histidine , Lysine , Glutaral/chemistry , Glutaral/pharmacology , Cross-Linking Reagents/chemistry , Glycine
11.
PLoS One ; 19(1): e0297149, 2024.
Article in English | MEDLINE | ID: mdl-38241311

ABSTRACT

With the emergence of penicillin resistance, the development of novel antibiotics has become an urgent necessity. Semi-synthetic penicillin has emerged as a promising alternative to traditional penicillin. The demand for the crucial intermediate, 6-aminopicillanic acid (6-APA), is on the rise. Enzyme catalysis is the primary method employed for its production. However, due to certain limitations, the strategy of enzyme immobilization has also gained prominence. The magnetic Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles were successfully prepared by a rapid-combustion method. Sodium silicate was used to modify the surface of the Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles to obtain silica-coated nanoparticles (Ni0.4Cu0.5Zn0.1Fe2O4-SiO2). Subsequently, in order to better crosslink PGA, the nanoparticles were modified again with glutaraldehyde to obtain glutaraldehyde crosslinked Ni0.4Cu0.5Zn0.1Fe2O4-SiO2-GA nanoparticles which could immobilize the PGA. The structure of the PGA protein was analyzed by the PyMol program and the immobilization strategy was determined. The conditions of PGA immobilization were investigated, including immobilization time and PGA concentration. Finally, the enzymological properties of the immobilized and free PGA were compared. The optimum catalytic pH of immobilized and free PGA was 8.0, and the optimum catalytic temperature of immobilized PGA was 50°C, 5°C higher than that of free PGA. Immobilized PGA in a certain pH and temperature range showed better catalytic stability. Vmax and Km of immobilized PGA were 0.3727 µmol·min-1 and 0.0436 mol·L-1, and the corresponding free PGA were 0.7325 µmol·min-1 and 0.0227 mol·L-1. After five cycles, the immobilized enzyme activity was still higher than 25%.


Subject(s)
Nanoparticles , Penicillin Amidase , Penicillin Amidase/chemistry , Penicillin Amidase/metabolism , Glutaral/chemistry , Silicon Dioxide/chemistry , Enzymes, Immobilized/chemistry , Catalysis , Nanoparticles/chemistry , Penicillins , Magnetic Phenomena , Hydrogen-Ion Concentration , Temperature , Enzyme Stability
12.
J Chromatogr A ; 1713: 464507, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37976902

ABSTRACT

A chitosan-alginate sponge (CAS) with multiple cross-linking networks was developed using chitosan, sodium alginate, polyvinyl alcohol, and glutaraldehyde to adsorb and enrich the anionic dyes form the food samples. The multiple networks in CAS refer to the electrostatic cross-linking network, hydrogen bonding cross-linking network, and covalent cross-linking network. Compared with pure chitosan and alginate sponges, the CAS showed better three-dimensional network structure, mechanical behavior, and stability, which is benefit by multiple cross-linking networks. The physical and chemical properties of CAS were systematically studied by a series of characterizations. The adsorption performance of CAS on anionic dyes was inspected with different dye concentration, time, temperature, and pH conditions. CAS exhibited a good and stable adsorption property to amaranth, carmine, and sunset yellow with the saturation adsorption capacity of 94.34, 111.5, and 80.05 mg∙g-1, respectively. Furthermore, CAS performed outstanding selectivity to anionic dyes with the selectivity factor up to 16.99. Through electrostatic potential analysis, it is inferred that CAS mainly adsorbs anionic dyes through electrostatic interactions. CAS showed satisfactory reusability, maintaining 97 %-99 % of adsorption performance after six cycles of recycling. Finally, CAS was combined with high-performance liquid chromatography for the enrichment and detection of anionic dyes in candy and cocktail samples, achieving the enrichment factor up to 84.77.


Subject(s)
Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Coloring Agents/chemistry , Adsorption , Alginates/chemistry , Glutaral/chemistry , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Kinetics
13.
Acta Biomater ; 171: 466-481, 2023 11.
Article in English | MEDLINE | ID: mdl-37793601

ABSTRACT

Currently, glutaraldehyde (GA)-crosslinked bioprosthetic heart valves (BHVs) still do not guarantee good biocompatibility and long-term effective durability for clinical application due to their subacute thrombus, inflammation, calcification, tearing and limited durability. In this study, double-modified xanthan gum (oxidized/vinylated xanthan gum (O2CXG)) was acquired from xanthan gum for subsequent double crosslinking and modification platform construction. Sulfonic acid groups with anticoagulant properties were also introduced through the free radical polymerization of vinyl sulfonate (VS) and vinyl on O2CXG. Taking advantage of the drug-loading function of xanthan gum, the treated pericardium was further loaded with inflammation-triggered dual drug-loaded nanogel (heparin (Hep) and atorvastatin (Ator)). Mechanical properties of O2CXG-crosslinked porcine pericardium (O2CXG-PP) were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Due to the presence of sulfonic acid groups as well as the dual drug release from nanogels under the stimulation of H2O2, the hemocompatibility, anti-inflammatory, pro-endothelialization and anti-calcification properties of the crosslinked pericardium modified with nanogels loaded with Hep and Ator (O2CXG+VS+(Hep+Ator) nanogel-PP) was significantly better than that of GA-crosslinked PP (GA-PP). The collaborative strategy of double crosslinking and sequential release of anticoagulant/endothelium-promoting drugs triggered by inflammation could effectively meet the requirement of enhanced multiple performance and long-term durability of bioprosthetic heart valves and provide a valuable pattern for multi-functionalization of blood contacting materials. STATEMENT OF SIGNIFICANCE: Currently, glutaraldehyde-crosslinked bioprosthetic heart valves (BHVs) are subject to subacute thrombus, inflammation, calcification and tearing, which would not guarantee good biocompatibility and long-term effective durability. We developed a cooperative strategy of double crosslinking and surface modification in which double-modified xanthan gum plays a cornerstone. The mechanical properties of this BHV were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Inflammation-triggered combination delivery of heparin and atorvastatin has been demonstrated to enhance anticoagulation, anti-inflammatory and pro-endothelialization of BHVs by utilizing local inflammatory response. The collaborative strategy could effectively meet the requirement of enhanced multiple performance and long-term durability of BHVs and provide a valuable pattern for the multi-functionalization of blood-contacting materials.


Subject(s)
Bioprosthesis , Calcinosis , Heart Valve Prosthesis , Thrombosis , Animals , Swine , Nanogels , Glutaral/chemistry , Hydrogen Peroxide/chemistry , Atorvastatin/pharmacology , Schiff Bases , Heart Valves , Heparin , Inflammation , Anti-Inflammatory Agents , Anticoagulants , Sulfonic Acids
14.
Int J Biol Macromol ; 246: 125720, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37423451

ABSTRACT

In this study, we report optimised synthesis of N-carboxymethylated chitosan (CM-Cts) and its crosslinking to obtain, for the first time, glutaraldehyde crosslinked N-carboxymethylated chitosan (CM-Cts-Glu) as a metal ion sorbent. CM-Cts and CM-Cts-Glu were characterised using FTIR and solid state 13C NMR techniques. As compared to epichlorohydrin, glutaraldehyde was found to be better suited for efficient synthesis of the crosslinked functionalised sorbent. CM-Cts-Glu showed better metal ion uptake properties compared to the crosslinked chitosan (Cts-Glu). Metal ion removal by CM-Cts-Glu was studied in detail under different conditions such as different initial solution concentrations, pH, presence of complexants and competing ions. Further, sorption-desorption kinetics was studied and it was shown that complete desorption and multiple cycles of reuse without any loss in capacity was feasible. The maximum Co(II) uptake obtained for CM-Cts-Glu was found to be 265 µmol/g, while for Cts-Glu it was 10 µmol/g. Metal ion sorption by CM-Cts-Glu was found to be through chelation by the carboxylic acid functional groups present over the chitosan backbone. Utility of the CM-Cts-Glu under complexing decontamination formulations used in nuclear industry was ascertained. While Cts-Glu generally preferred iron over cobalt under complexing conditions, it was shown that the selectivity was reversed in favour of Co(II) in the functionalised sorbent, CM-Cts-Glu. N-carboxylation followed by crosslinking with glutaraldehyde was found to be a feasible approach for the generation of superior chitosan-based sorbents.


Subject(s)
Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Glutaral/chemistry , Chelating Agents , Metals/chemistry , Kinetics , Adsorption , Hydrogen-Ion Concentration
15.
Food Chem ; 426: 136497, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37307744

ABSTRACT

The composite lightweight porous material (TOCNF-G-LPM) based on TEMPO-oxidized cellulose nanofibril (TOCNF) and gelatin were facilely prepared by ambient pressure drying using glutaraldehyde as crosslinking agent. The influence of gelatin addition on the physicochemical properties of TOCNF-G-LPM was investigated. The long-size entangled structure of TOCNF maintained the skeleton network of TOCNF-G-LPM while gelatin can adjust the characteristics of highly porous network (porosity of 98.53%-97.40%) and light weight (density of 0.0236-0.0372 g/cm3) with increasing gelatin concentration (0.2-1.0 wt%). The results of scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM) indicated that the internal structure of TOCNF-G-LPM became more ordered, uniform and denser as gelatin concentration increased. Introducing gelatin decreased water and oil absorption properties, but improved the thermal, mechanical properties and shape recovery ability of TOCNF-G-LPM at appropriate addition. Furthermore, TOCNF-G-LPM showed no significant effect on the growth and reproduction of Caenorhabditis elegans (C. elegans), confirming a good biocompatibility.


Subject(s)
Biocompatible Materials , Gelatin , Animals , Biocompatible Materials/chemistry , Porosity , Gelatin/chemistry , Caenorhabditis elegans , Glutaral/chemistry
16.
Sci Rep ; 13(1): 9105, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277367

ABSTRACT

Three polysaccharide matrices (κ-Carrageenan (Carr), gellan gum, and agar) were grafted via glutaraldehyde (GA) and pea protein (PP). The grafted matrices covalently immobilized ß-D-galactosidase (ß-GL). Nonetheless, grafted Carr acquired the topmost amount of immobilized ß-GL (iß-GL). Thus, its grafting process was honed via Box-Behnken design and was further characterized via FTIR, EDX, and SEM. The optimal GA-PP-Carr grafting comprised processing Carr beads with 10% PP dispersion of pH 1 and 25% GA solution. The optimal GA-PP-Carr beads acquired 11.44 Ug-1 iß-GL with 45.49% immobilization efficiency. Both free and GA-PP-Carr iß-GLs manifested their topmost activity at the selfsame temperature and pH. Nonetheless, the ß-GL Km and Vmax values were reduced following immobilization. The GA-PP-Carr iß-GL manifested good operational stability. Moreover, its storage stability was incremented where 91.74% activity was offered after 35 storage days. The GA-PP-Carr iß-GL was utilized to degrade lactose in whey permeate with 81.90% lactose degradation efficiency.


Subject(s)
Enzymes, Immobilized , Pea Proteins , Enzymes, Immobilized/chemistry , Glutaral/chemistry , Lactose/chemistry , Temperature , Carrageenan/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , beta-Galactosidase/metabolism
17.
Int J Nanomedicine ; 18: 1777-1791, 2023.
Article in English | MEDLINE | ID: mdl-37041816

ABSTRACT

Introduction: A limitation of hemoglobin-based oxygen carriers (HBOCs) as oxygen therapeutics is unpolymerized hemoglobin, which induces vasoconstriction leading to hypertension. The removal of unpolymerized hemoglobin from polymerized hemoglobin (PolyHb) is complex, expensive, and time-consuming. Methods: Herein, we developed a method to completely polymerize hemoglobin almost without unpolymerized hemoglobin. Hemoglobin was adsorbed on the anion-exchange resin Q Sepharose Fast Flow or DEAE Sepharose Fast Flow, and acetal, a crosslinker prepared from glutaraldehyde and ethylene glycol, was employed to polymerize the hemoglobin. The polymerization conditions, including reaction time, pH, resin type, and molar ratios of glutaraldehyde to ethylene glycol and hemoglobin to acetal, were optimized. The blood pressure and blood gas of mice injected with PolyHb were monitored as well. Results: The optimal polymerization condition of PolyHb was when the molar ratio of glutaraldehyde to ethylene glycol was 1:20, and the molar ratio of 10 mg/mL hemoglobin adsorbed on anion-exchange resin to glutaraldehyde was 1:300 for 60 min. Under optimized reactive conditions, hemoglobin was almost completely polymerized, with <1% hemoglobin remaining unpolymerized, and the molecular weight of PolyHb was more centrally distributed. Furthermore, hypertension was not induced in mice by PolyHb, and there were also no pathological changes observed in arterial oxygen, blood gas, electrolytes, and some metabolic indicators. Conclusion: The findings of this study indicate that the use of solid-phase polymerization and acetal is a highly effective and innovative approach to HBOCs, resulting in the almost completely polymerized hemoglobin. These results offer promising implications for the development of new methods for preparing HBOCs.


Subject(s)
Acetals , Oxygen , Animals , Mice , Oxygen/metabolism , Glutaral/chemistry , Polymerization , Sepharose , Hemoglobins/metabolism , Ethylene Glycols , Anions
18.
Carbohydr Polym ; 312: 120756, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059523

ABSTRACT

In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.


Subject(s)
Chitosan , Viruses , Animals , Mice , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Glutaral/chemistry , NIH 3T3 Cells
19.
J Mater Chem B ; 11(12): 2663-2673, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36883900

ABSTRACT

Heart valve replacement has become an optimal choice for the treatment of severe heart valve disease. At present, most commercial bioprosthetic heart valves (BHVs) are made from porcine pericardium or bovine pericardium treated with glutaraldehyde. Nevertheless, due to the toxicity of residual aldehyde groups left after glutaraldehyde cross-linking, these commercial BHVs exhibit poor biocompatibility, calcification, risk of coagulation and endothelialization difficulty, which greatly affects the durability of the BHVs and shortens their service life. In this work, based on a chlorogenic acid functional anti-inflammation, anti-coagulation and endothelialization strategy and dual-functional non-glutaraldehyde cross-linking reagent OX-CO, a kind of functional BHV material OX-CA-PP has been developed from OX-CO cross-linked porcine pericardium (OX-CO-PP) followed by the convenient modification of chlorogenic acid through a reactive oxygen species (ROS) sensitive borate ester bond. The functionalization of chlorogenic acid can reduce the risk of valve leaf thrombosis and promote endothelial cell proliferation, which is beneficial to the formation of a long-term interface with good blood compatibility. Meanwhile, such a ROS responsive behavior can trigger intelligent release of chlorogenic acid on-demand to achieve the inhibition of acute inflammation at the early stage of implantation. The in vivo and in vitro experimental results show that the functional BHV material OX-CA-PP exhibits superior anti-inflammation, improved anti-coagulation, minimal calcification and promoted proliferation of endothelial cells, showing that this non-glutaraldehyde functional strategy has great potential for the application of BHVs and providing a promising reference for other implanted biomaterials.


Subject(s)
Bioprosthesis , Heart, Artificial , Animals , Swine , Cattle , Chlorogenic Acid , Endothelial Cells , Reactive Oxygen Species , Glutaral/chemistry , Cell Proliferation
20.
Carbohydr Polym ; 310: 120724, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36925249

ABSTRACT

Currently commercial glutaraldehyde (GA)-crosslinked bioprosthetic valve leaflets (BVLs) suffer from thromboembolic complications, calcification, and limited durability, which are the major stumbling block to wider clinical application of BVLs. Thus, developing new-style BVLs will be an urgent need to enhance the durability of BVLs and alleviate thromboembolic complications. In this study, a quick and effective collaborative strategy of the double crosslinking agents (oxidized polysaccharide and natural active crosslinking agent) was reported to realize enhanced mechanical, and structural stability, excellent hemocompatibility and anti-calcification properties of BVLs. Dialdehyde xanthan gum (AXG) exhibiting excellent stability to heat, acid-base, salt, and enzymatic hydrolysis was first introduced to crosslink decellularized porcine pericardium (D-PP) and then curcumin with good properties of anti-inflammatory, anti-coagulation, anti-liver fibrosis, and anti-atherosclerosis was used to synergistically crosslink and multi-functionalize D-PP to obtain AXG + Cur-PP. A comprehensive evaluation of structural characterization, hemocompatibility, endothelialization potential, mechanical properties and component stability showed that AXG + Cur-PP exhibited better anti-thrombotic properties and endothelialization potential, milder immune responses, excellent anti-calcification properties and enhanced mechanical properties compared with GA-crosslinked PP. Overall, this cooperative crosslinking strategy provides a novel solution to achieve BVLs with enhanced mechanical properties and excellent anti-coagulation, anti-inflammatory, anti-calcification, and the ability to promote endothelial cell proliferation.


Subject(s)
Bioprosthesis , Curcumin , Heart Valve Prosthesis , Swine , Animals , Curcumin/pharmacology , Cross-Linking Reagents/chemistry , Glutaral/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...