Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.913
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124561, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833884

ABSTRACT

To satisfy the public's urgent demand for food safety and protect the ecological environment, sensitive detection of glyphosate holds paramount importance. Here, we discovered that glyphosate can engage in specific interactions with iron organic frameworks (Fe-MOFs) nanozymes, enabling a selective detection of glyphosate. Based on this principle, an innovative colorimetric and fluorescent dual-mode detection approach was devised. Specifically, Fe-MOFs were synthesized at room temperature, exhibiting remarkable peroxidase-mimic activity. These nanozymes catalyze the conversion of colorless and fluorescent 3,3',5,5'-Tetramethylbenzidine (TMB) into blue oxidized and nonfluorescent TMB (oxTMB) in the presence of H2O2. However, the introduction of glyphosate disrupts this process by interacting with Fe-MOFs, significantly inhibiting the catalytic activity of Fe-MOFs through both physical (electrostatic and hydrogen bonding) and chemical interactions. This suppression further hindered the conversion of TMB to oxTMB, resulting in a reduction in absorbance and a corresponding enhancement in fluorescence. The method offers a colorimetric and fluorescence dual-mode detection capability with enhanced applicability. Notably, our approach avoids complex material modifications and is more stable and cost-effective than the traditional enzyme inhibition methods. This innovative detection technique holds immense potential for practical applications and provides a fresh perspective for the detection of pesticide residues.


Subject(s)
Colorimetry , Glycine , Glyphosate , Iron , Metal-Organic Frameworks , Spectrometry, Fluorescence , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Iron/chemistry , Iron/analysis , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Spectrometry, Fluorescence/methods , Benzidines/chemistry , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Catalysis , Herbicides/analysis , Nanostructures/chemistry
2.
Talanta ; 276: 126300, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795647

ABSTRACT

N-myristoylation is one of the most widespread and important lipidation in eukaryotes and some prokaryotes, which is formed by covalently attaching various fatty acids (predominantly myristic acid C14:0) to the N-terminal glycine of proteins. Disorder of N-myristoylation is critically implicated in numerous physiological and pathological processes. Here, we presented a method for purification and comprehensive characterization of endogenous, intact N-glycine lipid-acylated peptides, which combined the negative selection method for N-terminome and the nanographite fluoride-based solid-phase extraction method (NeS-nGF SPE). After optimizing experimental conditions, we conducted the first global profiling of the endogenous and heterogeneous modification states for N-terminal glycine, pinpointing the precise sites and their associated lipid moieties. Totally, we obtained 76 N-glycine lipid-acylated peptides, including 51 peptides with myristate (C14:0), 10 with myristoleate (C14:1), 6 with tetradecadienoicate (C14:2), 5 with laurate (C12:0) and 4 with lauroleate (C12:1). Therefore, our proteomic methodology could significantly facilitate precise and in-depth analysis of the endogenous N-myristoylome and its heterogeneity.


Subject(s)
Myristic Acid , Solid Phase Extraction , Solid Phase Extraction/methods , Myristic Acid/chemistry , Myristic Acid/analysis , Proteomics/methods , Fluorides/chemistry , Fluorides/analysis , Glycine/chemistry , Glycine/analysis , Peptides/chemistry , Peptides/analysis
3.
Anal Methods ; 16(23): 3692-3700, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38805075

ABSTRACT

Polar pesticides such as anionic or ionisable compounds have always provided a challenge for analytical chemists. Methods of analysis have been developed using a range of techniques including normal phase chromatography, ion-pairing, derivatisation and HILIC or multi-mode chromatography. These work well with some of these compounds but, except for HILIC, all of them have their limitations and none of them cover the range required by legislation. Some of these compounds, glyphosate, chlorate and phosphonic acid, are found regularly in a range of food matrices, and therefore reliable methods of analysis are essential. This study describes an ion chromatography method with tandem mass spectrometry detection which not only covers the full range of compounds required by legislation but also can be expanded to include other anionic or ionisable pesticides and metabolites. These include glyphosate and its metabolites, glufosinate and its metabolites, ethephon and its metabolites as well as fosetyl aluminium, chlorate and perchlorate. The method is fully validated according to the performance criteria from the SANTE guidelines for the analysis of pesticides in food and feed over a wide range of matrices, including milk, infant formula, cereals and fruits and vegetables. Over 300 food samples have analysed as part of our routine monitoring program.


Subject(s)
Edible Grain , Fruit , Pesticides , Tandem Mass Spectrometry , Vegetables , Tandem Mass Spectrometry/methods , Edible Grain/chemistry , Vegetables/chemistry , Fruit/chemistry , Pesticides/analysis , Milk/chemistry , Infant Formula/chemistry , Animals , Food Contamination/analysis , Humans , Food Analysis/methods , Pesticide Residues/analysis , Anions/analysis , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Chromatography, Ion Exchange/methods
4.
Talanta ; 276: 126253, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759359

ABSTRACT

A novel zeolitic imidazolate framework-encapsulated zinc porphyrin (ZnTCPP@ZIF-90) photoresponsive nanozyme is proposed for the colorimetric/fluorescent dual-mode visual sensing of glyphosate (Gly). ZnTCPP@ZIF-90 exhibits photoresponsive oxidase-like activity and fluorescence quenching behavior. Meanwhile, the outer ZIF-90 layer can be selectively destroyed by Gly, causing the release of free ZnTCPP, resulting in the enhanced enzyme-like activity as well as fluorescence emission. The constructed ZnTCPP@ZIF-90 was successfully used for the colorimetric/fluorescent dual-mode detection of Gly. Additionally, the colorimetric and fluorescent images information captured by the smartphone were converted to color intensity (HSV/RGB values), with limits of detection of 0.27 µg/mL and 0.19 µg/mL, respectively. The proposed dual-mode sensor exhibits excellent selectivity and reliability for detecting Gly, and can be successfully applied to the analysis of real samples such as tap water, lake water, and fruit washing water. The current research efforts are expected to provide new perspectives for designing highly active photoresponsive nanozymes and their stimuli-responsive sensing systems, paving the way for their applications in portable dual-mode chemical sensing and environmental monitoring.


Subject(s)
Colorimetry , Glycine , Glyphosate , Imidazoles , Metal-Organic Frameworks , Metalloporphyrins , Zeolites , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Zeolites/chemistry , Imidazoles/chemistry , Metalloporphyrins/chemistry , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/analysis , Spectrometry, Fluorescence/methods , Photochemical Processes , Limit of Detection , Herbicides/analysis , Fluorescence , Smartphone
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124420, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38728848

ABSTRACT

As common pollutants, Cu2+ and glyphosate pose a serious threat to human health and the ecosystem. Herein, a fluorescent probe (E)-7-(diethylamino)-N'(4-(diethylamino)-2-hydroxybenzyl)-2-oxo-2H chromophore-3-carbazide (DDHC) was designed and synthesised for the sequential recognition of Cu2+ and glyphosate. DDHC has the advantages of a short synthesis path, easy-to-obtain raw materials, good anti-interference ability, and strong stability. The interaction of the DDHC-Cu2+ complexes with glyphosate allows the amino and carboxyl groups in glyphosate molecules to coordinate with Cu2+ strongly, competing for the Cu2+ in the DDHC-Cu2+ complexes and releasing the DDHC, leading to the recovery of fluorescence. The recognition was further validated through Job's plot, HRMS, and DFT calculations. In addition, the successful recovery of Cu2+ and glyphosate in different environmental water samples fully demonstrates the practical application potential of DDHC. Especially, DDHC has low cytotoxicity and can enter zebrafish and HeLa cells, rapidly reacting with Cu2+ and glyphosate in the body, generating visible fluorescence quenching and recovery phenomena, achieving real-time visual monitoring of exogenous Cu2+ and glyphosate in zebrafish and HeLa cells. The targeting and dual selectivity of DDHC greatly enhance its potential application value in the field of detection, providing important theoretical support for studying the fate of multiple pollutants in the environment.


Subject(s)
Copper , Fluorescent Dyes , Glycine , Glyphosate , Zebrafish , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Copper/analysis , Copper/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Animals , HeLa Cells , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Herbicides/analysis , Density Functional Theory
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124424, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733917

ABSTRACT

A new peptide-based fluorescent probe named DMDH with easy-to-synthesize, excellent stability, good water solubility and large Stokes shift (225 nm) was synthesized for highly selective sequential detections of copper ions (Cu2+) and glyphosate (Glyp). DMDH demonstrated great detection performance towards Cu2+via strong fluorescence quenching, and forming non-fluorescence DMDH-Cu2+ ensemble. As a new promising cascade probe, the fluorescence of DMDH-Cu2+ ensemble was significantly recovered based on displacement approach after glyphosate was added. Interestingly, the limit of detections (LODs) for Cu2+ and glyphosate were 40.6 nM and 10.6 nM, respectively, which were far lower than those recommended by the WHO guidelines for drinking water. More importantly, DMDH was utilized to evaluate Cu2+ and glyphosate content in three real water samples, demonstrating that its effectiveness in water quality monitoring. Additionally, it is worth noting that DMDH was also applied to analyze Cu2+ and glyphosate in living cells in view of significant cells permeability and low cytotoxicity. Moreover, DMDH soaked in filter paper was used to create qualitative test strips and visually identify Cu2+ and glyphosate through significant color changes. Furthermore, smartphone RGB color recognition provided a new method for semi-quantitative testing of Cu2+ and glyphosate in the absence of expensive instruments.


Subject(s)
Copper , Fluorescent Dyes , Glycine , Glyphosate , Peptides , Smartphone , Spectrometry, Fluorescence , Copper/analysis , Copper/chemistry , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Spectrometry, Fluorescence/methods , Peptides/chemistry , Limit of Detection , Reagent Strips/analysis , Water Pollutants, Chemical/analysis , HeLa Cells , Drinking Water/analysis
7.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727763

ABSTRACT

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Subject(s)
Glycine , Glyphosate , Hemin , Limit of Detection , Metal-Organic Frameworks , Pesticides , Pesticides/analysis , Pesticides/chemistry , Metal-Organic Frameworks/chemistry , Hemin/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Benzidines/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Dimethoate/analysis , Dimethoate/chemistry , Aptamers, Nucleotide/chemistry , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry
8.
Anal Chim Acta ; 1308: 342647, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740456

ABSTRACT

BACKGROUND: Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed. RESULTS: A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with Fe3O4 NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking Fe3O4 NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity Fe3O4 NPs, the protocol achieved Gly detection in the range of 5 × 10-10 to 1 × 10-4 mol L-1. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil. SIGNIFICANCE: This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.


Subject(s)
Electrochemical Techniques , Electrodes , Glycine , Glyphosate , Graphite , Nitrogen , Photochemical Processes , Graphite/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Nitrogen/chemistry , Polymers/chemistry , Copper/chemistry , Gels/chemistry , Herbicides/analysis , Limit of Detection , Magnetite Nanoparticles/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry
9.
J Environ Manage ; 359: 121046, 2024 May.
Article in English | MEDLINE | ID: mdl-38728981

ABSTRACT

The increasing concern over pesticide pollution in water bodies underscores the need for effective mitigation strategies to support the transition towards sustainable agriculture. This study assesses the effectiveness of landscape mitigation strategies, specifically vegetative buffer strips, in reducing glyphosate loads at the catchment scale under realistic conditions. Conducted over six years (2014-2019) in a small agricultural region in Belgium, our research involved the analysis of 732 water samples from two monitoring stations, differentiated by baseflow and event-driven sampling, and before (baseline) and after the implementation of mitigation measures. The results indicated a decline in both the number and intensity of point source losses over the years. Additionally, there was a general decrease in load intensity; however, the confluence of varying weather conditions (notably dry years during the mitigation period) and management practices (the introduction of buffer strips) posed challenges for a statistically robust evaluation of each contributing factor. A reduction of loads was measured when comparing mitigation with baseline, although this reduction is not statistically significant. Glyphosate loads during rainfall events correlated with a rainfall index and runoff ratio. Overall, focusing the mitigation strategy on runoff and erosion was a valid approach. Nevertheless, challenges remain, as evidenced by the continuous presence of glyphosate in baseflow conditions, highlighting the complex dynamics of pesticide transport. The study concludes that while progress has been made towards reducing pesticide pollution, the complexity of interacting factors necessitates further research. Future directions should focus on enhancing farmer engagement in mitigation programs and developing experiments with more intense data collection that help to assess underlying dynamics of pesticide pollution and the impact of mitigation strategies in more detail, contributing towards the goal of reducing pesticide pollution in water bodies.


Subject(s)
Agriculture , Glyphosate , Belgium , Water Pollutants, Chemical/analysis , Environmental Monitoring , Glycine/analogs & derivatives , Glycine/analysis , Pesticides/analysis
10.
Mar Pollut Bull ; 202: 116376, 2024 May.
Article in English | MEDLINE | ID: mdl-38636342

ABSTRACT

In the present study, we determined glyphosate (GPS) and aminomethylphosphonic acid (AMPA) in the water and sediments of the Ofanto River (Italy), evaluating their transport from the mouth to the sea. Sediments were collected twice in 2021 during low and high tide; waters were sampled on a seasonal basis. The results showed the prevalence of GPS and AMPA in the water with concentrations equal to 190 and 3053 ng/l, respectively. We also found GPS and AMPA in the sediments with values of 0.95 and 11.34 ng/g. In water, pesticides were detected in all seasons with peaks in concentrations during summer and spring. A significant positive correlation between the pesticides in the sediments and the water pH and a negative correlation with salinity was observed. An estimation of the average loads revealed a discharge of 64.11 kg/yr. of GPS and 958.37 kg/yr. of AMPA from the river to the marine environment.


Subject(s)
Environmental Monitoring , Geologic Sediments , Glycine , Glyphosate , Rivers , Water Pollutants, Chemical , Glycine/analogs & derivatives , Glycine/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Pesticides/analysis , Italy , Organophosphonates/analysis , Seasons
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124327, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38669979

ABSTRACT

The excessive emission of copper ions (Cu2+) and the abuse of glyphosate (Glyp) have caused serious harm to the ecological environment and human health, so it is important to develop a fast and convenient method for the analysis of Cu2+ and glyphosate to ensure environmental and food safety. Herein, a dual-signals peptide-based probe (FASRH) with fluorescent and colorimetric was prepared using 5-carboxyl fluorescein modified tetrapeptide (Ala-Ser-Arg-His-NH2). FASRH was successfully used to recognize Cu2+ as a fluorescence "on-off" probe, forming the FASRH-Cu2+ complex with non-fluorescence. As a new promising cascade probe, FASRH-Cu2+ complex probe has high selectivity (only Glyp), good sensitivity (50.2 nM), good anti-interference ability and wide pH range (7.0-11.0) for the detection of glyphosate by ligand replacement method. In addition, the recognizable color changed markedly under 365 nm UV light and natural light. Notably, FASRH not only achieved accurate monitoring of Cu2+ and glyphosate in two real water samples, but also successfully applied to detect Cu2+ and glyphosate in live Hacat cells based on low cytotoxicity. Moreover, it is worth noting that FASRH-impregnated test strips exhibited significant fluorescence and colorimetric color changes for Cu2+ and glyphosate via naked eye. Furthermore, smartphone-assisted FASRH was used for the portable detection of Cu2+ and glyphosate based on the advantages of simplicity, low cost and fast response.


Subject(s)
Colorimetry , Copper , Fluorescent Dyes , Glycine , Glyphosate , Spectrometry, Fluorescence , Glycine/analogs & derivatives , Glycine/analysis , Copper/analysis , Humans , Colorimetry/methods , Fluorescent Dyes/chemistry , Cell Line , Water Pollutants, Chemical/analysis , Peptides/chemistry
12.
J Sep Sci ; 46(22): e2300395, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37688356

ABSTRACT

Interest has increased in the role of N-acyl amino acids in a variety of disease states and as potential pharmacotherapies. Recently, N-oleoyl glycine and N-oleoyl alanine have shown promise in reducing the rewarding effects of drugs of abuse and alleviating withdrawal signs in rodent models. Previously published methods for the quantitation of these analytes by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in tissue were part of extensive lipidomic panels which may result in limited sensitivity and selectivity and also reported low recovery. Presented is a method for the extraction and HPLC-MS/MS analysis of N-oleoyl glycine and N-oleoyl alanine. The bias and precision of the assay were determined to be within ± 20%. The method was shown to be reliable and robust, with over 90% recovery for the low-level analytes. Increasing concentrations of N-oleoyl glycine and N-oleoyl alanine were quantitated in mouse brain and plasma following exogenous administration. This method was developed to serve to support studies investigating the pharmacokinetics and involvement of N-oleoyl glycine and N-oleoyl alanine in drug dependence and other diseases.


Subject(s)
Glycine , Tandem Mass Spectrometry , Mice , Animals , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Glycine/analysis , Alanine , Brain
13.
J Agric Food Chem ; 71(28): 10751-10760, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37419492

ABSTRACT

Hypoglycin A (HGA), methylenecyclopropylglycine (MCPrG), hypoglycin B (HGB), and γ-glutamyl-α-(methylenecyclopropyl) glycine (γ-glutamyl-MCPrG) are secondary plant metabolites occurring in sycamore maple (Acer pseudoplatanus) as well as several other Sapindaceae (e.g., Blighia sapida). By interfering with energy metabolism, they may cause severe intoxication in humans and other species. However, to date, there is not enough data available concerning the intake, metabolism, or excretion of sycamore maple toxins in dairy cows. In May 2022, five cows were observed over four days, when they had first access to a pasture with two sycamore maples. Grazing of their seedlings that grew numerously in between the pasture plants was monitored by direct observation. Milk samples were drawn both from individual cows and from the bulk tank. Spontaneous urine samples were collected from all cows on day 3 after access to the pasture. Seedlings (100 g) were sampled on the pasture and analyzed, together with milk and urine samples, for sycamore toxins and their metabolites using liquid chromatography-tandem mass spectrometry and liquid chromatography-high-resolution mass spectrometry. Cows ingested sycamore seedlings while grazing. Values of HGA in milk were below the limit of quantification. However, metabolites of HGA and MCPrG were detected in individual milk samples already at the end of the first day of grazing. Urine samples of all five cows showed higher concentrations of conjugated HGA and MCPrG metabolites than in milk. Observations suggest that dairy cows may have a low susceptibility toward sycamore maple toxins. However, whether this could be attributed to foregut fermenting species in general requires further elucidation.


Subject(s)
Acer , Horse Diseases , Hypoglycins , Humans , Horses , Female , Cattle , Animals , Hypoglycins/toxicity , Milk , Seedlings/chemistry , Glycine/analysis , Acer/chemistry , Lactation
14.
J Dent ; 136: 104645, 2023 09.
Article in English | MEDLINE | ID: mdl-37524196

ABSTRACT

OBJECTIVES: To identify the metabolomic differences in the saliva of healthy children versus children with active carious lesions and to estimate the predictive capacity of a model based on the salivary metabolomic profile. METHODS: A study of cases (n = 31) and controls (n = 37) was designed for children aged between 6 and 12 (mean age of the cases: 8.9; controls: 8.7). The said children attended public health centers in Valencia, Spain. Intraoral examinations were performed by a single examiner using ICDAS II diagnostic criteria. Unstimulated total saliva samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy. RESULTS: The dft index for cases was 2.84 while it was 0.19 for the control group, the DMFT index was 1.13 and 0.11, respectively. The predictive model generated by the multivariate PLS-DA analysis projects a separation between the cases and the controls on the score chart with a predictive capacity and generating an area under the curve of 0.71. The metabolites: 3-methyl-2-oxovalerate, 3-hydroxybutyrate, lactate, acetone, citrate, ornithine, ethanolamine, taurine, proline, glycine, mannose, glucose, 1-6-Anhydro-ß-d-glucose and citraconate, are those that show greater significance in the model. In the controls, glycine (Cohen's d = 0.430) and glucose (Cohen's d = 0.560) present higher means compared to the cases. On the contrary, taurine (Cohen's d= -0.474) and mannose (Cohen's d= -0.456) show higher means in cases compared to controls. CONCLUSIONS: Our findings show a difference in the salivary metabolomic profiles, specifically in the groups of saccharides and amino acids, suggesting an association of these with the level of caries risk. CLINICAL SIGNIFICANCE: The results reported in the present study reinforce the use of salivary metabolomics as a research method for the search for salivary biomarkers that allow the evaluation of caries risk in patients. Furthermore, it brings us closer to a personalized medicine that will help in dental caries prevention strategies.


Subject(s)
Dental Caries , Humans , Child , Dental Caries/diagnosis , Mannose/analysis , Mannose/metabolism , Saliva/chemistry , Metabolomics , Glucose/metabolism , Glycine/analysis , Glycine/metabolism , Taurine/analysis , Taurine/metabolism
15.
Reprod Sci ; 30(11): 3285-3295, 2023 11.
Article in English | MEDLINE | ID: mdl-37264261

ABSTRACT

Identifying the metabolome of human seminal plasma (HSP) is a new research area to screen putative biomarkers of infertility. This case-control study was performed on HSP specimens of 15 infertile patients with teratozoospermia (defined as normal sperm morphology < 4%) and 12 confirmed fertile normozoospermic men as the control group to investigate the seminal metabolic signature and whether there are differences in the metabolome between two groups. HSPs were subjected to LC-MS-MS analysis. MetaboAnalyst5.0 software was utilized for statistical analysis. Different univariate and multivariate analyses were used, including T-tests, fold change analysis, random forest (RF), and metabolite set enrichment analysis (MSEA). Teratozoospermic samples contained seventeen significantly different amino acids. Upregulated metabolites include glutamine, asparagine, and glycylproline, whereas downregulated metabolites include cysteine, γ-aminobutyric acid, histidine, hydroxylysine, hydroxyproline, glycine, proline, methionine, ornithine, tryptophan, aspartic acid, argininosuccinic acid, α-aminoadipic acid, and ß-aminoisobutyric acid. RF algorithm defined a set of 15 metabolites that constitute the significant features of teratozoospermia. In particular, increased glutamine, asparagine, and decreased cysteine, tryptophan, glycine, and valine were strong predictors of teratozoospemia. The most affected metabolic pathways in teratozoospermic men are the aminoacyl-tRNA, arginine, valine-leucine, and isoleucine biosynthesis. Altered metabolites detected in teratozoospermia were responsible for various roles in sperm functions that classified into four subgroups as follows: related metabolites to antioxidant function, energy production, sperm function, and spermatogenesis. The altered amino acid metabolome identified in this study may be related to the etiology of teratozoospermia, and may provide novel insight into potential biomarkers of male infertility for therapeutic targets.


Subject(s)
Amino Acids , Teratozoospermia , Humans , Male , Amino Acids/analysis , Amino Acids/metabolism , Semen/metabolism , Teratozoospermia/metabolism , Tryptophan/analysis , Tryptophan/metabolism , Asparagine/analysis , Asparagine/metabolism , Chromatography, Liquid , Cysteine/metabolism , Glutamine/analysis , Glutamine/metabolism , Case-Control Studies , Tandem Mass Spectrometry , Glycine/analysis , Glycine/metabolism , Valine/analysis , Valine/metabolism , Biomarkers/metabolism
16.
J Sep Sci ; 46(12): e2300038, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37061853

ABSTRACT

Among all known compounds with herbicide activity glyphosate, has been the most commercially successful one. Currently, it is under evaluation because of its possible cancerogenic properties. However, the question is-if it is possible to completely withdraw it from use. Before it can happen, it is important to be sure of all its benefits and limitations, and this requires further detailed research. Due to the extent and prevalence of its use, glyphosate ends up in the environment and then in food and our bodies. There are several methods used for their determination. One of them is ion chromatography. Taking into account its advantages and disadvantages, as well as its rapid development, their importance in this field can be expected to increase in the near future. This paper summarizes the literature data from the past 22 years. The applications of ion chromatography in the determination of glyphosate in various types of environmental, food, and other samples are described. Moreover, the methods used so far are compared with the possibilities offered by ion chromatography, which main advantages and benefits are easy availability, low operating costs, green chemistry aspects, and suitable validation parameters.


Subject(s)
Herbicides , Herbicides/analysis , Chromatography , Glycine/analysis , Crops, Agricultural , Glyphosate
17.
Anal Bioanal Chem ; 415(10): 1933-1942, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36877265

ABSTRACT

Hypoglycin A (HGA) and its homologue methylenecyclopropylglycine (MCPrG) are present in ackee and lychee as well as seeds, leaves, and seedlings of some maple (Acer) species. They are toxic to some animal species and humans. The determination of HGA, MCPrG, and their glycine and carnitine metabolites in blood and urine is a useful tool for screening for potential exposure to these toxins. In addition, HGA, MCPrG, and/or their metabolites have been detected in milk. In this work, simple and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methods without derivatization were developed and validated for the quantification of HGA, MCPrG, and their metabolites in cow's milk and urine. An extraction procedure from milk samples has been developed, whereas a dilute-and-shoot approach was implemented for urine samples. For quantification, the MS/MS analysis was performed in multiple reaction monitoring mode. The methods were validated according to the European Union guidelines using blank raw milk and urine as matrices. The limit of quantification presented here for HGA in milk (1.12 µg/L) is noticeably lower than the lowest published limit of detection (9 µg/L). Acceptable values for recovery (89-106% and 85-104% in milk and urine, respectively) and precision (≤ 20%) were obtained for all the quality control levels. The stability of HGA and MCPrG in frozen milk over a period of 40 weeks has been demonstrated. The method was applied to 68 milk samples from 35 commercial dairy farms and showed the absence of any quantifiable amounts of HGA, MCPrG, and their metabolites.


Subject(s)
Acer , Tandem Mass Spectrometry , Humans , Animals , Female , Cattle , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Milk/chemistry , Farms , Chromatography, High Pressure Liquid/methods , Glycine/analysis , Germany
18.
Molecules ; 27(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36432148

ABSTRACT

Background: In 2017, the European Commission renewed the approval of glyphosate (GLY) but only for five years. GLY remains one of the most controversial and studied molecules. Method: A simplified method was tested for the determination of GLY in white rice (WR) and brown rice (BR), after extraction only with a methanol solution, by liquid chromatography coupled with inductively coupled mass triple quadrupole (HPLC-ICP-MS/MS) with a PRP-X100 anionic column. After performing a test on groundwater, the quantification of GLY in WR and BR was validated in terms of the LOD, LOQ, accuracy, precision, linearity, and the matrix effect. Results: The LOD was 0.0027 mg kg−1 for WR and 0.0136 mg kg−1 for BR. The LOQ was 0.0092 mg kg−1 for WR and 0.0456 mg kg−1 for BR. The mean recoveries were within 76−105% at three fortification levels. The relative standard deviation for the analysis (five replicates for three spike levels) was < 11% for both matrices. A linear response was confirmed in all cases in the entire concentration range (R2WR = 1.000 and R2BR = 0.9818). Conclusion: The proposed method could be considered useful for the determination of GLY in different types of rice and designed and adapted for other cereals. The matrix effect, quantified in BR matrix extraction, could be avoided by using a matrix-matched calibration line.


Subject(s)
Oryza , Chromatography, High Pressure Liquid/methods , Oryza/chemistry , Tandem Mass Spectrometry/methods , Glycine/analysis , Glyphosate
19.
Microbiol Spectr ; 10(5): e0189922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197290

ABSTRACT

Maintaining the health of seafarers is a difficult task during long-term voyages. Little is known about the corresponding changes in the gut microbiome-host interaction. This study recruited 30 seafarers undertaking a 6-month voyage and analyzed their gut microbiota using 16S rRNA gene sequencing. Fecal untargeted metabolomics analysis was performed using liquid chromatography-mass spectrometry. Significant changes in the composition of the gut microbiota and an increased ratio of Firmicutes/Bacteroidetes at the end (day 180) of the 6-month voyage, relative to the start (day 0), were observed. At the genus level, the abundances of Holdemanella and Plesiomonas were significantly increased, while the abundance of Bacteroides was decreased. Predicted microbial functional analysis revealed significant decreases in folate biosynthesis and biotin metabolism. Furthermore, 20 differential metabolites within six differentially enriched human metabolic pathways (including arginine biosynthesis, lysine degradation, phenylalanine metabolism, sphingolipid metabolism, pentose and glucuronate interconversions, and glycine, serine, and threonine metabolism) were identified by comparing the fecal metabolites at day 0 and day 180. Spearman correlation analysis revealed close relationships between the 14 differential microbiota members and the six differential fecal metabolites that might affect specific human metabolic pathways. This study adopted a multi-omics approach and provides potential targets for maintaining the health of seafarers during long-term voyages. These findings are worthy of more in-depth exploration in future studies. IMPORTANCE Maintaining the health of seafarers undertaking long-term voyages is a difficult task. Apart from the alterations in the gut microbiome and fecal metabolites after a long-term voyage, our study also revealed that 20 differential metabolites within six differentially enriched human metabolic pathways are worthy of attention. Moreover, we found close relationships between the 14 differential microbiota members and the six differential fecal metabolites that might impact specific human metabolic pathways. Accordingly, preventative measures, such as adjusting the gut microbiota by decreasing potential pathobionts or increasing potential probiotics as well as offsetting the decrease in B vitamins and beneficial metabolites (e.g., d-glucuronic acid and citrulline) via dietary adjustment or nutritional supplements, might improve the health of seafarers during long-term sea voyages. These findings provide valuable clues about gut microbiome-host interactions and propose potential targets for maintaining the health of seafarers engaged in long-term sea voyages.


Subject(s)
Gastrointestinal Microbiome , Vitamin B Complex , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Vitamin B Complex/analysis , Citrulline/analysis , Biotin , Lysine/analysis , Metabolomics/methods , Feces , Pentoses/analysis , Glucuronates/analysis , Glycine/analysis , Glucuronic Acid , Serine/analysis , Phenylalanine/analysis , Sphingolipids/analysis , Threonine/analysis , Arginine/analysis , Folic Acid/analysis
20.
J Chromatogr A ; 1676: 463287, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35793575

ABSTRACT

Bile acids are a group of steroid compounds essential for lipid digestion. However, when bile acids are refluxed into the stomach and the esophagus, during the so called duodenogastroesophageal reflux, they can have a detrimental effect on the esophageal epithelium and cause pathological changes of esophageal tissue, e.g., Barrett's esophagus (BE). The levels of bile acids in saliva could therefore serve as possible biomarkers for the diagnostics of BE. In this work, we focused on optimization of sample collection and preparation by solid-phase extraction and subsequent quantification of 11 bile acids (unconjugated, glycine-conjugated) in saliva from healthy volunteers and BE patients by ultra-high-performance liquid chromatography coupled to triple-quadrupole tandem mass spectrometry. Moreover, high resolution MS (Orbitrap-MS) was utilized for identification of new bile acids in saliva. Methods for saliva collection including simple spitting and the Salivette® saliva collection system were compared; the latter was found to be unsuitable due to excessive retention of bile acids in the cotton swab. Methanol with 0.1% formic acid were selected for protein precipitation and bile acid extraction prior to SPE. Separation was performed in gradient elution of methanol and 0.1% formic acid in less than 10 min. Saliva from BE patients contained higher levels of almost all bile acids, and the tested groups could be distinguished by principal component analysis. In untargeted analysis by high resolution MS, taurine-conjugated bile acids and glycine-conjugated dihydroxy-bile acid sulfate were identified in saliva from healthy volunteers. We propose that analysis of salivary bile acids including taurine conjugates could be applicable in diagnostics of BE, following a larger clinical study.


Subject(s)
Barrett Esophagus , Barrett Esophagus/metabolism , Bile Acids and Salts/analysis , Chromatography, Liquid , Formates , Glycine/analysis , Humans , Mass Spectrometry , Methanol/analysis , Saliva/chemistry , Taurine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...