Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.070
Filter
1.
Parasites Hosts Dis ; 62(2): 205-216, 2024 May.
Article in English | MEDLINE | ID: mdl-38835261

ABSTRACT

Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-µ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-µ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 µm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 µm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1µm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.


Subject(s)
Clonorchis sinensis , Glutathione Transferase , Intramolecular Oxidoreductases , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Clonorchis sinensis/enzymology , Clonorchis sinensis/genetics , Animals , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Lipocalins/metabolism , Lipocalins/genetics , Lipocalins/chemistry , Lipocalins/immunology , Escherichia coli/genetics , Prostaglandin H2/metabolism , Prostaglandin H2/chemistry , Kinetics
2.
J Agric Food Chem ; 72(22): 12489-12497, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38773677

ABSTRACT

The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.


Subject(s)
Glutathione Transferase , Insect Proteins , Insecticides , Ivermectin , Moths , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/chemistry , Animals , Insecticides/metabolism , Insecticides/pharmacology , Insecticides/chemistry , Moths/metabolism , Moths/drug effects , Moths/enzymology , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Ivermectin/pharmacology , Ivermectin/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Kinetics , Oryza/metabolism , Oryza/parasitology , Oryza/chemistry , Glutathione/metabolism , Glutathione/chemistry
3.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732205

ABSTRACT

The tumor microenvironment is affected by reactive oxygen species and has been suggested to have an important role in ovarian cancer (OC) tumorigenesis. The role of glutathione transferases (GSTs) in the maintenance of redox balance is considered as an important contributing factor in cancer, including OC. Furthermore, GSTs are mostly encoded by highly polymorphic genes, which further highlights their potential role in OC, known to originate from accumulated genetic changes. Since the potential relevance of genetic variations in omega-class GSTs (GSTO1 and GSTO2), with somewhat different activities such as thioltransferase and dehydroascorbate reductase activity, has not been clarified as yet in terms of susceptibility to OC, we aimed to investigate whether the presence of different GSTO1 and GSTO2 genetic variants, individually or combined, might represent determinants of risk for OC development. Genotyping was performed in 110 OC patients and 129 matched controls using a PCR-based assay for genotyping single nucleotide polymorphisms. The results of our study show that homozygous carriers of the GSTO2 variant G allele are at an increased risk of OC development in comparison to the carriers of the referent genotype (OR1 = 2.16, 95% CI: 0.88-5.26, p = 0.08; OR2 = 2.49, 95% CI: 0.93-6.61, p = 0.06). Furthermore, individuals with GST omega haplotype H2, meaning the concomitant presence of the GSTO1*A and GSTO2*G alleles, are more susceptible to OC development, while carriers of the H4 (*A*A) haplotype exhibited lower risk of OC when crude and adjusted haplotype analysis was performed (OR1 = 0.29; 95% CI: 0.12-0.70; p = 0.007 and OR2 = 0.27; 95% CI: 0.11-0.67; p = 0.0054). Overall, our results suggest that GSTO locus variants may confer OC risk.


Subject(s)
Alleles , Genetic Predisposition to Disease , Glutathione Transferase , Ovarian Neoplasms , Polymorphism, Single Nucleotide , Humans , Female , Ovarian Neoplasms/genetics , Glutathione Transferase/genetics , Middle Aged , Genotype , Adult , Aged , Case-Control Studies , Gene Frequency
4.
Protein J ; 43(3): 613-626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743189

ABSTRACT

Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDS‒PAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.


Subject(s)
Cloning, Molecular , Glutathione Transferase , Protozoan Proteins , Recombinant Proteins , Tetrahymena thermophila , Glutathione Transferase/genetics , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Tetrahymena thermophila/enzymology , Tetrahymena thermophila/genetics , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Kinetics , Dinitrochlorobenzene/chemistry , Dinitrochlorobenzene/metabolism , Gene Expression , Glutathione/metabolism , Glutathione/chemistry
5.
Genes (Basel) ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790241

ABSTRACT

To investigate the role of candidate genes for salt-alkali tolerance in cucumber (Cucumis sativus L.), this study screened CsTAU1 in the glutathione pathway from previous transcriptome data for cloning and functional analysis. Clone cucumber CsTAU1 contains one 675 bp open reading frame, containing one GST-N-Tau domain and one GST-C-Tau domain, and is expressed in cytoplasm. After successfully constructing overexpression vectors of CsTAU1 (+) and CsTAU1 (-), they were transferred into cucumber varieties 'D1909' (high salt alkali resistance) and 'D1604' (low salt alkali resistance) for salt-alkali resistance identification. It was found that under salt-alkali stress, CsTAU1 (+)-overexpressing plants showed strong resistance to salt-alkali stress, while CsTAU1 (-)-overexpressing plants showed the opposite situation. qRT-PCR analysis was performed on other glutathione pathway-related genes in CsTAU1-overexpressing plants. The expression patterns of LOC101219529 and LOC105434443 were the same as CsTAU1, and the introduction of CsTAU1 (+) increased the chlorophyll, α-Naphthylamine oxidation, glutathione S-transferase (GST), and catalase (CAT) content of cucumber. The research results provide a theoretical basis for cultivating salt-alkali-tolerant cucumber varieties.


Subject(s)
Cloning, Molecular , Cucumis sativus , Gene Expression Regulation, Plant , Plant Proteins , Salt Tolerance , Cucumis sativus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Alkalies/adverse effects , Salt Stress/genetics , Stress, Physiological/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Plants, Genetically Modified/genetics
6.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791126

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.


Subject(s)
Fatty Acid-Binding Proteins , Fatty Liver , Glutathione Transferase , Up-Regulation , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Animals , Humans , Mice , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Liver/metabolism , Fatty Liver/drug therapy , Up-Regulation/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Diet, High-Fat/adverse effects , Male , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/drug effects , Lipid Metabolism/drug effects , Oleic Acid/metabolism , Hep G2 Cells , Triglycerides/metabolism , Isoenzymes
7.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791319

ABSTRACT

Glutathione S-transferase omega 1 (GstO1) catalyzes deglutathionylation and plays an important role in the protein glutathionylation cycle in cells. GstO1 contains four conserved cysteine residues (C32, C90, C191, C236) found to be mutated in patients with associated diseases. In this study, we investigated the effects of cysteine mutations on the structure and function of GstO1 under different redox conditions. Wild-type GstO1 (WT) was highly sensitive to hydrogen peroxide (H2O2), which caused precipitation and denaturation at a physiological temperature. However, glutathione efficiently inhibited the H2O2-induced denaturation of GstO1. Cysteine mutants C32A and C236A exhibited redox-dependent stabilities and enzyme activities significantly different from those of WT. These results indicate that C32 and C236 play critical roles in GstO1 regulation by sensing redox environments and explain the pathological effect of cysteine mutations found in patients with associated diseases.


Subject(s)
Cysteine , Glutathione Transferase , Glutathione , Hydrogen Peroxide , Oxidation-Reduction , Cysteine/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Humans , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Mutation
8.
J Hazard Mater ; 472: 134448, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38728862

ABSTRACT

Microplastics (MPs) are a major concern in marine ecosystem because MPs are persistent and ubiquitous in oceans and are easily consumed by marine biota. Although many studies have reported the toxicity of MPs to marine biota, the toxicity of environmentally relevant types of MPs is little understood. We investigated the toxic effects of fragmented polyethylene terephthalate (PET) MP, one of the most abundant MPs in the ocean, on the marine rotifer Brachionus koreanus at the individual and molecular level. No significant rotifer mortality was observed after exposure to PET MPs for 24 and 48 h. The ingestion and egestion assays showed that rotifers readily ingested PET MPs in the absence of food but not when food was supplied; thus, there were also no chronic effects of PET MPs. In contrast, intracellular reactive oxygen species levels and glutathione S-transferase activity in rotifers were significantly increased by PET MPs. Transcriptomic and metabolomic analyses revealed that genes and metabolites related to energy metabolism and immune processes were significantly affected by PET MPs in a concentration-dependent manner. Although acute toxicity of PET MPs was not observed, PET MPs are potentially toxic to the antioxidant system, immune system, and energy metabolism in rotifers.


Subject(s)
Microplastics , Polyethylene Terephthalates , Reactive Oxygen Species , Rotifera , Water Pollutants, Chemical , Animals , Rotifera/drug effects , Polyethylene Terephthalates/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Toxicity Tests , Transcriptome/drug effects , Metabolomics , Eating , Multiomics
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 168-173, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650138

ABSTRACT

Genetic predisposition to oxidative stress (OS) may influence the risk of Painful Diabetic Peripheral Neuropathy (PDPN). This study employed a Mendelian Randomization (MR) approach to investigate the causal relationship between genetic predisposition to OS and PDPN. Genetic instruments associated with OS biomarkers were selected as exposures. Summary-level data on PDPN was obtained from the largest available genome-wide association study (GWAS). MR analyses were conducted using the inverse-variance weighted (IVW) method, with sensitivity analyses employing the MR-Egger, weighted median, and MR-PRESSO approaches. Genetic predisposition to increased glutathione S-transferase (GST) activity was associated with a reduced risk of PDPN (OR=0.66, 95%CI: 0.49-0.89, P=0.006). Higher ascorbate levels conferred a protective effect against PDPN (OR=0.83, 95%CI: 0.71-0.97, P=0.018). No significant association was observed between genetic predisposition to OS biomarkers and PDPN severity. Genetic predisposition to increased GST activity and higher ascorbate levels protect against the development of PDPN, suggesting a causal relationship.


Subject(s)
Ascorbic Acid , Diabetic Neuropathies , Genetic Predisposition to Disease , Genome-Wide Association Study , Glutathione Transferase , Mendelian Randomization Analysis , Oxidative Stress , Humans , Oxidative Stress/genetics , Diabetic Neuropathies/genetics , Glutathione Transferase/genetics , Ascorbic Acid/metabolism , Polymorphism, Single Nucleotide , Biomarkers/metabolism
10.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673847

ABSTRACT

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Glutathione Transferase , Solanum melongena , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomes, Plant/genetics , Fruit/genetics , Fruit/metabolism , Genome, Plant , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum melongena/enzymology , Solanum melongena/genetics , Solanum melongena/metabolism
11.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673745

ABSTRACT

Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.


Subject(s)
Glutathione Transferase , Glutathione , Macular Degeneration , Humans , Macular Degeneration/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Glutathione/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Animals , Oxidative Stress
12.
Pestic Biochem Physiol ; 201: 105863, 2024 May.
Article in English | MEDLINE | ID: mdl-38685216

ABSTRACT

The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.


Subject(s)
Glutathione Transferase , Hemiptera , Insecticide Resistance , Insecticides , Neonicotinoids , Nitro Compounds , Hemiptera/drug effects , Hemiptera/genetics , Hemiptera/metabolism , Animals , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Insecticides/pharmacology , Insecticides/metabolism , Insecticide Resistance/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , RNA Interference , Imidazoles/pharmacology , Imidazoles/metabolism
13.
Medicine (Baltimore) ; 103(14): e37707, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579033

ABSTRACT

BACKGROUND: This meta-analysis aimed to systematically summarize the association between cancer risks and glutathione s-transferases (GSTs) among smokers and drinkers. METHODS: Literature was searched through PubMed, Web of Science, CNKI, and WANFANG published from 2001 to 2022. Stata was used with fixed-effect model or random-effect model to calculate pooled odds ratios (ORs) and the 95% confidence interval (95% CI). Sensitivity and heterogeneity calculations were performed, and publication bias was analyzed by Begg and Egger's test. Regression analysis was performed on the correlated variables about heterogeneity, and the false-positive report probabilities (FPRP) and the Bayesian False Discovery Probability (BFDP) were calculated to assess the confidence of a statistically significant association. RESULTS: A total of 85 studies were eligible for GSTs and cancer with smoking status (19,604 cases and 23,710 controls), including 14 articles referring to drinking status (4409 cases and 5645 controls). GSTM1-null had significant associations with cancer risks (for smokers: OR = 1.347, 95% CI: 1.196-1.516, P < .001; for nonsmokers: OR = 1.423, 95% CI: 1.270-1.594, P < .001; for drinkers: OR = 1.748, 95% CI: 1.093-2.797, P = .02). GSTT1-null had significant associations with cancer risks (for smokers: OR = 1.356, 95% CI: 1.114-1.651, P = .002; for nonsmokers: OR = 1.103, 95% CI: 1.011-1.204, P = .028; for drinkers: OR = 1.423, 95% CI: 1.042-1.942, P = .026; for nondrinkers: OR = 1.458, 95% CI: 1.014-2.098, P = .042). Negative associations were found between GSTP1rs1695(AG + GG/AA) and cancer risks among nondrinkers (OR = 0.840, 95% CI: 0.711-0.985, P = .032). CONCLUSIONS: GSTM1-null and GSTT1-null might be related cancers in combination with smoking or drinking, and GSTP1rs1695 might be associated with cancers among drinkers.


Subject(s)
Glutathione S-Transferase pi , Neoplasms , Humans , Glutathione S-Transferase pi/genetics , Bayes Theorem , Genetic Predisposition to Disease , Glutathione Transferase/genetics , Smoking/adverse effects , Neoplasms/etiology , Neoplasms/genetics , Glutathione , Risk Factors , Genotype , Case-Control Studies
14.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
15.
Environ Toxicol Pharmacol ; 108: 104433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583790

ABSTRACT

We investigated possible associations between the internal concentrations of POPs and correlations between blood and tumor tissue concentrations in patients who underwent surgery for breast cancer and breast reduction as controls. Genetic variations in CYP1A1, GSTP1, GSTM1, and GSTT1 and hOGG1 were evaluated to determine whether they represent risk factors for breast cancer. Certain POPs have been found to be associated with breast cancer development. GST-P1 polymorphism represented a significant risk for breast cancer with unadjusted OR. However, the GSTT1 null polymorphism represented a significant risk for breast cancer when OR adjusted for age and smoking status. CYP1A1 polymorphism was a significant risk factor for breast cancer, regardless of whether the OR was adjusted. These results suggest that exposure to certain POPs, GSTT1 and CYP1A1 polymorphisms, age, and smoking status are risk factors for breast cancer. In addition, the blood concentrations of some POPs represent surrogates for breast tissue concentrations.


Subject(s)
Breast Neoplasms , Cytochrome P-450 CYP1A1 , Genetic Predisposition to Disease , Glutathione Transferase , Persistent Organic Pollutants , Humans , Breast Neoplasms/genetics , Female , Glutathione Transferase/genetics , Cytochrome P-450 CYP1A1/genetics , Middle Aged , Adult , Persistent Organic Pollutants/blood , Polymorphism, Genetic , Aged , Glutathione S-Transferase pi/genetics , Risk Factors , DNA Glycosylases
16.
Exp Parasitol ; 261: 108751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604302

ABSTRACT

Anisakiasis is a parasitic disease transmitted through the consumption of raw or undercooked fish and cephalopods that are infected with larvae of Anisakis simplex (sensu stricto) or Anisakis pegreffii. The purpose of this study was to investigate how A. simplex (s. s.) responds to the influence of anthelmintics such as ivermectin (IVM) and pyrantel (PYR). In vitro experiments were conducted using larvae at two developmental stages of A. simplex (s. s.) (L3 and L4) obtained from Baltic herring (Clupea harengus membras). Larvae were cultured with different concentrations of IVM or PYR (1.56, 3.125, and 6.25 µg/mL) for various durations (3, 6, 9, and 12 h) under anaerobic conditions (37 °C, 5% CO2). The gene expression of actin, ABC transporter, antioxidant enzymes, γ-aminobutyric acid receptors, and nicotinic acetylcholine receptors, as well as the oxidative status were analyzed. The results showed that A. simplex (s. s.) L3 stage had lower mobility when cultured with PYR compared to IVM. The analysis of relative gene expression revealed significant differences in the mRNA level of ABC transporters after treatment with IVM and PYR, compared to the control group. Similar patterns were observed in the gene expression of antioxidant enzymes in response to both drugs. Furthermore, the total antioxidant capacity (TAC) and glutathione S-transferase (GST) activity were higher in the treatment groups than in the control group. These findings suggest a relationship between the expression of the studied genes, including those related to oxidative metabolism, and the effectiveness of the tested drugs.


Subject(s)
Anisakis , Anthelmintics , Ivermectin , Larva , Pyrantel , Animals , Anisakis/drug effects , Anisakis/genetics , Anisakis/growth & development , Ivermectin/pharmacology , Larva/drug effects , Larva/genetics , Anthelmintics/pharmacology , Pyrantel/pharmacology , Actins/metabolism , Actins/genetics , Actins/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/drug effects , Xenobiotics/pharmacology , Xenobiotics/metabolism , Gene Expression/drug effects , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Anisakiasis/parasitology , Anisakiasis/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/drug effects , Catalase/genetics , Catalase/metabolism , Catalase/drug effects , Fishes/parasitology , Fish Diseases/parasitology
17.
Medicina (Kaunas) ; 60(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674199

ABSTRACT

Background and Objectives: Despite improvements in screening programs, a large number of patients with colorectal cancer (CRC) are diagnosed in an advanced disease stage. Previous investigations imply that glutathione transferases (GSTs) might be associated with the development and progression of CRC. Moreover, the detoxification mechanism of oxaliplatin, which represents the first line of treatment for advanced CRC, is mediated via certain GSTs. The aim of this study was to evaluate the significance of certain GST genetic variants on CRC prognosis and the efficacy of oxaliplatin-based treatment. Materials and Methods: This prospective study included 523 patients diagnosed with CRC in the period between 2014 and 2016, at the Digestive Surgery Clinic, University Clinical Center of Serbia, Belgrade. Patients were followed for a median of 43.47 ± 17.01 months (minimum 1-63 months). Additionally, 109 patients with advanced disease, after surgical treatment, received FOLFOX6 treatment as a first-line therapy between 2014 and 2020. The Kaplan-Meier method was used to analyze cumulative survival, and the Cox proportional hazard regression model was used to study the effects of different GST genotypes on overall survival. Results: Individuals with the GSTM1-null genotype and the GSTP1 IleVal+ValVal (variant) genotype had significantly shorter survival when compared to referent genotypes (GSTM1-active and GSTP1 IleIle) (log-rank: p = 0.001). Moreover, individuals with the GSTM1-null genotype who received 5-FU-based treatment had statistically significantly shorter survival when compared to individuals with the GSTM1-active genotype (log-rank: p = 0.05). Conclusions: Both GSTM1-null and GSTP1 IleVal+ValVal (variant) genotypes are associated with significantly shorter survival in CRC patients. What is more, the GSTM1-null genotype is associated with shorter survival in patients receiving FOLOFOX6 treatment.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Glutathione S-Transferase pi , Glutathione Transferase , Polymorphism, Genetic , Humans , Glutathione S-Transferase pi/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/drug therapy , Glutathione Transferase/genetics , Female , Male , Middle Aged , Aged , Prospective Studies , Serbia , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Adenocarcinoma/drug therapy , Fluorouracil/therapeutic use , Genotype , Prognosis , Kaplan-Meier Estimate , Organoplatinum Compounds/therapeutic use , Leucovorin/therapeutic use , Oxaliplatin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Proportional Hazards Models , Adult
18.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677072

ABSTRACT

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Subject(s)
Chlorpyrifos , HSP70 Heat-Shock Proteins , Nitriles , Oligochaeta , Oxidative Stress , Pyrethrins , Soil Pollutants , Superoxide Dismutase , Animals , Oligochaeta/drug effects , Chlorpyrifos/toxicity , Pyrethrins/toxicity , Nitriles/toxicity , Superoxide Dismutase/metabolism , Soil Pollutants/toxicity , Oxidative Stress/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Carboxylesterase/metabolism , Insecticides/toxicity , Caspase 3/metabolism , Caspase 3/genetics , Calreticulin/genetics , Calreticulin/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics
19.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Article in English | MEDLINE | ID: mdl-38598868

ABSTRACT

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Subject(s)
Acetolactate Synthase , Herbicide Resistance , Herbicides , Poaceae , Sulfonylurea Compounds , Herbicide Resistance/genetics , Sulfonylurea Compounds/pharmacology , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Herbicides/pharmacology , Poaceae/genetics , Poaceae/drug effects , Poaceae/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Imidazoles/pharmacology , Gene Expression Regulation, Plant/drug effects , Mutation , Molecular Docking Simulation , Benzoates , Pyrimidines
20.
Environ Toxicol Pharmacol ; 108: 104455, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657881

ABSTRACT

This study assessed whether genetic variants coding for certain enzymes involved in xenobiotic detoxification, antioxidant defences and DNA repair, along with exposure to environmental chemicals, were associated with an increased prostate cancer (PCa) risk. The study population consisted of 300 men (150 PCa cases and 150 controls) which underwent prostate biopsy as their serum prostate specific antigen (PSA) levels were greater than 4 ng/ml. Genetic variants in GSTM1, GSTP1, SOD2, CAT, GPX1, XRCC1 were determined and data for chemical exposures was obtained through a structured questionnaire and by biomonitoring in a subsample of cases and controls. High serum PSA levels were associated with a greater risk of PCa, while physical exercise appears to exert a protective effect against its development. In addition, elevated urinary levels of certain organic pollutants, such as benzo(a)pyrene (BaP), bisphenol A (BPA), and ethyl-paraben (EPB), were associated with an increased risk of PCa.


Subject(s)
Environmental Pollutants , Oxidative Stress , Prostate-Specific Antigen , Prostatic Neoplasms , Xenobiotics , Male , Humans , Prostatic Neoplasms/genetics , Oxidative Stress/drug effects , Middle Aged , Aged , Environmental Pollutants/urine , Environmental Pollutants/toxicity , Prostate-Specific Antigen/blood , Case-Control Studies , Environmental Exposure/adverse effects , Glutathione Transferase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...