Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.005
Filter
1.
Brain Behav ; 14(6): e3539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849974

ABSTRACT

BACKGROUND AND OBJECTIVES: Maternal hypoxia disrupts neural development and subsequently leads to cerebral palsy and epilepsy in newborns. Hypoxia plays a role in neurodegeneration by increasing oxidative stress. Pistacia atlantica is known as an important antioxidant, and its anti-inflammatory and antioxidant effects have been shown in various studies. This study aims to investigate the effects of methanolic extract of P. atlantica leaves (MEPaLs) on the oxidative parameters in the serum of rats affected by maternal hypoxia. MATERIAL AND METHODS: In this study, eight pregnant rats were used. The newborns were divided into four groups, including the control and the hypoxia groups, which are affected by maternal hypoxia, hypoxia + MEPaL 100 mg/kg, and hypoxia + MEPaL 150 mg/kg. MEPaL was injected (i.p) for 21 days into the neonatal rats after the lactation period. Hypoxia was induced by keeping pregnant rats in a hypoxic chamber with 7% oxygen and 93% nitrogen intensity for 3 h on the 20th day of pregnancy. Behavioral changes were measured using open-field and rotarod tests. Finally, biomarkers of oxidative stress, nitric oxide (NO), glutathione (GSH), GSSG, TAS, TOS, and oxidative stress index (OSI) were measured in the experimental groups. RESULTS: Behavioral results showed that the anxiety behavior in the hypoxia group increased, but the motor activity (moved distance and movement speed) decreased. Moreover, the amount of time spent maintaining balance on the rotarod rod was significantly decreased in the hypoxia group. The concentration of NO in the group of hypoxia + MEPaL 100 mg/kg showed a significant decrease, and MEPaL 100, and 150 mg/kg + hypoxia also increased the concentration of GSH and decreased GSSG. In addition, MEPaL100 and 150 mg/kg caused a significant increase in the ratio of GSH to GSSG and decreased OSI and total oxidant capacity. CONCLUSIONS: Oxidative stress increased in the rats affected by maternal hypoxia and may be the main mechanism for motor activity impairment and balance disturbance, whereas MELaL improved motor performance by decreasing oxidative stress.


Subject(s)
Antioxidants , Oxidative Stress , Plant Extracts , Animals , Oxidative Stress/drug effects , Female , Pregnancy , Rats , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Hypoxia/physiopathology , Rats, Wistar , Animals, Newborn , Prenatal Exposure Delayed Effects/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Glutathione/metabolism , Glutathione/blood , Male , Behavior, Animal/drug effects , Behavior, Animal/physiology , Nitric Oxide/metabolism , Nitric Oxide/blood
2.
BMC Vet Res ; 20(1): 248, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849865

ABSTRACT

BACKGROUND: Periodontal diseases are the most frequently diagnosed problem in cats. It has been well-established that periodontal diseases could not only cause various oral health issues but could also contribute to systemic diseases. Oxidative stress is a possible link between systemic diseases and periodontitis. Our study aimed to illustrate the influence of periodontitis on oxidative stress development in cats. Furthermore, the changes in the bacterial flora of the gums were investigated. METHODS: Based on the clinical and laboratory examinations, fifty cats were divided into two groups normal (n = 25) and moderate to advanced periodontitis (n = 25). Serum total antioxidant capacity (TAC), total oxidant status (TOS), reduced (GSH) and oxidized glutathione (GSSG) were measured. In addition, samples were taken from the subgingival plaques of all cats for bacterial culture. RESULTS: Serum TOS, GSSG, GSSG to GSH ratio, and oxidative stress index (OSI), calculated as the ratio of TOS to TAC in cats with periodontal disease were significantly higher, and TAC was significantly lower (p < 0.05) compared with controls. The results of bacterial culture indicated that the number of isolated bacterial colonies is higher in patients than in the control group. Additionally, the analysis of these data showed a positive association between periodontal index and oxidative stress. CONCLUSIONS: Our results revealed that periodontitis in cats is related to a main oxidative stress. Furthermore, oxidant factors such as TOS and OSI, compared to antioxidant factors, may better indicate the presence of oxidative stress conditions in patients with periodontitis.


Subject(s)
Antioxidants , Cat Diseases , Glutathione , Oxidative Stress , Periodontitis , Animals , Cats , Cat Diseases/microbiology , Cat Diseases/blood , Cat Diseases/metabolism , Case-Control Studies , Periodontitis/veterinary , Periodontitis/microbiology , Female , Male , Antioxidants/metabolism , Glutathione/blood , Glutathione/metabolism , Glutathione Disulfide/blood , Glutathione Disulfide/metabolism , Oxidants/metabolism , Oxidants/blood
3.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38831060

ABSTRACT

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Subject(s)
Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
4.
BMC Neurol ; 24(1): 175, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789928

ABSTRACT

BACKGROUND: Acute ischemic stroke (AIS) is one of the most common cerebrovascular diseases which accompanied by a disruption of aminothiols homeostasis. To explore the relationship of aminothiols with neurologic impairment severity, we investigated four aminothiols, homocysteine (Hcy), cysteine (Cys), cysteinylglycine (CG) and glutathione (GSH) in plasma and its influence on ischemic stroke severity in AIS patients. METHODS: A total of 150 clinical samples from AIS patients were selected for our study. The concentrations of free reduced Hcy (Hcy), own oxidized Hcy (HHcy), free reduced Cys (Cys), own oxidized Cys (cysteine, Cyss), free reduced CG (CG) and free reduced GSH (GSH) were measured by our previously developed hollow fiber centrifugal ultrafiltration (HFCF-UF) method coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The concentration ratio of Hcy to HHcy (Hcy/HHcy), Cys to Cyss (Cys/Cyss) were also calculated. The neurologic impairment severity of AIS was evaluated using National Institutes of Health Stroke Scale (NIHSS). The Spearman correlation coefficient and logistic regression analysis was used to estimate and perform the correlation between Hcy, HHcy, Cys, Cyss, CG, GSH, Hcy/HHcy, Cys/Cyss and total Hcy with NIHSS score. RESULTS: The reduced Hcy and Hcy/HHcy was both negatively correlated with NIHSS score in AIS patients with P = 0.008, r=-0.215 and P = 0.002, r=-0.249, respectively. There was no significant correlation of Cys, CG, GSH, HHcy, Cyss, Cys/Cyss and total Hcy with NIHSS score in AIS patients with P value > 0.05. CONCLUSIONS: The reduced Hcy and Hcy/HHcy, not total Hcy concentration should be used to evaluate neurologic impairment severity of AIS patient.


Subject(s)
Cysteine , Glutathione , Homocysteine , Ischemic Stroke , Oxidation-Reduction , Severity of Illness Index , Humans , Male , Female , Ischemic Stroke/blood , Ischemic Stroke/diagnosis , Homocysteine/blood , Aged , Middle Aged , Cysteine/blood , Glutathione/blood , Dipeptides/blood , Aged, 80 and over
5.
PLoS One ; 19(5): e0304290, 2024.
Article in English | MEDLINE | ID: mdl-38787841

ABSTRACT

The aim of the study was to assess the impact of solarium light therapy on selected biological and biochemical parameters of peripheral blood in recreational horses. The study involved 10 horses divided into two groups of young (aged 5 to 7 years) and old (aged 14 to 19 years) individuals. All animals participated in light therapy sessions every other day. Blood was sampled three times during the study: before the treatment, after five light sessions, and after ten light sessions. Morphological parameters, the activity of antioxidant enzymes, TAS values, and the levels of glutathione (GSH), vitamin D3, vitamin C, and malondialdehyde (MDA) were measured in the whole blood. Light therapy contributed to an increase in MCV, HDW, MCVr, CHr and MPV indices, and simultaneously a decrease in the basophil counts, MCHC, RDW and CHCMr indices in both groups of horses (p ≤ 0.05). At the same time reticulocytes fell in older whereas white blood cells and monocytes counts expanded in younger individuals. The treatment also increased the activity of glutathione reductase (GR) and glutathione peroxidase (GPx) in young but decreased the activity of mentioned enzymes in blood plasma of old horses. The total antioxidant status (TAS) of the blood plasma rose progressively, whereas GSH levels declined in all individuals. Moreover, vitamin D3 levels did not change, whereas vitamin C levels gradually decreased during the experiment. The therapy also helped to reduce levels of MDA in the blood plasma, especially of older horses (p ≤ 0.05). In turn, GPx and GR activities as well as MDA levels significantly declined, whereas GSH levels notably elevated in erythrocytes (p ≤ 0.05). Solarium light therapy appears to have a beneficial impact on the morphological parameters and antioxidant status of blood in recreational horses in the winter season. However, the observed results could in part be attributed to the natural physiological adaptation of each individual organism to the treatment.


Subject(s)
Antioxidants , Animals , Horses/blood , Antioxidants/metabolism , Glutathione/blood , Glutathione/metabolism , Phototherapy/methods , Malondialdehyde/blood , Ascorbic Acid/blood , Male , Female , Glutathione Reductase/blood , Glutathione Reductase/metabolism , Glutathione Peroxidase/blood , Glutathione Peroxidase/metabolism , Cholecalciferol/blood , Aging/blood
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732088

ABSTRACT

Pregnancy at advanced maternal age (AMA) is a condition of potential risk for the development of maternal-fetal complications with possible repercussions even in the long term. Here, we analyzed the changes in plasma redox balance and the effects of plasma on human umbilical cord mesenchymal cells (hUMSCs) in AMA pregnant women (patients) at various timings of pregnancy. One hundred patients and twenty pregnant women younger than 40 years (controls) were recruited and evaluated at various timings during pregnancy until after delivery. Plasma samples were used to measure the thiobarbituric acid reactive substances (TBARS), glutathione and nitric oxide (NO). In addition, plasma was used to stimulate the hUMSCs, which were tested for cell viability, reactive oxygen species (ROS) and NO release. The obtained results showed that, throughout pregnancy until after delivery in patients, the levels of plasma glutathione and NO were lower than those of controls, while those of TBARS were higher. Moreover, plasma of patients reduced cell viability and NO release, and increased ROS release in hUMSCs. Our results highlighted alterations in the redox balance and the presence of potentially harmful circulating factors in plasma of patients. They could have clinical relevance for the prevention of complications related to AMA pregnancy.


Subject(s)
Maternal Age , Mesenchymal Stem Cells , Nitric Oxide , Oxidation-Reduction , Reactive Oxygen Species , Thiobarbituric Acid Reactive Substances , Umbilical Cord , Humans , Female , Pregnancy , Adult , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Nitric Oxide/blood , Thiobarbituric Acid Reactive Substances/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism , Glutathione/metabolism , Glutathione/blood , Cell Survival , Oxidative Stress , Plasma/metabolism
7.
Talanta ; 276: 126234, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38749161

ABSTRACT

Glutathione (GSH) is an essential antioxidant in the human body, but its detection is difficult due to the interference of complex components in serum. Herein, hollow double-layer Pt@CeO2 nanospheres were developed as oxidase mimetics, and the light-assisted oxidase mimetics effects were found. The oxidase activity was enhanced significantly by utilizing the synergistic effect of Schottky junction and the localized surface plasmon resonance (LSPR) of Pt under UV light. A novel GSH colorimetric-fluorescent-SERS sensing platform was established, with the sensing performance notably boosted by using the light-assisted oxidase mimetics effects. This platform boasts an exceptionally low detection limit (LOD) of 0.084 µM, while the detection time was shortened from 10 min to just 2 min. The anti-interference detection with high recovery rate (96.84%-107.4 %) in real serum made it be promising for practical application.


Subject(s)
Cerium , Colorimetry , Glutathione , Nanospheres , Oxidoreductases , Platinum , Surface Plasmon Resonance , Glutathione/blood , Glutathione/chemistry , Colorimetry/methods , Platinum/chemistry , Humans , Cerium/chemistry , Nanospheres/chemistry , Oxidoreductases/chemistry , Surface Plasmon Resonance/methods , Limit of Detection , Biomimetic Materials/chemistry , Spectrometry, Fluorescence/methods
8.
Behav Brain Res ; 467: 115008, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657839

ABSTRACT

The present study aimed to investigate the effects of paradoxical sleep deprivation (PSD) on behavioral and oxidative stress parameters in the brain and serum of mice submitted to the animal model of hyperglycemia induced by alloxan, mimicking the main symptom of diabetes mellitus (DM). Adults C57BL/6 male and female mice received an injection of alloxan, and ten days later, the animals were submitted to the PSD for 36 h. The animals' behavioral parameters were evaluated in the open-field test. Oxidative stress parameters [Diacetyldichlorofluorescein (DCF), Thiobarbituric acid reactive substances (TBARS), Superoxide dismutase (SOD), and Glutathione] were assessed in the frontal cortex, hippocampus, striatum, and serum. The PSD increased the male and female mice locomotion, but the alloxan's pre-administration prevented the PSD-induced hyperactivity. In addition, the male mice receiving alloxan and submitted to the PSD had elevated latency time in the first quadrant and the number of fecal boli, demonstrating increased anxiety-like behavior. The HPA-axis was hyperactivating in male and female mice pre-administered alloxan and/or PSD-submitted animals. The oxidative stress parameters were also increased in the serum of the animals administered alloxan and/or sleep-deprived mice. Despite alloxan or PSD leading to behavioral or biochemical alterations, the one did not potentiate the other in mice. However, more studies are necessary to identify the link between sleep and hyperglycemia.


Subject(s)
Brain , Disease Models, Animal , Hyperglycemia , Mice, Inbred C57BL , Oxidative Stress , Sleep Deprivation , Animals , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/blood , Male , Oxidative Stress/physiology , Female , Hyperglycemia/metabolism , Brain/metabolism , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Alloxan , Thiobarbituric Acid Reactive Substances/metabolism , Superoxide Dismutase/metabolism , Glutathione/metabolism , Glutathione/blood
9.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674128

ABSTRACT

Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2-), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2-, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection.


Subject(s)
Antioxidants , COVID-19 Drug Treatment , COVID-19 , Homeostasis , Melatonin , Oxidation-Reduction , Oxidative Stress , SARS-CoV-2 , Melatonin/therapeutic use , Melatonin/pharmacology , Humans , Oxidation-Reduction/drug effects , COVID-19/metabolism , COVID-19/virology , COVID-19/blood , Homeostasis/drug effects , Antioxidants/metabolism , Antioxidants/therapeutic use , Oxidative Stress/drug effects , Male , Female , Middle Aged , SARS-CoV-2/drug effects , Lipid Peroxidation/drug effects , Aged , Adult , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Glutathione/blood
10.
Environ Res ; 251(Pt 2): 118674, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492836

ABSTRACT

The increase of urbanization and agricultural activities is causing a dramatic reduction of natural environments. As a consequence, animals need to physiologically adjust to these novel environments, in order to exploit them for foraging and breeding. The aim of this work was to compare the physiological status among nestling common kestrels (Falco tinnunculus) that were raised in nest-boxes located in more natural, rural, or urban areas in a landscape with a mosaic of land uses around Rome in Central Italy. A blood-based multi-biomarker approach was applied to evaluate physiological responses at multiple levels, including antioxidant concentrations, immunological functions, genotoxicity, and neurotoxicity. We found lower concentrations of glutathione and GSH:GSSG ratio values and higher proportions of monocytes in urban birds compared to the other areas. We also found higher DNA damage in rural compared to urban and natural krestels and inhibition of butyrylcholinesterase activity in urban and natural birds compared to rural area. Finally, we found similar values among study areas for respiratory burst, complement system, bactericidal capacity, and plasma non-enzymatic antioxidant capacity. These results suggest that (i) city life does not necessarily cause physiological alterations in kestrels compared to life in other habitats, and (ii) environmental pressures are likely to differ in typology and intensity across habitats requiring specific responses that a multi-biomarker approach can help to detect. Further studies are needed to assess which factors are responsible for the physiological differences among city, rural, and natural birds, and whether these differences are consistent across time and space.


Subject(s)
Biomarkers , Falconiformes , Animals , Biomarkers/blood , Falconiformes/physiology , Falconiformes/blood , Italy , DNA Damage , Antioxidants/metabolism , Glutathione/blood , Urbanization
11.
Front Public Health ; 10: 882686, 2022.
Article in English | MEDLINE | ID: mdl-36045734

ABSTRACT

Aims: To evaluate the correlation of nesfatin-1, GSH and SOD levels with ß-cell insulin secretion and their influence on insulin secretion in the development of type 2 diabetes mellitus (T2DM). Materials and methods: 75 patients with T2DM, 67 with prediabetes and 37 heathy participants were recruited in this study. Serum levels of nesfatin-1, GSH and SOD were quantified and statistically analyzed. Results: The levels of nesfatin-1, GSH and SOD in T2DM were significantly decreased (P < 0.001) compared to either in prediabetes or in healthy control, and significant reduction of these biomarkers was also observed in prediabetes when compared to the control (P < 0.001). Circulating nesfatin-1, GSH and SOD were not only strongly correlated with ß-cell insulin secretion, but also exerted remarkable influence on the secretion. Conclusion: Serum nesfatin-1, GSH and SOD are important factors involving insulin secretion in the development of T2DM, which may help provide new ideas for forthcoming investigations on the roles of these factors in pathogenesis of T2DM, as well as for active prediction and prevention of prediabetes before it develops into overt T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Glutathione/metabolism , Nucleobindins/metabolism , Prediabetic State , Superoxide Dismutase-1/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glutathione/blood , Humans , Insulin Secretion , Nucleobindins/blood , Prediabetic State/blood , Prediabetic State/metabolism , Superoxide Dismutase , Superoxide Dismutase-1/blood
12.
Asian Pac J Cancer Prev ; 23(2): 703-713, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35225484

ABSTRACT

BACKGROUND: The sea cucumber, Bohadschia marmorata, is a marine echinoderm consumed and used as a medication. Extract of this species displays a broad spectrum of bioactivity, such as antifungal, antibacterial, immunomodulatory, and cytotoxic properties. This investigation explored sea cucumber extract for hepatorenal protection against the toxicity of methotrexate (MTX). METHODS: Four groups of mice were divided into G1: control, G2: MTX treated, G3: B. marmorata extract-treated daily for 14 days, and G4: B. marmorata extract and MTX treated. RESULTS AND CONCLUSIONS: Biochemical analysis and histopathological examination of liver tissue showed that administration of MTX increased serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), lowered levels of serum albumin, total protein, Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Administration of B. marmorata extract to MTX- injected mice significantly reversed the increase in serum levels of liver enzymes and induced a significant elevation in serum albumin and total protein levels. SOD, CAT, and GSH levels returned to nearly normal levels. Histopathological examination indicated fewer signs of toxicity in liver and kidney tissues of mice treated with both extract and MTX compared to MTX treatment alone. An extract of B. marmorata will protect mice from hepatorenal toxicity induced by MTX.


Subject(s)
Antineoplastic Agents/adverse effects , Chemical and Drug Induced Liver Injury/prevention & control , Methotrexate/adverse effects , Protective Agents/administration & dosage , Sea Cucumbers/chemistry , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/etiology , Glutathione/blood , Liver/metabolism , Male , Mice , Serum Albumin/metabolism , Superoxide Dismutase/blood
13.
Oxid Med Cell Longev ; 2022: 9171684, 2022.
Article in English | MEDLINE | ID: mdl-35132354

ABSTRACT

Mitochondrial DNA copy number (mtDNAcn) has been proposed for use as a surrogate biomarker of mitochondrial health, and evidence suggests that mtDNA might be methylated. Intermediates of the one-carbon cycle (1CC), which is duplicated in the cytoplasm and mitochondria, have a major role in modulating the impact of diet on the epigenome. Moreover, epigenetic pathways and the redox system are linked by the metabolism of glutathione (GSH). In a cohort of 101 normal-weight and 97 overweight/obese subjects, we evaluated mtDNAcn and methylation levels in both mitochondrial and nuclear areas to test the association of these marks with body weight, metabolic profile, and availability of 1CC intermediates associated with diet. Body composition was associated with 1CC intermediate availability. Reduced levels of GSH were measured in the overweight/obese group (p = 1.3∗10-5). A high BMI was associated with lower LINE-1 (p = 0.004) and nominally lower methylenetetrahydrofolate reductase (MTHFR) gene methylation (p = 0.047). mtDNAcn was lower in overweight/obese subjects (p = 0.004) and independently correlated with MTHFR methylation levels (p = 0.005) but not to LINE-1 methylation levels (p = 0.086). DNA methylation has been detected in the light strand but not in the heavy strand of the mtDNA. Although mtDNA methylation in the light strand did not differ between overweight/obese and normal-weight subjects, it was nominally correlated with homocysteine levels (p = 0.035) and MTHFR methylation (p = 0.033). This evidence suggests that increased body weight might perturb mitochondrial-nuclear homeostasis affecting the availability of nutrients acting as intermediates of the one-carbon cycle.


Subject(s)
Carbon/metabolism , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Epigenesis, Genetic , Obesity/blood , Obesity/genetics , Signal Transduction/genetics , Adult , Biomarkers/blood , Body Composition , Body Mass Index , Case-Control Studies , Cohort Studies , DNA Copy Number Variations , DNA Methylation , Female , Glutathione/blood , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Mitochondria/metabolism , Obesity/epidemiology , Poland/epidemiology , Young Adult
14.
Mov Disord ; 37(1): 200-205, 2022 01.
Article in English | MEDLINE | ID: mdl-34695238

ABSTRACT

BACKGROUND: A decrease in glutathione (GSH) levels is considered one of the earliest biochemical changes in Parkinson's disease (PD). OBJECTIVE: The authors explored the potential role of plasma GSH as a risk/susceptibility biomarker for prodromal PD (pPD) by examining its longitudinal associations with pPD probability trajectories. METHODS: A total of 405 community-dwelling participants (median age [interquartile range] = 73.2 [7.41] years) without clinical features of parkinsonism were followed for a mean (standard deviation) of 3.0 (0.9) years. RESULTS: A 1 µmol/L increase in plasma GSH was associated with 0.4% (95% confidence interval [CI], 0.1%-0.7%; P = 0.017) less increase in pPD probability for 1 year of follow-up. Compared with participants in the lowest GSH tertile, participants in the highest GSH tertile had a 12.9% (95% CI, 22.4%-2.2%; P = 0.020) slower rate of increase of pPD probability for 1 year of follow-up. CONCLUSION: Plasma GSH was associated with pPD probability trajectories; therefore, it might assist in the identification of individuals who are likely to reach the threshold for pPD diagnosis more rapidly. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Glutathione , Parkinson Disease , Prodromal Symptoms , Aged , Glutathione/blood , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Probability
15.
Life Sci ; 296: 120021, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34626604

ABSTRACT

AIM: Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS: The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS: This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation­carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE: This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.


Subject(s)
Acclimatization/physiology , Altitude , Blood Proteins/metabolism , Oxidative Stress/physiology , Protein Carbonylation , Adult , Cytokines/blood , Cytokines/metabolism , Glutathione/blood , Humans , Hypoxia/physiopathology , Inflammation/metabolism , Male , Nitric Oxide/blood , Oxidation-Reduction , Protein Processing, Post-Translational , Time Factors
16.
Clin Exp Pharmacol Physiol ; 49(3): 406-418, 2022 03.
Article in English | MEDLINE | ID: mdl-34796981

ABSTRACT

Cardiac dysfunction is one of the leading causes of death in epilepsy. The anti-arrhythmic drug, amiodarone, is under investigation for its therapeutic effects in epilepsy. We aimed to evaluate the possible effects of amiodarone on cardiac injury during status epilepticus, as it can cause prolongation of the QT interval. Five rat groups were enrolled in the study; three control groups (1) Control, (2) Control-lithium and (3) Control-Amio, treated with 150 mg/kg/intraperitoneal amiodarone, (4) Epilepsy model, induced by sequential lithium/pilocarpine administration, and (5) the epilepsy-Amio group. The model group expressed a typical clinical picture of epileptiform activity confirmed by the augmented electroencephalogram alpha and beta spikes. The anticonvulsive effect of amiodarone was prominent, it diminished (p < 0.001) the severity of seizures and hence, deaths and reduced serum noradrenaline levels. In the model group, the electrocardiogram findings revealed tachycardia, prolongation of the corrected QT (QTc) interval, depressed ST segments and increased myocardial oxidative stress. The in-vitro myocardial performance (contraction force and - (df/dt)max ) was also reduced. Amiodarone decreased (p < 0.001) the heart rate, improved ST segment depression, and myocardial contractility with no significant change in the duration of the QTc interval. Amiodarone preserved the cardiac histological structure and reduced the myocardial injury markers represented by serum Troponin-I, oxidative stress and IL-1. Amiodarone pretreatment prevented the anticipated cardiac injury induced during epilepsy. Amiodarone possessed an anticonvulsive potential, protected the cardiac muscle and preserved its histological architecture. Therefore, amiodarone could be recommended as a protective therapy against cardiac dysfunction during epileptic seizures with favourable effect on seizure activity.


Subject(s)
Amiodarone/therapeutic use , Anti-Arrhythmia Agents/therapeutic use , Epilepsy/complications , Heart Diseases/drug therapy , Heart Diseases/etiology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/toxicity , Animals , Biomarkers/blood , Epilepsy/chemically induced , Glutathione/blood , Interleukin-1/metabolism , Lithium Chloride/administration & dosage , Lithium Chloride/toxicity , Male , Malondialdehyde/blood , Muscarinic Agonists/administration & dosage , Muscarinic Agonists/toxicity , Myocardial Contraction/drug effects , Pilocarpine/administration & dosage , Pilocarpine/toxicity , Rats , Rats, Wistar , Superoxide Dismutase/blood , Troponin I/blood
17.
Anal Biochem ; 637: 114475, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34813770

ABSTRACT

In this study, we developed a novel colorimetric chemosensor for selective and sensitive recognition of Glutathione (GSH) using a simple binary mixture of commercially accessible and inexpensive metal receptors with names, Bromo Pyrogallol Red (BPR) and Xylenol Orange (XO). This procedure is based on the synergistic coordination of BPR and XO with cerium ion (Ce3+) for the recognition of GSH over other available competitive amino acids (AAs) especially thiol species in aqueous media. Generally, cysteine (Cys) and homocysteine (hCys) can seriously interfere with the detection of GSH among common biological species because they possess similar chemical behavior. Using all the information from 1HNMR and FT-IR studies, the proposed interaction is presented in which GSH acts as a tri-dentate ligand with three N donor atoms in conjunction with BPR and XO as mono and bi-dentate ligands respectively. This approach opens a path for selective detection of other AAs by argumentatively selecting the ensemble of mixed organic ligands from commercially available reagents, thereby eliminating the need for developing synthetic receptors, sample preparation, organic solvent mixtures, and expensive equipment. Evaluating the feasibility of the existing method was led to the determination of GSH in human plasma samples.


Subject(s)
Cerium/chemistry , Colorimetry/methods , Coloring Agents/chemistry , Glutathione/blood , Phenols/chemistry , Pyrogallol/analogs & derivatives , Sulfoxides/chemistry , Biosensing Techniques/methods , Cysteine/analysis , Cysteine/chemistry , Humans , Indicators and Reagents/chemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Pyrogallol/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Water/chemistry
18.
Int J Biol Macromol ; 195: 237-245, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34896474

ABSTRACT

In present study, a novel glutathione functionalized MoS2 quantum dots (GSH-MoS2 QDs) was synthesized from sodium molybdate dehydrate and glutathione by using a one-pot hydrothermal method. After they were characterized, the influence of GSH-MoS2 QDs on amyloid aggregation of bovine serum albumin (BSA) was investigated by various analytical methods including thioflavin T fluorescence assay, circular dichroism and transmission electron microscope. Moreover, the effect of GSH-MoS2 QDs on cytotoxicity induced by BSA amyloid fibrils and cell penetration were evaluated by MTT assay and confocal fluorescence imaging, respectively. The results indicated that the GSH-MoS2 QDs not only had good water solubility, excellent biocompatibility and low cytotoxicity, but also could obviously inhibit the aggregation of BSA and depolymerize the formed BSA aggregates. The data obtained from this work demonstrated that the GSH-MoS2 QDs is expected to become a candidate drug for the treatment of amyloid-related diseases.


Subject(s)
Disulfides/chemistry , Glutathione/chemistry , Molybdenum/chemistry , Quantum Dots/chemistry , Fluorescent Dyes , Glutathione/blood , Glutathione/metabolism , Optical Imaging/methods , Protein Aggregates/physiology , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence/methods
19.
Gac Sanit ; 35 Suppl 2: S251-S253, 2021.
Article in English | MEDLINE | ID: mdl-34929824

ABSTRACT

OBJECTIVE: This study was aimed to determine the effect of ginger honey supplementation on cortisol, glutathione, and estrogen levels. The study was conducted on mice that had not yet experienced conception, and prior stress induction was carried out so that they could be continued for human trials at the preconception stage and subjects who experienced mild stress. METHOD: It was an in vivo study, pretest-posttest control group design. The sample of this study was 2-3 months female Balb/c mice, divided into negative control and ginger honey intervention as much as 28mg/20g BW for 14 days-the ELISA method used to examine cortisol hormone, glutathione levels, and estrogen levels. The mice chosen were those that had never experienced conception, and before the intervention, swimming activities were carried out on the mice until they showed symptoms of stress. RESULTS: Results show 42mg/20g BW of ginger honey administration for 14 days increased 1.892 ng/dl of cortisol (p = 0.165), increased 2.438 ng/dl of glutathione (p=0.002), and also increased 22.754ng/ml estrogen levels in induced stress Balb/c female mice (p=0.001). CONCLUSION: Ginger honey did not affect reducing cortisol levels but increasing glutathione and estrogen levels significantly. Ginger honey supplements are the potential to use as complementary therapies.


Subject(s)
Estrogens/blood , Glutathione/blood , Honey , Hydrocortisone/blood , Zingiber officinale , Animals , Female , Mice , Mice, Inbred BALB C
20.
Dis Markers ; 2021: 7686374, 2021.
Article in English | MEDLINE | ID: mdl-34956420

ABSTRACT

OBJECTIVE: S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. METHODS: The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. RESULTS: SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = -0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. CONCLUSIONS: A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.


Subject(s)
COVID-19/complications , Lung Injury/blood , S-Adenosylhomocysteine/blood , S-Adenosylmethionine/blood , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Atherosclerosis/epidemiology , Biomarkers , COVID-19/epidemiology , Comorbidity , Diabetes Mellitus/epidemiology , Female , Glutathione/blood , Humans , Hypertension/epidemiology , Interleukin-6/blood , Lung Injury/diagnostic imaging , Lung Injury/etiology , Male , Methylation , Middle Aged , Military Personnel , Risk , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...