Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.215
Filter
1.
Chemosphere ; 358: 142219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704040

ABSTRACT

The worldwide used herbicide Glyphosate can interact with environmental variables, but there is limited information on the influence of environmental stressors on its toxicity. Environmental changes could modify glyphosate effects on non-target organisms, including parasites such as gordiids. The freshwater microscopic larvae of the gordiid Chordodes nobilii are sensitive to several pollutants and environmental variables, but their combined effect has not been evaluated yet. The aim of this study was to evaluate the impact of temperature, pH and exposure time on the toxicity of Glyphosate to C. nobilii larvae. A protocol was followed to evaluate the infectivity of larvae treated with factorial combinations of concentration (0 and 0.067 mg/L), exposure time (24 and 48 h), temperature (18, 23 and 28 °C), and pH (7, 8 and 9). The reference values were 23 °C, pH 8 and 48 h. The interaction effect on the infectivity of gordiid larvae was assessed post-exposure using Aedes aegyptii larvae as host. Results were evaluated using GLMM, which does not require data transformation. The modeling results revealed three highly significant triple interactions. Glyphosate toxicity varied depending on the combination of variables, with a decrease being observed after 24 h-exposure at pH 7 and 23 °C. Glyphosate and 28 °C combination led to slightly reduced infectivity compared to temperature alone. This study is the first to report the combined effects of glyphosate, temperature, pH and time on a freshwater animal. It demonstrates that a specific combination of factors determines the effect of glyphosate on a non-target organism. The potential use of C. nobilli as a bioindicator is discussed. In the context of global warming and considering that the behavioral manipulation of terrestrial hosts by gordiids can shape community structure and the energy flow through food webs, our results raise concerns about possible negative effects of climate change on host-parasite dynamics.


Subject(s)
Glycine , Glyphosate , Herbicides , Larva , Temperature , Glycine/analogs & derivatives , Glycine/toxicity , Animals , Herbicides/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Hydrogen-Ion Concentration , Helminths/drug effects , Helminths/physiology , Aedes/drug effects , Parasites/drug effects
2.
Aquat Toxicol ; 271: 106940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728927

ABSTRACT

Aminomethylphosphonic acid (AMPA) is the main metabolite in the degradation of glyphosate, a broad-spectrum herbicide, and it is more toxic and persistent in the environment than the glyphosate itself. Owing to their extensive use, both chemicals pose a serious risk to aquatic ecosystems. Here, we explored the genotoxicological and physiological effects of glyphosate, AMPA, and the mixed solution in the proportion 1:1 in Lymnaea stagnalis, a freshwater gastropod snail. To do this, adult individuals were exposed to increasing nominal concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 µg/mL) in all three treatments once a week for four weeks. The genotoxicological effects were estimated as genomic damage, as defined by the number of micronuclei and nuclear buds observed in hemocytes, while the physiological effects were estimated as the effects on somatic growth and egg production. Exposure to glyphosate, AMPA, and the mixed solution caused genomic damage, as measured in increased frequency of micronuclei and nuclear buds and in adverse effects on somatic growth and egg production. Our findings suggest the need for more research into the harmful and synergistic effects of glyphosate and AMPA and of pesticides and their metabolites in general.


Subject(s)
Glycine , Glyphosate , Herbicides , Lymnaea , Organophosphonates , Water Pollutants, Chemical , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Lymnaea/drug effects , Lymnaea/genetics , Water Pollutants, Chemical/toxicity , Organophosphonates/toxicity , Herbicides/toxicity , Micronucleus Tests , DNA Damage/drug effects , Hemocytes/drug effects , Tetrazoles/toxicity
3.
Ecotoxicol Environ Saf ; 278: 116410, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38696871

ABSTRACT

Environmental exposure to endocrine disruptors, such as pesticides, could contribute to a decline of human fertility. Glyphosate (GLY) is the main component of Glyphosate Based Herbicides (GBHs), which are the most commonly herbicides used in the world. Various animal model studies demonstrated its reprotoxicity. In Europe, GLY authorization in agriculture has been extended until 2034. Meanwhile the toxicity of GLY in humans is still in debate. The aims of our study were firstly to analyse the concentration of GLY and its main metabolite, amino-methyl-phosphonic acid (AMPA) by LC/MS-MS in the seminal and blood plasma in an infertile French men population (n=128). We secondly determined Total Antioxidant Status (TAS) and Total Oxidant Status (TOS) using commercial colorimetric kits and some oxidative stress biomarkers including malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA assays. We next analysed potential correlations between GLY and oxidative stress biomarkers concentration and sperm parameters (sperm concentration, progressive speed, anormal forms). Here, we detected for the first time GLY in the human seminal plasma in significant proportions and we showed that its concentration was four times higher than those observed in blood plasma. At the opposite, AMPA was undetectable. We also observed a strong positive correlation between plasma blood GLY concentrations and plasma seminal GLY and 8-OHdG concentrations, the latter reflecting DNA impact. In addition, TOS, Oxidative Stress Index (OSI) (TOS/TAS), MDA blood and seminal plasma concentrations were significantly higher in men with glyphosate in blood and seminal plasma, respectively. Taken together, our results suggest a negative impact of GLY on the human reproductive health and possibly on his progeny. A precaution principle should be applied at the time of the actual discussion of GLY and GBHs formulants uses in Europe by the authorities.


Subject(s)
Glycine , Glyphosate , Herbicides , Infertility, Male , Oxidative Stress , Spermatozoa , Humans , Male , Glycine/analogs & derivatives , Glycine/toxicity , Oxidative Stress/drug effects , France , Adult , Herbicides/toxicity , Spermatozoa/drug effects , Infertility, Male/chemically induced , Semen/drug effects , Biomarkers/blood , Malondialdehyde/metabolism , Organophosphonates/toxicity , Middle Aged
4.
Environ Sci Pollut Res Int ; 31(24): 35308-35319, 2024 May.
Article in English | MEDLINE | ID: mdl-38727975

ABSTRACT

Daphnia spinulata Birabén, 1917 is an endemic cladoceran species, frequent in the zooplankton communities of the shallow lakes of the Pampean region of Argentina. These lakes have varying salinity levels and, being located in agricultural areas, are frequently subject to pesticide pollution. This study aimed to determine the effects of the herbicide glyphosate (Panzer Gold®) in combination with different salinity levels on the biological parameters of D. spinulata and its recovery ability after a short exposure. Three types of assays were performed: an acute toxicity test, a chronic assessment to determine survival, growth and reproduction, and recovery assays under optimal salinity conditions (1 g L-1). The LC50-48 h of glyphosate was 7.5 mg L-1 (CL 3.15 to 11.72). Longevity and the number of offspring and clutches were significantly reduced due to the combined exposure of glyphosate and increased salinity. The timing of the first offspring did not recover after glyphosate exposure. Our results reveal that D. spinulata is sensitive to the herbicide Panzer Gold® at concentrations well below those indicated in the safety data sheet of this commercial formulation, which causes stronger negative effects in conditions of higher salinity. Further research is needed to shed light on the sensitivity of this cladoceran to glyphosate and its variability under other interactive stress factors.


Subject(s)
Daphnia , Glycine , Glyphosate , Herbicides , Salinity , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Daphnia/drug effects , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Argentina , Reproduction/drug effects
5.
Environ Toxicol Pharmacol ; 108: 104476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796121

ABSTRACT

Studies reported that continuous application of glyphosate can cause disturbance in aquatic/terrestrial environments. As such, the objective of this study is to discuss the risk of exposure to the herbicide in drinking water and to assess the oxidative stress in the consumers rural populations of Casimiro de Abreu/ RJ and Paraguaçu/ MG, Brazil. For this, water samples (n=69) were analysed from the home of volunteers, by FMOC derivatizing- LC-FLD method. The oxidative stress was analysed determining lipid peroxidation (MAD) and defense enzymes (SOD and CAT) in serum samples from rural population (n=42) compared to urban residents (n= 42). Results of the analysis from drinking water, despite the low and moderate risk, by the hazard quotient (HQ), revealed that the population is environmentally exposed to the glyphosate. The relevant findings showed that is important to implement monitoring/ biomonitoring programs to prevent pollution and toxic effects in the rural populations.


Subject(s)
Drinking Water , Glycine , Glyphosate , Herbicides , Oxidative Stress , Rural Population , Water Pollutants, Chemical , Glycine/analogs & derivatives , Glycine/toxicity , Oxidative Stress/drug effects , Brazil , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Humans , Drinking Water/analysis , Drinking Water/chemistry , Herbicides/toxicity , Adult , Male , Female , Middle Aged , Catalase/blood , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood , Environmental Exposure/analysis , Environmental Exposure/adverse effects , Lipid Peroxidation/drug effects , Young Adult , Aged
6.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677114

ABSTRACT

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Subject(s)
Charcoal , Composting , Glycine , Glyphosate , Herbicides , Neonicotinoids , Nitro Compounds , Soil Microbiology , Soil Pollutants , Strobilurins , Neonicotinoids/metabolism , Neonicotinoids/toxicity , Nitro Compounds/metabolism , Nitro Compounds/toxicity , Strobilurins/metabolism , Strobilurins/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Charcoal/chemistry , Glycine/analogs & derivatives , Glycine/metabolism , Glycine/toxicity , Herbicides/metabolism , Herbicides/toxicity , Carbamates/metabolism , Carbamates/toxicity , Microbiota/drug effects , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism , Pyrazoles/metabolism , Pyrazoles/toxicity , Insecticides/metabolism , Insecticides/toxicity , Biodegradation, Environmental , Soil/chemistry , Bacteria/metabolism , Bacteria/drug effects
7.
Chemosphere ; 358: 142058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642777

ABSTRACT

Glyphosate (GLY) is a widely used broad-spectrum herbicide, and ivermectin (IVM) is a commonly used antiparasitic in livestock farming. Both substances can be found in water bodies from agricultural areas and can have negative impacts on ecosystems. The aim of this study was to evaluate the lethal and sublethal toxicity individually and in combination of a glyphosate-based herbicide (GBH) and an ivermectin commercial formulation (ICF). Groups of 10 larvae were exposed for 504 h, in triplicate to a concentration gradient of the commercial formulation of glyphosate and ivermectin, individually, and to a series of dilutions of a non-equitoxic mixture of both compounds based on environmental concentrations. Additionally, biomarkers of oxidative stress (catalase, glutathione S-transferase, and reduced glutathione) and neurotoxicity (acetylcholinesterase and butyrylcholinesterase) were evaluated at sublethal and environmental concentrations of ivermectin (0.00125 mg/L) and glyphosate (0.7 mg/L) individually and in mixture. The ICF (LC50-504h: 0.047 mg ai IVM/L) was more toxic to larvae than the GBH (LC50-504h: 24.73 mg ae GLY/L). In terms of lethality, exposure to the mixture was synergistic at all exposure times. Both compounds separately caused alterations in the biomarkers of oxidative stress and neurotoxicity. Regarding sublethal effects in organisms exposed to the mixture, potentiation was observed in acetylcholinesterase. The simultaneous exposure to both substances in water bodies can have synergistic and negative effects on aquatic organisms.


Subject(s)
Glycine , Glyphosate , Herbicides , Ivermectin , Larva , Oxidative Stress , Water Pollutants, Chemical , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Larva/drug effects , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Drug Synergism , Acetylcholinesterase/metabolism , Pesticides/toxicity , Biomarkers/metabolism
8.
Funct Plant Biol ; 512024 04.
Article in English | MEDLINE | ID: mdl-38669460

ABSTRACT

We evaluated changes in growth, chlorophyll fluorescence and basic physiological and biochemical parameters of the microalgae Thalassiosira weissflogii cells under the influence of the herbicide glyphosate in concentrations 0, 25, 95 and 150µgL-1 . The toxic effect of glyphosate on algae is weakly dependent on the level of cell mineral nutrition. High concentrations of the herbicide do not lead to the death of microalgae but block the process of algae cell division. An increase in the glyphosate concentration in the medium leads to a slowdown or stop of algal growth, a decrease in their final biomass, an increase in the production of reactive oxygen species (ROS), depolarisation of mitochondrial membranes and metabolic activity of algae. Glyphosate inhibits the photosynthetic activity of cells and inhibits the relative rate of electron transport in the photosynthetic apparatus. Glyphosate at the studied concentrations does not affect the size characteristics of cells and the intracellular content of chlorophyll in T. weissflogii . The studied herbicide or products of its decay retain their toxic properties in the environment for at least 9days. This result shows the need for further in-depth studies to assess the physiological response and possible acclimation changes in the functional state of oxygenic phototrophs in response to the herbicide action. The species specificity of microalgae to the effects of glyphosate in natural conditions is potentially dangerous due to a possible change in the species structure of biocoenoses, in particular, a decrease in the contribution of diatoms.


Subject(s)
Chlorophyll , Diatoms , Glycine , Glyphosate , Herbicides , Microalgae , Photosynthesis , Reactive Oxygen Species , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Microalgae/drug effects , Microalgae/metabolism , Diatoms/drug effects , Diatoms/metabolism , Diatoms/growth & development , Chlorophyll/metabolism , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Biomass
9.
Environ Pollut ; 350: 123967, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631452

ABSTRACT

Roundup® (R), while it is the most used herbicide globally, and its residues are ubiquitous in urban and suburban areas, its impact on vertebrates' safety remains highly debated. Here, in three in vitro experiments, we investigated the effects of a very low dose (1 ppm) of R on the fertilization capacity and embryo development in cattle. In the first experiment, frozen-thawed bull semen exposed to R for 1 h exhibited reduced motility parameters but unaffected fertilization ability. However, after in vitro fertilization, the rates of embryo formation were significantly lower compared to the untreated controls. In the second experiment, oocytes exposed to R during in vitro maturation showed reduced cleavage rates, and the embryo yield on days 7, 8, and 9 of embryo culture was significantly lower than that of the controls. In the third experiment, oocytes were matured in the presence of R and in a medium containing both R and Zinc, chosen to offer antioxidant protection to the oocytes. Day-7 blastocysts were analyzed for the expression of genes associated with oxidative stress, apoptosis, and epigenetic reprogramming. Exposure to R markedly suppressed embryo formation rates compared to the controls. The combination of R with Zinc restored the blastocyst yield, which on days 8 and 9 was comparable to that of the controls and higher than the groups exposed only to R on all days. The gene expression analysis revealed that R promotes oxidative stress development, triggers apoptosis, and induces epigenetic changes in developing embryos, while zinc presence alleviates these adverse effects of R. These findings imply that even at very low doses, R could be highly toxic, leading to functional abnormalities in both gametes, potentially affecting fertility in both genders.


Subject(s)
Fertilization in Vitro , Glycine , Glyphosate , Herbicides , Animals , Herbicides/toxicity , Cattle , Glycine/analogs & derivatives , Glycine/toxicity , Male , Female , Embryonic Development/drug effects , Oocytes/drug effects , Oxidative Stress/drug effects , Blastocyst/drug effects , Germ Cells/drug effects
10.
Vet Res Commun ; 48(3): 1769-1778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558370

ABSTRACT

Beauvericin is an emerging Fusariotoxin naturally occurring in cereal grains throughout the world whereas glyphosate (N-phosphonomethyl-glycine) is a non-selective systemic herbicide used worldwide. The purpose of this study is to evaluate a newly developed ovarian cell culture system (that includes both granulosa and theca cells) as an in vitro model for toxicological studies. Specifically, the effects of beauvericin and glyphosate in formulation with Roundup on ovarian cell numbers and steroid production were evaluated. Ovaries collected from cattle without luteal structures were sliced into 30-70 pieces each, and granulosa and theca cells were collected. Harvested cells were cultured for 48 h in 10% fetal bovine serum-containing medium followed by 48 h in serum-free medium containing testosterone (500 ng/mL; as an estrogen precursor) with the following eight treatments: (1) controls, (2) FSH (30 ng/mL) alone, (3) FSH plus insulin-like growth factor-1 (IGF1; 30 ng/mL), (4) FSH plus IGF1 plus beauvericin (3 µM), (5) FSH plus IGF1 plus glyphosate in Roundup (10 µg/mL), (6) FSH plus IGF1 plus fibroblast growth factor 9 (FGF9, 30 ng/mL), (7) a negative control without added testosterone, and (8) IGF1 plus LH (30 ng/mL) with basal medium without added testosterone. In the presence of FSH, IGF1 significantly increased cell numbers, estradiol and progesterone production by severalfold. Glyphosate in Roundup formulation significantly inhibited IGF1-induced cell numbers and estradiol and progesterone production by 89-94%. Beauvericin inhibited IGF1-induced cell numbers and estradiol and progesterone by 50-97% production. LH plus IGF1 significantly increased androstenedione secretion compared with controls without added testosterone indicating the presence of theca cells. In conclusion, the present study demonstrates that toxicological effects of beauvericin and glyphosate in Roundup formulation are observed in a newly developed ovarian cell model system and further confirms that both glyphosate and beauvericin may have the potential to impair reproductive function in cattle.


Subject(s)
Depsipeptides , Glycine , Glyphosate , Herbicides , Animals , Female , Cattle , Glycine/analogs & derivatives , Glycine/toxicity , Depsipeptides/toxicity , Herbicides/toxicity , Ovary/drug effects , Ovary/metabolism , Progesterone/metabolism , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Theca Cells/drug effects , Theca Cells/metabolism , Estradiol/metabolism , Estradiol/analogs & derivatives , Cell Count , Cells, Cultured , Insulin-Like Growth Factor I/metabolism , Testosterone/analogs & derivatives
11.
Environ Sci Pollut Res Int ; 31(22): 32152-32167, 2024 May.
Article in English | MEDLINE | ID: mdl-38648003

ABSTRACT

Under laboratory conditions, the toxicological effects of pesticides tend to be less variable and realistic than under field conditions, limiting their usefulness in environmental risk assessment. In the current study, the earthworm Eisenia fetida was selected as a bioindicator for assessing glyphosate toxic effects in two different trials to solve this dilemma. In Trial 1, the worms were exposed for 7 and 14 days to concentrations of a commercial glyphosate formulation (1 to 500 mg a.i. kg-1) currently used in the field. In Trial 2, the worms were kept in nine soils collected from different plots with crops for 14 days of exposure. In both experiments, glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE) activities and contents of lipid peroxidation (LPO) were evaluated. In T1, the glyphosate formulation produced a 40% inhibition of AChE activity and a significant increase in GST, SOD, CAT, and GPx activities and LPO contents in E. fetida on day 7. In T2, higher concentrations of glyphosate were detected in the soils of soybean, papaya, and corn (0.92, 0.87, and 0.85 mg kg-1), which induced a positive correlation between the levels of glyphosate residues with GST, SOD, CAT, GPx, and LPO and a negative correlation with AChE. These findings indicate that crop soils polluted with glyphosate elicited higher oxidative stress than under laboratory conditions, confirmed by IBRv2, PCA, and AHC analyses.


Subject(s)
Glutathione Transferase , Glycine , Glyphosate , Oligochaeta , Soil Pollutants , Soil , Animals , Oligochaeta/drug effects , Glycine/analogs & derivatives , Glycine/toxicity , Soil Pollutants/toxicity , Soil/chemistry , Glutathione Transferase/metabolism , Mexico , Catalase/metabolism , Acetylcholinesterase/metabolism , Glutathione Peroxidase/metabolism , Superoxide Dismutase/metabolism , Crops, Agricultural , Herbicides/toxicity , Lipid Peroxidation/drug effects
12.
Environ Res ; 252(Pt 1): 118831, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38580005

ABSTRACT

Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public.


Subject(s)
Glycine , Glyphosate , Herbicides , Interleukin-8 , Neutrophils , Reactive Oxygen Species , Humans , Glycine/analogs & derivatives , Glycine/toxicity , Neutrophils/drug effects , Neutrophils/metabolism , Herbicides/toxicity , Reactive Oxygen Species/metabolism , Female , Male , Interleukin-8/metabolism , Adult , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Tetrazoles , Sex Factors , Isoxazoles , Organophosphonates
13.
Pestic Biochem Physiol ; 201: 105793, 2024 May.
Article in English | MEDLINE | ID: mdl-38685207

ABSTRACT

Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 µL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.


Subject(s)
Chlorpyrifos , Flight, Animal , Glycine , Glyphosate , Metabolomics , Neonicotinoids , Nitro Compounds , Pesticides , Transcriptome , Animals , Bees/drug effects , Bees/genetics , Bees/metabolism , Nitro Compounds/toxicity , Chlorpyrifos/toxicity , Neonicotinoids/toxicity , Flight, Animal/drug effects , Transcriptome/drug effects , Glycine/analogs & derivatives , Glycine/toxicity , Pesticides/toxicity , Insecticides/toxicity , Metabolome/drug effects
14.
Environ Pollut ; 347: 123669, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460584

ABSTRACT

Glyphosate (GLY)-based herbicides (GBHs) are the most commonly applied pesticide worldwide, and non-target organisms (e.g., animals) are now regularly exposed to GLY and GBHs due to the accumulation of these chemicals in many environments. Although GLY/GBH was previously considered to be non-toxic, growing evidence indicates that GLY/GBH negatively affects some animal taxa. However, there has been no systematic analysis quantifying its toxicity to animals. Therefore, we used a meta-analytical approach to determine whether there is a demonstrable effect of GLY/GBH toxicity across animals. We further addressed whether the effects of GLY/GBH vary due to (1) taxon (invertebrate vs. vertebrate), (2) habitat (aquatic vs. terrestrial), (3) type of biological response (behavior vs. physiology vs. survival), and (4) dosage or concentration of GLY/GBH. Using this approach, we also determined whether adjuvants (e.g., surfactants) in commercial formulations of GBHs increased toxicity for animals relative to exposure to GLY alone. We analyzed 1282 observations from 121 articles. We conclude that GLY is generally sub-lethally toxic for animals, particularly for animals in aquatic or marine habitats, and that toxicity did not exhibit dose-dependency. Yet, our analyses detected evidence for widespread publication bias so we encourage continued experimental investigations to better understand factors influencing GLY/GBH toxicity to animals.


Subject(s)
Glyphosate , Herbicides , Animals , Glycine/toxicity , Glycine/chemistry , Herbicides/toxicity , Ecosystem , Surface-Active Agents
15.
Plant Physiol Biochem ; 210: 108550, 2024 May.
Article in English | MEDLINE | ID: mdl-38555720

ABSTRACT

Extracellular ATP plays a key role in regulating plants stress responses. Here, we aimed to determine whether ATP can alleviate the glyphosate toxicity in maize seedlings under high temperature by regulating antioxidant responses. Foliar spraying with 100 µM glyphosate inhibited the growth of maize seedlings at room temperature (25 °C), leading to an increase in shikimic acid accumulation and oxidative stress (evaluated via lipid peroxidation, free proline, and H2O2 content) in the leaves, all of which were further exacerbated by high temperature (35 °C). The growth inhibition and oxidative stress caused by glyphosate were both alleviated by exogenous ATP. Moreover, the glyphosate-induced antioxidant enzyme activity and antioxidant accumulation were attenuated by high temperature, while ATP treatment reversed this inhibitory effect. Similarly, qPCR data showed that the relative expression levels of antioxidant enzyme-related genes (CAT1, GR1, and γ-ECS) in maize leaves were upregulated by ATP before exposure to GLY. Moreover, high temperature-enhanced GLY residue accumulation in maize leaves was reduced by ATP. ATP-induced detoxification was attenuated through NADPH oxidase (NOX) inhibition. Higher NOX activities and O2•- production were noted in ATP-treated maize leaves compared to controls prior to GLY treatment, indicating that the extracellular ATP-induced alleviation of GLY toxicity was closely associated with NOX-dependent reactive oxygen species signalling. The current findings present a new approach for reducing herbicide toxicity in crops exposed to high temperatures.


Subject(s)
Adenosine Triphosphate , Glycine , Glyphosate , Seedlings , Zea mays , Zea mays/drug effects , Zea mays/metabolism , Zea mays/genetics , Zea mays/growth & development , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/toxicity , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Adenosine Triphosphate/metabolism , Hot Temperature , Herbicides/toxicity , Herbicides/pharmacology , Oxidative Stress/drug effects , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Gene Expression Regulation, Plant/drug effects
16.
Environ Res ; 251(Pt 1): 118547, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38452917

ABSTRACT

BACKGROUND: Glyphosate is the most widely used herbicide worldwide, both in domestic and industrial settings. Experimental research in animal models has demonstrated changes in muscle physiology and reduced contractile strength associated with glyphosate exposure, while epidemiological studies have shown associations between glyphosate exposure and adverse health outcomes in critical biological systems affecting muscle function. METHODS: This study used data from a nationally representative survey of the non-institutionalized U.S. general population (NHANES, n = 2132). Urine glyphosate concentrations were determined by ion chromatography with tandem mass spectrometry. Hand grip strength (HGS) was measured using a Takei Dynamometer, and relative strength estimated as the ratio between HGS in the dominant hand and the appendicular lean mass (ALM) to body mass index (ALMBMI) ratio. Low HGS and low relative HGS were defined as 1 sex-, age- and race-specific SD below the mean. Physical function limitations were identified as significant difficulty or incapacity in various activities. RESULTS: In fully-adjusted models, the Mean Differences (MD) and 95% confidence intervals [95%CI] per doubling increase in glyphosate concentrations were -0.55 [-1.09, -0.01] kg for HGS in the dominant hand, and -0.90 [-1.58. -0.21] kg for HGS/ALMBMI. The Odds Ratios (OR) [95% CI] for low HGS, low relative HGS and functional limitations by glyphosate concentrations were 1.27 [1.03, 1.57] for low HGS; 1.43 [1.05; 1.94] for low relative HGS; 1.33 [1.08, 1.63] for stooping, crouching or kneeling difficulty; 1.17 [0.91, 1.50] for lifting or carrying items weighting up to 10 pounds difficulty; 1.21 [1.01, 1.40] for standing up from armless chair difficulty; and 1.47 [1.05, 2.29] for ascending ten steps without pause difficulty. CONCLUSIONS: Glyphosate exposure may be a risk factor for decreased grip strength and increased physical functional limitations. More studies investigating the influence of this and other environmental pollutants on functional aging are needed.


Subject(s)
Glycine , Glyphosate , Hand Strength , Herbicides , Glycine/analogs & derivatives , Glycine/urine , Glycine/toxicity , Humans , Male , Middle Aged , Female , Aged , Herbicides/toxicity , Herbicides/urine , Environmental Exposure/adverse effects , Nutrition Surveys
17.
Environ Res ; 250: 118509, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38408628

ABSTRACT

Glyphosate (GLY) is among the most widely used pesticides in the world. However, there are a lot of unknowns about chronic exposure to GLY's effects on Honeybee (HB) behavior and physiology. To address this, we carried out five experiments to study the impact of chronic exposure to 5 mg/kg GLY on sugar consumption, survival, gene expression, gut microbiota, and metabolites of HB workers. Our results find a significant decrease in sugar consumption and survival probability of HB after chronic exposure to GLY. Further, genes associated with immune response, energy metabolism, and longevity were conspicuously altered. In addition, a total of seven metabolites were found to be differentially expressed in the metabolomic profiles, mainly related the sucrose metabolism. There was no significant difference in the gut microbiota. Results suggest that chronic exposure to field-level GLY altered the health of HB and the intricate toxic mechanisms. Our data provided insights into the chronic effects of GLY on HB behavior in food intake and health, which represents the field conditions where HB are exposed to pesticides over extended periods.


Subject(s)
Gastrointestinal Microbiome , Glycine , Glyphosate , Herbicides , Bees/drug effects , Bees/microbiology , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Gastrointestinal Microbiome/drug effects , Herbicides/toxicity , Gene Expression/drug effects , Eating/drug effects , Metabolome/drug effects , Metabolomics
18.
BMC Plant Biol ; 24(1): 119, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38369476

ABSTRACT

Symbiotic Methylobacterium comprise a significant portion of the phyllospheric microbiome, and are known to benefit host plant growth, development, and confer tolerance to stress factors. The near ubiquitous use of the broad-spectrum herbicide, glyphosate, in farming operations globally has necessitated a more expansive evaluation of the impacts of the agent itself and formulations containing glyphosate on important components of the plant phyllosphere, including Methylobacterium.This study provides an investigation of the sensitivity of 18 strains of Methylobacterium to glyphosate and two commercially available glyphosate-based herbicides (GBH). Nearly all strains of Methylobacterium showed signs of sensitivity to the popular GBH formulations WeatherMax® and Transorb® in a modified Kirby Bauer experiment. However, exposure to pure forms of glyphosate did not show a significant effect on growth for any strain in both the Kirby Bauer test and in liquid broth, until polysorbate-20 (Tween20) was added as a surfactant. Artificially increasing membrane permeability through the introduction of polysorbate-20 caused a 78-84% reduction in bacterial cell biomass relative to controls containing glyphosate or high levels of surfactant only (0-9% and 6-37% reduction respectively). Concentrations of glyphosate as low as 0.05% w/v (500 µg/L) from both commercial formulations tested, inhibited the culturability of Methylobacterium on fresh nutrient-rich medium.To better understand the compatibility of important phyllospheric bacteria with commercial glyphosate-based herbicides, this study endeavours to characterize sensitivity in multiple strains of Methylobacterium, and explore possible mechanisms by which toxicity may be induced.


Subject(s)
Glyphosate , Herbicides , Herbicides/toxicity , Glycine/toxicity , Polysorbates , Surface-Active Agents
19.
Sci Total Environ ; 918: 170675, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38316312

ABSTRACT

The early stage of heart development is highly susceptible to various environmental factors. While the use of animal models has aided in identifying numerous environmental risk factors, the variability between species and the low throughput limit their translational potential. Recently, a type of self-assembling cardiac structures, known as human heart organoids (hHOs), exhibits a remarkable biological consistency with human heart. However, the feasibility of hHOs for assessing cardiac developmental risk factors remains unexplored. Here, we focused on the cardiac developmental effects of core components of Glyphosate-based herbicides (GBHs), the most widely used herbicides, to evaluate the reliability of hHOs for the prediction of possible cardiogenesis toxicity. GBHs have been proven toxic to cardiac development based on multiple animal models, with the mechanism remaining unknown. We found that polyoxyethylene tallow amine (POEA), the most common surfactant in GBHs formulations, played a dominant role in GBHs' heart developmental toxicity. Though there were a few differences in transcriptive features, hHOs exposed to sole POEA and combined POEA and Glyphosate would suffer from both disruption of heart contraction and disturbance of commitment in cardiomyocyte isoforms. By contrast, Glyphosate only caused mild epicardial hyperplasia. This study not only sheds light on the toxic mechanism of GBHs, but also serves as a methodological demonstration, showcasing its effectiveness in recognizing and evaluating environmental risk factors, and deciphering toxic mechanisms.


Subject(s)
Fats , Glyphosate , Herbicides , Animals , Humans , Amines , Glycine/toxicity , Glycine/chemistry , Reproducibility of Results , Polyethylene Glycols/chemistry , Herbicides/toxicity , Herbicides/chemistry
20.
Reprod Biol ; 24(2): 100865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402720

ABSTRACT

Glyphosate is an endocrine disruptor and can act on the activity of certain enzymes of metabolism subsequently altering some functions such as reproduction. The goal of the present study is to evaluate the involvement of glyphosate based-herbicide (GBH) in spermatogenesis disruption and to investigate which cells of the adult Wistar rat testis are most affected by short-term exposure to GBH. Treated groups received a diluted solution of GBH orally for 21 days (D1: 102.5 mg/Kg; D2: 200 mg/Kg; D3: 400 mg/Kg). The control group (C) received water in the same manner. Hormone levels, oxidative stress markers were evaluated, histological and morphometric analysis were performed, AR and p53 expression was conducted. Seminiferious epithelium sloughing associated to erosion of Sertoli and spermatogonia from the basement of the seminiferous tubules, with intraluminal exfoliated cells among with immature spermatids were observed. A significant change in morphometric measurement and significant decrease in AR expression in Sertoli cells were noted for all treated groups. A significant increase in NO level and p53 expression in Leydig cells were showed for animals treated with 200 and 400 mg/kg BW/day. These data demonstrate that short-term exposure to high doses of GBH has led to a disruption of certain parameters that could disturb spermatogenesis. The treatment showed that both Leydig and Sertoli cells are affected in the same manner by GBH, the activation of p53 expression in both Leydig cells and peritubular myloid cells nuclei, and the reduction in AR expression in Sertoli cells, which resulted in important testicular damage.


Subject(s)
Glycine , Glyphosate , Herbicides , Rats, Wistar , Spermatogenesis , Testis , Animals , Male , Spermatogenesis/drug effects , Testis/drug effects , Testis/pathology , Herbicides/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Glycine/administration & dosage , Rats , Oxidative Stress/drug effects , Tumor Suppressor Protein p53/metabolism , Endocrine Disruptors/toxicity , Receptors, Androgen/metabolism , Testosterone , Leydig Cells/drug effects , Leydig Cells/metabolism , Leydig Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...