Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
2.
J Pharmacol Exp Ther ; 389(3): 313-314, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772716

ABSTRACT

We thank Dr. Weimer and her colleagues for their comments related to our recent work (Anding et al., 2023) and are grateful for the opportunity to further discuss the importance of efficient lysosomal targeting of enzyme-replacement therapies (ERT) for the treatment of Pompe disease. Patients with Pompe disease have mutations in the gene that encodes for acid α glucosidase (GAA), a lysosomal enzyme necessary for the breakdown of glycogen. The first-generation ERT, alglucosidase alfa, provides a lifesaving therapy for the severe form of the disease (infantile onset Pompe disease) and improves or stabilizes respiratory and motor function in patients with less severe disease (late onset Pompe disease). Despite these gains, significant unmet need remains, particularly in patients who display respiratory and motor decline following years of treatment. Poor tissue uptake and lysosomal targeting via inefficient binding of the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) in skeletal muscle contributed to this suboptimal treatment response, prompting the development of new ERTs with increased levels of M6P.


Subject(s)
1-Deoxynojirimycin , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Mannosephosphates , alpha-Glucosidases , Glycogen Storage Disease Type II/drug therapy , Animals , Enzyme Replacement Therapy/methods , Mannosephosphates/metabolism , Mice , alpha-Glucosidases/therapeutic use , alpha-Glucosidases/metabolism , alpha-Glucosidases/administration & dosage , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/therapeutic use , Humans , Lysosomes/drug effects , Lysosomes/metabolism
3.
Front Immunol ; 15: 1336599, 2024.
Article in English | MEDLINE | ID: mdl-38715621

ABSTRACT

Introduction: Pompe disease, a lysosomal storage disorder, is characterized by acid α-glucosidase (GAA) deficiency and categorized into two main subtypes: infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD). The primary treatment, enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), faces challenges due to immunogenic responses, including the production of anti-drug antibody (ADA), which can diminish therapeutic efficacy. This study aims to assess the effectiveness of immune tolerance induction (ITI) therapy in cross-reactive immunologic material (CRIM)-positive Pompe disease patients with established high ADA levels. Method: In a single-center, open-label prospective study, we assessed ITI therapy's efficacy in Pompe disease patients, both IOPD and LOPD, with persistently elevated ADA titers (≥1:12,800) and clinical decline. The ITI regimen comprised bortezomib, rituximab, methotrexate, and intravenous immunoglobulin. Biochemical data, biomarkers, ADA titers, immune status, and respiratory and motor function were monitored over six months before and after ITI. Results: This study enrolled eight patients (5 IOPD and 3 LOPD). After a 6-month ITI course, median ADA titers significantly decreased from 1:12,800 (range 1:12,800-1:51,200) to 1:1,600 (range 1:400-1:12,800), with sustained immune tolerance persisting up to 4.5 years in some cases. Serum CK levels were mostly stable or decreased, stable urinary glucose tetrasaccharide levels were maintained in four patients, and no notable deterioration in respiratory or ambulatory status was noted. Adverse events included two treatable infection episodes and transient symptoms like numbness and diarrhea. Conclusion: ITI therapy effectively reduces ADA levels in CRIM-positive Pompe disease patients with established high ADA titers, underscoring the importance of ADA monitoring and timely ITI initiation. The findings advocate for personalized immunogenicity risk assessments to enhance clinical outcomes. In some cases, prolonged immune suppression may be necessary, highlighting the need for further studies to optimize ITI strategies for Pompe disease treatment. ClinicalTrials.gov NCT02525172; https://clinicaltrials.gov/study/NCT02525172.


Subject(s)
Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Immune Tolerance , alpha-Glucosidases , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , alpha-Glucosidases/therapeutic use , alpha-Glucosidases/immunology , alpha-Glucosidases/administration & dosage , Enzyme Replacement Therapy/adverse effects , Enzyme Replacement Therapy/methods , Glycogen Storage Disease Type II/immunology , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/therapy , Immunoglobulins, Intravenous/therapeutic use , Immunoglobulins, Intravenous/administration & dosage , Methotrexate/therapeutic use , Methotrexate/administration & dosage , Prospective Studies , Rituximab/therapeutic use , Rituximab/adverse effects , Rituximab/administration & dosage , Treatment Outcome
5.
J Neurol ; 271(5): 2810-2823, 2024 May.
Article in English | MEDLINE | ID: mdl-38418563

ABSTRACT

The phase III double-blind PROPEL study compared the novel two-component therapy cipaglucosidase alfa + miglustat (cipa + mig) with alglucosidase alfa + placebo (alg + pbo) in adults with late-onset Pompe disease (LOPD). This ongoing open-label extension (OLE; NCT04138277) evaluates long-term safety and efficacy of cipa + mig. Outcomes include 6-min walk distance (6MWD), forced vital capacity (FVC), creatine kinase (CK) and hexose tetrasaccharide (Hex4) levels, patient-reported outcomes and safety. Data are reported as change from PROPEL baseline to OLE week 52 (104 weeks post-PROPEL baseline). Of 118 patients treated in the OLE, 81 continued cipa + mig treatment from PROPEL (cipa + mig group; 61 enzyme replacement therapy [ERT] experienced prior to PROPEL; 20 ERT naïve) and 37 switched from alg + pbo to cipa + mig (switch group; 29 ERT experienced; 8 ERT naive). Mean (standard deviation [SD]) change in % predicted 6MWD from baseline to week 104 was + 3.1 (8.1) for cipa + mig and - 0.5 (7.8) for the ERT-experienced switch group, and + 8.6 (8.6) for cipa + mig and + 8.9 (11.7) for the ERT-naïve switch group. Mean (SD) change in % predicted FVC was - 0.6 (7.5) for cipa + mig and - 3.8 (6.2) for the ERT-experienced switch group, and - 4.8 (6.5) and - 3.1 (6.7), respectively, in ERT-naïve patients. CK and Hex4 levels improved in both treatment groups by week 104 with cipa + mig treatment. Three patients discontinued the OLE due to infusion-associated reactions. No new safety signals were identified. Cipa + mig treatment up to 104 weeks was associated with overall maintained improvements (6MWD, biomarkers) or stabilization (FVC) from baseline with continued durability, and was well tolerated, supporting long-term benefits for patients with LOPD.Trial registration number: NCT04138277; trial start date: December 18, 2019.


Subject(s)
1-Deoxynojirimycin , 1-Deoxynojirimycin/analogs & derivatives , Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Humans , Male , Female , Glycogen Storage Disease Type II/drug therapy , Middle Aged , Adult , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/adverse effects , 1-Deoxynojirimycin/therapeutic use , Double-Blind Method , Enzyme Replacement Therapy/methods , alpha-Glucosidases/adverse effects , alpha-Glucosidases/administration & dosage , alpha-Glucosidases/therapeutic use , Drug Therapy, Combination , Treatment Outcome , Aged , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects
6.
Eur J Neurol ; 31(5): e16223, 2024 May.
Article in English | MEDLINE | ID: mdl-38375606

ABSTRACT

BACKGROUND AND PURPOSE: Pompe disease is a rare, inheritable, progressive metabolic myopathy. This study aimed to estimate the minimal clinically important difference (MCID) for an improvement in forced vital capacity in the upright seated position (FVCup) and the 6-min walk test (6MWT) after a year of treatment with enzyme replacement therapy. METHODS: Data were obtained from two prospective follow-up studies. Between-group and within-group MCIDs were estimated using anchor-based methods. Additionally, a distribution-based method was used to generate supportive evidence. As anchors, self-reported change in health and in physical functioning, shortness of breath and a categorization of the Short-Form 36 Physical Component Summary score were used. Anchor appropriateness was assessed using Spearman correlations (absolute values ≥0.29) and a sufficient number of observations in each category. RESULTS: In all, 102 patients had at least one FVCup or 6MWT measurement during enzyme replacement therapy. Based on the anchors assessed as appropriate, the between-group MCID for an improvement in FVCup ranged from 2.47% to 4.83% points. For the 6MWT, it ranged from 0.35% to 7.47% points which is equivalent to a distance of 2.18-46.61 m and 1.97-42.13 m for, respectively, a man and a woman of age 50, height 1.75 m and weight 80 kg. The results of the distribution-based method were within these ranges when applied to change in the outcome values. CONCLUSION: The MCIDs for FVCup and 6MWT derived in this study can be used to interpret differences between and within groups of patients with Pompe disease in clinical trials and cohort studies.


Subject(s)
Glycogen Storage Disease Type II , Male , Adult , Female , Humans , Middle Aged , Glycogen Storage Disease Type II/drug therapy , Prospective Studies , Walk Test , Follow-Up Studies , Lung , Treatment Outcome
7.
Mol Genet Metab ; 141(2): 108119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184429

ABSTRACT

INTRODUCTION: The standard of care for patients with infantile-onset Pompe disease (IOPD) is enzyme replacement therapy (ERT), which does not cross the blood brain barrier. While neuromuscular manifestations of IOPD are well-described, central nervous system (CNS) manifestations of this disorder are far less characterized. Here we describe severe CNS-related neurological manifestations including seizures and encephalopathy in six individuals with IOPD. METHOD: We identified six children with IOPD who developed CNS manifestations such as seizures and/or encephalopathy. We studied their brain magnetic resonance imaging scans (MRIs) and graded the severity of white matter hyperintensities (WMHI) using the Fazekas scale scoring system as previously published. Longitudinal cognitive measures were available from 4/6 children. RESULTS: All six IOPD patients (4 males/2 females) had been treated with ERT for 12-15 years. Seizures and/or encephalopathy were noted at a median age at onset of 11.9 years (range 9-15 years). All were noted to have extensive WMHI in the brain MRIs and very high Fazekas scores which preceded the onset of neurological symptoms. Longitudinal IQ scores from four of these children suggested developmental plateauing. DISCUSSION: Among a subset of IOPD patients on long-term ERT, CNS manifestations including hyperreflexia, encephalopathy and seizures may become prominent, and there is likely an association between these symptoms and significant WMHI on MRI. Further study is needed to identify risk factors for CNS deterioration among children with IOPD and develop interventions to prevent neurological decline.


Subject(s)
Glycogen Storage Disease Type II , Child , Male , Female , Humans , Adolescent , Glycogen Storage Disease Type II/complications , Glycogen Storage Disease Type II/diagnostic imaging , Glycogen Storage Disease Type II/drug therapy , Brain/diagnostic imaging , Magnetic Resonance Imaging , Seizures/diagnostic imaging , Seizures/etiology , Risk Factors , Enzyme Replacement Therapy/methods , alpha-Glucosidases/therapeutic use
8.
Orphanet J Rare Dis ; 19(1): 14, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216959

ABSTRACT

BACKGROUND: Clinical trials for rare diseases often include multiple endpoints that capture the effects of treatment on different disease domains. In many rare diseases, the primary endpoint is not standardized across trials. The win ratio approach was designed to analyze multiple endpoints of interest in clinical trials and has mostly been applied in cardiovascular trials. Here, we applied the win ratio approach to data from COMET, a phase 3 trial in late-onset Pompe disease, to illustrate how this approach can be used to analyze multiple endpoints in the orphan drug context. METHODS: All possible participant pairings from both arms of COMET were compared sequentially on changes at week 49 in upright forced vital capacity (FVC) % predicted and six-minute walk test (6MWT). Each participant's response for the two endpoints was first classified as a meaningful improvement, no meaningful change, or a meaningful decline using thresholds based on published minimal clinically important differences (FVC ± 4% predicted, 6MWT ± 39 m). Each comparison assessed whether the outcome with avalglucosidase alfa (AVA) was better than (win), worse than (loss), or equivalent to (tie) the outcome with alglucosidase alfa (ALG). If tied on FVC, 6MWT was compared. In this approach, the treatment effect is the ratio of wins to losses ("win ratio"), with ties excluded. RESULTS: In the 2499 possible pairings (51 receiving AVA × 49 receiving ALG), the win ratio was 2.37 (95% confidence interval [CI], 1.30-4.29, p = 0.005) when FVC was compared before 6MWT. When the order was reversed, the win ratio was 2.02 (95% CI, 1.13-3.62, p = 0.018). CONCLUSION: The win ratio approach can be used in clinical trials of rare diseases to provide meaningful insight on treatment benefits from multiple endpoints and across disease domains.


Subject(s)
Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/drug therapy , Orphan Drug Production , Rare Diseases/drug therapy , Treatment Outcome , Enzyme Replacement Therapy/methods , alpha-Glucosidases/therapeutic use
9.
Expert Rev Neurother ; 24(3): 259-266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38261315

ABSTRACT

INTRODUCTION: Glycogenosis type II (GSDII) is a rare autosomal disorder that is caused by the deficiency of alpha-glucosidase, a lysosomal enzyme that hydrolyzes glycogen to glucose. Autophagy dysregulation plays a critical role. Importantly, since 2006, both patients with infantile (classic Pompe disease) and adult GSDII (late-onset Pompe disease or LOPD) have been treated with enzyme replacement therapy (ERT). To support this use, several double-blind and observational studies including large cohorts of GSDII patients have been undertaken and have shown ERT to be effective in modifying the natural course of disease. Indeed, most LOPD cases improve in the first 20 months of treatment in a six-minute walk test (6MWT), while those who are untreated do not; instead, their response declines over time. AREAS COVERED: The author reviews avalglucosidase alpha, a therapy approved by both the FDA and European regulatory agencies. Herein, the author considers the pathophysiological approaches such as the role of enzyme entry, autophagy, and the response to ERT treatment of motor and respiratory components. EXPERT OPINION: There has been a notable drive toward the research of various aspects of this disease regarding the role of new enzyme penetration and immune adverse events. Consequently, avalglucosidase alpha might be a further step forward.


Subject(s)
Glycogen Storage Disease Type II , Adult , Humans , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/therapeutic use , Enzyme Replacement Therapy/adverse effects , Autophagy , Randomized Controlled Trials as Topic
10.
Mol Genet Metab ; 141(2): 108121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184428

ABSTRACT

BACKGROUND: The Phase 3 COMET trial (NCT02782741) comparing avalglucosidase alfa and alglucosidase alfa included health-related quality of life (HRQoL) assessments in treatment-naïve patients with late-onset Pompe disease (LOPD). Here, we further characterize results from disease-specific and general patient-reported outcome (PRO) measures. METHODS: Adults who participated in the COMET trial receiving avalglucosidase alfa or alglucosidase alfa (both 20 mg/kg biweekly) during the 49-week double-blind treatment period were included in the analysis. Proportions of patients exceeding meaningful change thresholds at Week 49 were compared post hoc between treatment groups. PROs and their meaningful change thresholds included: Pompe Disease Severity Scale (PDSS; decrease 1.0-1.5 points), Pompe Disease Impact Scale (PDIS; decrease 1.0-1.5 points), Rasch-built Pompe-specific Activity Scale (R-PAct; change from unable to able to complete activity), 12-item Short Form Health Survey (SF-12; physical component summary [PCS] score: increase ≥6 points, mental component summary [MCS] score: increase ≥7 points), EuroQol 5 Dimension 5 Level (EQ-5D-5L; improvement of ≥1 category), and Patient Global Impression of Change (PGIC; any improvement). RESULTS: The analysis included 99 adult patients (avalglucosidase alfa n = 50; alglucosidase alfa n = 49). Patients who received avalglucosidase alfa had significantly greater odds of achieving a meaningful change versus alglucosidase alfa for the PDSS Shortness of Breath (OR [95% CI] 11.79 [2.24; 62.18]), Fatigue/Pain (6.24 [1.20; 32.54]), Morning Headache (13.98 [1.71; 114.18]), and Overall Fatigue (5.88 [1.37; 25.11]) domains, and were significantly more likely to meet meaningful change thresholds across multiple PDSS domains (all nominal p < 0.05). A numerically greater proportion of patients in the avalglucosidase alfa group were able to complete selected activities of the R-PAct compared with the alglucosidase alfa group. Significantly greater proportions of patients who received avalglucosidase alfa achieved meaningful improvements for EQ-5D-5L usual activities dimension, EQ visual analog scale, and all four PGIC domains. The proportion of patients with improvements in SF-12 PCS and MCS was greater in the avalglucosidase alfa group versus alglucosidase alfa group, but was not significant (p > 0.05). CONCLUSIONS: These analyses show that avalglucosidase alfa improves multiple symptoms and aspects of daily functioning, including breathing and mobility. This supports the clinical relevance of the effects of avalglucosidase alfa on HRQoL for patients with LOPD.


Subject(s)
Glycogen Storage Disease Type II , Adult , Humans , alpha-Glucosidases/therapeutic use , Glycogen Storage Disease Type II/drug therapy , Quality of Life , Treatment Outcome
11.
Sci Transl Med ; 16(730): eadf1691, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232139

ABSTRACT

Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.


Subject(s)
Glycogen Storage Disease Type II , Mice , Animals , Glycogen Storage Disease Type II/drug therapy , Glycogen Synthase/metabolism , Glycogen Synthase/pharmacology , Mice, Knockout , Glycogen/metabolism , Muscle, Skeletal/metabolism , Enzyme Replacement Therapy/methods
12.
J Neuromuscul Dis ; 11(2): 369-374, 2024.
Article in English | MEDLINE | ID: mdl-38160363

ABSTRACT

In the COMET trial of patients with late-onset Pompe disease, greater improvement in upright forced vital capacity (FVC) % predicted was observed with avalglucosidase alfa (AVA) vs alglucosidase alfa (ALGLU) (estimated treatment difference: 2.43%). The pre-specified mixed model repeated measures (MMRM) analysis demonstrated non-inferiority of AVA (P = 0.0074) and narrowly missed superiority (P = 0.063; 95% CI: -0.13-4.99). We report superiority of AVA in two post-hoc analyses that account for an extreme outlier participant with low FVC and severe chronic obstructive pulmonary disease at baseline: MMRM excluding the outlier (P = 0.013) and non-parametric analysis of all data with repeated measures analysis of covariance (P = 0.019).


Subject(s)
Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Humans , alpha-Glucosidases , Glycogen Storage Disease Type II/drug therapy , Vital Capacity , Clinical Trials as Topic
13.
Orphanet J Rare Dis ; 18(1): 381, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057861

ABSTRACT

BACKGROUND: Studies indicate that doses of alglucosidase alfa (ALGLU) higher than label dose (20 mg/kg every other week) improve clinical outcomes in infantile-onset Pompe disease (IOPD). We investigated data from the Pompe Registry to determine the association between ALGLU dose and survival in IOPD. RESULTS: We included 332 IOPD patients from the Registry as of January 2022 who had cardiomyopathy and were first treated at age < 1 year. We used Cox proportional hazards models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between ALGLU as a time-varying exposure and survival, adjusting for age at first treatment, sex, and cross-reactive immunologic material (CRIM)/immune tolerance induction (ITI) status. Dose was measured as average relative dose received over time (in multiples of label dose, range > 0 to 4 times label dose), current dose, and lagged dose. 81% patients received label dose at treatment initiation. Over time, 52% received a higher dose. Higher ALGLU dose over time was associated with improved survival: adjusted HR 0.40 (95% CI 0.22-0.73, p = 0.003) per 1-unit increase in average relative dose, with similar results for invasive ventilation-free survival (adjusted HR 0.48, 95% CI 0.28-0.84; p = 0.010). The association was consistent in patients first treated before or after 3 months of age and did not vary significantly by CRIM status. Results for current and lagged dose were similar to average dose. CONCLUSIONS: Higher ALGLU doses were associated with significantly improved overall and invasive ventilator-free survival in IOPD. Results were consistent across sensitivity analyses.


Subject(s)
Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/therapeutic use , Registries , Enzyme Replacement Therapy/methods
14.
Cochrane Database Syst Rev ; 12: CD012993, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38084761

ABSTRACT

BACKGROUND: Pompe disease is caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). People with infantile-onset disease have either a complete or a near-complete enzyme deficiency; people with late-onset Pompe disease (LOPD) retain some residual enzyme activity. GAA deficiency is treated with an intravenous infusion of recombinant human acid alglucosidase alfa, an enzyme replacement therapy (ERT). Alglucosidase alfa and avalglucosidase alfa are approved treatments, but cipaglucosidase alfa with miglustat is not yet approved. OBJECTIVES: To assess the effects of enzyme replacement therapies in people with late-onset Pompe disease. SEARCH METHODS: We searched the Cochrane Inborn Errors of Metabolism Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched MEDLINE OvidSP, clinical trial registries, and the reference lists of relevant articles and reviews. Date of last search: 21 April 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of ERT in people with LOPD of any age. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial eligibility, extracted data, assessed the risk of bias and the certainty of the evidence (using GRADE). We resolved disagreements through discussion and by consulting a third author. MAIN RESULTS: We included six trials (358 randomised participants) lasting from 12 to 78 weeks. A single trial reported on each comparison listed below. None of the included trials assessed two of our secondary outcomes: need for respiratory support and use of a walking aid or wheelchair. Certainty of evidence was most commonly downgraded for selective reporting bias. Alglucosidase alfa versus placebo (90 participants) After 78 weeks, alglucosidase alfa probably improves the six-minute walk test (6MWT) distance compared to placebo (mean difference (MD) 30.95 metres, 95% confidence interval (CI) 7.98 to 53.92; moderate-certainty evidence) and probably improves respiratory function, measured as the change in per cent (%) predicted forced vital capacity (FVC) (MD 3.55, 95% CI 1.46 to 5.64; moderate-certainty evidence). There may be little or no difference between the groups in occurrence of infusion reactions (risk ratio (RR) 1.21, 95% CI 0.57 to 2.61; low-certainty evidence), quality of life physical component score (MD -1.36 points, 95% CI -5.59 to 2.87; low-certainty evidence), or adverse events (RR 0.94, 95% CI 0.64 to 1.39; low-certainty evidence). Alglucosidase alfa plus clenbuterol versus alglucosidase alfa plus placebo (13 participants) The evidence is very uncertain about the effect of alglucosidase alfa plus clenbuterol compared to alglucosidase alfa plus placebo on: change in 6MWT distance after 52 weeks (MD 34.55 metres, 95% CI-10.11 to 79.21; very low-certainty evidence) and change in % predicted FVC (MD -13.51%, 95% CI -32.44 to 5.41; very low-certainty evidence). This study did not measure infusion reactions, quality of life, and adverse events. Alglucosidase alfa plus albuterol versus alglucosidase alfa plus placebo (13 participants) The evidence is very uncertain about the effect of alglucosidase alfa plus albuterol compared to alglucosidase alfa plus placebo on: change in 6MWT distance after 52 weeks (MD 30.00 metres, 95% CI 0.55 to 59.45; very low-certainty evidence), change in % predicted FVC (MD -4.30%, 95% CI -14.87 to 6.27; very low-certainty evidence), and risk of adverse events (RR 0.67, 95% CI 0.38 to 1.18; very low-certainty evidence). This study did not measure infusion reactions and quality of life. VAL-1221 versus alglucosidase alfa (12 participants) Insufficient information was available about this trial to generate effect estimates measured at one year or later. Compared to alglucosidase alfa, VAL-1221 may increase or reduce infusion-associated reactions at three months, but the evidence is very uncertain (RR 2.80, 95% CI 0.18 to 42.80). This study did not measure quality of life and adverse events. Cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo (125 participants) Compared to alglucosidase alfa plus placebo, cipaglucosidase alfa plus miglustat may make little or no difference to: 6MWT distance at 52 weeks (MD 13.60 metres, 95% CI -2.26 to 29.46); infusion reactions (RR 0.94, 95% CI 0.49 to 1.80); quality of life scores for physical function (MD 1.70, 95% CI -2.13 to 5.53) and fatigue (MD -0.30, 95% CI -2.76 to 2.16); and adverse effects potentially related to treatment (RR 0.83, 95% CI 0.49 to 1.40) (all low-certainty evidence). Cipaglucosidase alfa plus miglustat probably improves % predicted FVC compared to alglucosidase alfa plus placebo (MD 3.10%, 95% CI 1.04 to 5.16; moderate-certainty evidence); however, it may make little or no change in % predicted sniff nasal inspiratory pressure (MD -0.06%, 95% CI -8.91 to 7.71; low-certainty evidence). Avalglucosidase alfa versus alglucosidase alfa (100 participants) After 49 weeks, avalglucosidase alfa probably improves 6MWT compared to alglucosidase alfa (MD 30.02 metres, 95% CI 1.84 to 58.20; moderate-certainty evidence). Avalglucosidase alfa probably makes little or no difference to % predicted FVC compared to alglucosidase alfa (MD 2.43%, 95% CI -0.08 to 4.94; moderate-certainty evidence). Avalglucosidase alfa may make little or no difference to infusion reactions (RR 0.78, 95% CI 0.42 to 1.45), quality of life (MD 0.77, 95% CI -2.09 to 3.63), or treatment-related adverse events (RR 0.92, 95% CI 0.61 to 1.40), all low-certainty evidence. AUTHORS' CONCLUSIONS: One trial compared the effect of ERT to placebo in LOPD, showing that alglucosidase alfa probably improves 6MWT and respiratory function (both moderate-certainty evidence). Avalglucosidase alfa probably improves 6MWT compared with alglucosidase alfa (moderate-certainty evidence). Cipaglucosidase plus miglustat probably improves FVC compared to alglucosidase alfa plus placebo (moderate-certainty evidence). Other trials studied the adjunct effect of clenbuterol and albuterol along with alglucosidase alfa, with little to no evidence of benefit. No significant rise in adverse events was noted with all ERTs. The impact of ERT on some outcomes remains unclear, and longer RCTs are needed to generate relevant information due to the progressive nature of LOPD. Alternative resources, such as post-marketing registries, could capture some of this information.


Subject(s)
Clenbuterol , Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/drug therapy , Enzyme Replacement Therapy , Albuterol
15.
Biomolecules ; 13(9)2023 09 19.
Article in English | MEDLINE | ID: mdl-37759814

ABSTRACT

BACKGROUND: Pompe disease is a lysosomal storage disease characterised by skeletal and respiratory muscle weakness. Since 2006, enzyme replacement therapy (ERT) with alglucosidase alfa has been available. ERT significantly improves the prognosis of patients with Pompe disease. The effect of high antibody titres on treatment response in adults with late-onset Pompe disease (LOPD) remains unclear but may contribute to interpatient variation. We therefore conducted a systematic review on this subject. METHODS: A systematic search was performed in Embase, Medline Ovid, Web of Science, Psych Info Ovid, Cochrane (Clinical Trials only), and Google Scholar (random top-200). Articles were included if they involved adults with LOPD treated with alglucosidase alfa and mentioned anti-rhGAA antibodies or antibody titres. In addition, articles mentioning dosages different from the standard recommended dosage were included. RESULTS: Our literature search retrieved 2562 publications, and 17 fulfilled our selection criteria, describing 443 cases. Seven publications reported on anti-rhGAA antibody titres on a group level, with the percentage of patients with a high titre as defined in the included articles ranging from 0-33%. Six publications reported on the effect of anti-rhGAA antibody titre on clinical course, and four found no correlation. Two studies reported a negative effect on treatment. The first study found a greater improvement in Medical Research Council (MRC) score in patients with no detectable antibody titre. In the second study, a patient discontinued ERT due to a declining neuromuscular state as a result of high anti-rhGAA antibody titres. Seven publications reported on 17 individual patients with a high antibody titre (range 1:12,800-1:3,906,250). In only two cases were high-sustained neutralising antibodies reported to interfere with treatment efficacy. CONCLUSIONS: No clear effect of anti-rhGAA IgG antibodies on treatment response could be established for the majority of LOPD patients with a high antibody titre. In a minority of patients, a clinical decline related to (possible) interference of anti-rhGAA antibodies was described.


Subject(s)
Glycogen Storage Disease Type II , Humans , Adult , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/therapeutic use , Treatment Outcome , Enzyme Replacement Therapy
16.
Clin Pharmacol Drug Dev ; 12(12): 1185-1193, 2023 12.
Article in English | MEDLINE | ID: mdl-37705424

ABSTRACT

Pompe disease is a rare, autosomal recessive, degenerative neuromuscular disease caused by deficiency of acid α-glucosidase, a lysosomal enzyme that degrades α-1,4 and α-1,6 linkages in glycogen. The objectives of this study (PAPAYA; NCT01410890) were to (1) characterize the pharmacokinetics of 20 mg/kg body weight alglucosidase alfa manufactured at the 4000-L scale following a single intravenous dose in participants aged less than 18 and 18 years or older with Pompe disease and (2) evaluate the relationship between anti-alglucosidase alfa antibody titers and the pharmacokinetics of alglucosidase alfa. Mean maximum plasma concentration and area under the concentration-time curve from time zero and extrapolated to infinite time were 204 µg/mL and 1110 µg â€¢ h/mL for participants aged less than 18 years (n = 10), respectively, and 307 µg/mL and 1890 µg â€¢ h/mL for participants aged 18 years or older (n = 10), respectively. Mean terminal half-life was 5.43 hours in participants aged less than 18 years with a high variability (70%) and 3.84 hours in participants aged 18 years or older with a low variability (21%). Mean maximum plasma concentration and area under the concentration-time curve from time zero and extrapolated to infinite time were 256 µg/mL and 1452 µg • h/mL, respectively, in anti-alglucosidase alfa-negative participants (n = 12) and 262 µg/mL and 1703 µg â€¢ h/mL, respectively, in anti-alglucosidase alfa-positive participants (n = 7). The study findings enrich available data from existing information on alglucosidase alfa without changing its known risks and benefits.


Subject(s)
Glycogen Storage Disease Type II , alpha-Glucosidases , Humans , alpha-Glucosidases/therapeutic use , Glycogen Storage Disease Type II/drug therapy , Treatment Outcome , Administration, Intravenous
17.
Ther Drug Monit ; 45(5): 644-652, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37556417

ABSTRACT

BACKGROUND: Pompe disease is a rare genetic disorder caused by a deficiency of a lysosomal enzyme called acid alpha-glucosidase and is classified into infantile and late-onset forms. Since 2006, an enzyme replacement therapy involving alglucosidase alfa has been available. In 2021, a new enzyme replacement therapy involving avalglucosidase alfa demonstrated improved clinical benefits. In this article, the authors describe the pharmacokinetics of avalglucosidase alfa using a population pharmacokinetic approach. METHODS: The population pharmacokinetic model was developed using a data set that included 75 patients and 2042 plasma drug concentrations determined through enzymatic activity assay from 3 studies (phases I/II and III) and involved 3 dose levels (5, 10, and 20 mg/kg). The analysis was performed using NONMEM software. RESULTS: Two sequences were observed in the plasma drug concentration profile: the first kinetic driving exposure, and after 12 hours postdose, a slight rebound addressing very low concentrations that lasted up to 2 weeks. Following model screening, a model with a central compartment with parallel linear and nonlinear elimination and 2 concatenated peripheral compartments was proposed. A putative back-redistribution of a marginal fraction of the drug from the second peripheral compartment to the central compartment may explain the slight rebound in concentration. The final model's mean bias and precision for individual predictions were -2.66% and 30.7%, respectively, and -0.433% and 38.9%, respectively, for population predictions. CONCLUSIONS: A concatenated 3-compartment model was developed to describe the avalglucosidase alfa concentrations in patients with late-onset Pompe disease. None of the covariates tested could explain the interindividual variability.


Subject(s)
Glycogen Storage Disease Type II , Adolescent , Adult , Humans , Enzyme Replacement Therapy , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/etiology , Kinetics , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic
18.
J Pharmacokinet Pharmacodyn ; 50(6): 461-474, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37535240

ABSTRACT

Avalglucosidase alfa (AVAL) was approved in the United States (2021) for patients with late-onset Pompe disease (LOPD), aged ≥ 1 year. In the present study, pharmacokinetic (PK) simulations were conducted to propose alternative dosing regimens for pediatric LOPD patients based on a bodyweight cut-off. Population PK (PopPK) analysis was performed using nonlinear mixed effect modeling approach on pooled data from three clinical trials with LOPD patients, and a phase 2 study (NCT03019406) with infantile-onset Pompe disease (IOPD: 1-12 years) patients. A total of 2257 concentration-time points from 91 patients (LOPD, n = 75; IOPD, n = 16) were included in the analysis. The model was bodyweight dependent allometric scaling with time varying bodyweight included on clearance and distribution volume. Simulations were performed for two dosing regimens (20 mg/kg or 40 mg/kg) with different bodyweight cut-off (25, 30, 35 and 40 kg) by generating virtual pediatric (1-17 years) and adult patients. Corresponding simulated individual exposures (maximal concentration, Cmax and area under the curve in the 2-week dosing interval, AUC2W), and distributions were calculated. It was found that dosing of 40 mg/kg and 20 mg/kg in pediatric patients < 30 kg and ≥ 30 kg, respectively, achieved similar AVAL exposure (based on AUC2W) to adult patients receiving 20 mg/kg. PK simulations conducted on the basis of this model provided supporting data for the currently approved US labelling for dosing adapted bodyweight in LOPD patients ≥ 1 year by USFDA.


Subject(s)
Glycogen Storage Disease Type II , Adult , Humans , Child , United States , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/chemically induced , Glycogen Storage Disease Type II/epidemiology , alpha-Glucosidases/adverse effects , alpha-Glucosidases/metabolism , Body Weight , Kinetics
19.
Orphanet J Rare Dis ; 18(1): 231, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542277

ABSTRACT

BACKGROUND: Pompe disease is a rare glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to glycogen deposition in multiple tissues. Infantile-onset Pompe disease (IOPD) patients present within the first year of life with profound hypotonia and hypertrophic cardiomyopathy. Treatment with enzyme replacement therapy (ERT) has significantly improved survival for this otherwise lethal disorder. This study aims to describe the clinical and molecular spectrum of Malaysian IOPD patients, and to analyze their long term treatment outcomes. METHODS: Seventeen patients diagnosed with IOPD between 2000 and 2020 were included in this retrospective cohort study. Clinical and biochemical data were collated and analyzed using descriptive statistics. GAA enzyme levels were performed on dried blood spots. Molecular analysis of the GAA gene was performed by polymerase chain reaction and Sanger sequencing. Structural modelling was used to predict the effect of the novel mutations on enzyme structure. RESULTS: Our cohort had a median age of presentation of 3 months and median age of diagnosis of 6 months. Presenting features were hypertrophic cardiomyopathy (100%), respiratory insufficiency (94%), hypotonia (88%), failure to thrive (82%), feeding difficulties (76%), and hepatomegaly (76%). Fourteen different mutations in the GAA gene were identified, with three novel mutations, c.1552-14_1552-1del, exons 2-3 deletion and exons 6-10 deletion. The most common mutation identified was c.1935C > A p.(D645E), with an allele frequency of 33%. Sixteen patients received ERT at the median age of 7 months. Overall survival was 29%. Mean age of death was 17.5 months. Our longest surviving patient has atypical IOPD and is currently 20 years old. CONCLUSIONS: This is the first study to analyze the genotype and phenotype of Malaysian IOPD patients, and has identified the c.1935C > A p.(D645E) as the most common mutation. The three novel mutations reported in this study expands the mutation spectrum for IOPD. Our low survival rate underscores the importance of early diagnosis and treatment in achieving better treatment outcomes.


Subject(s)
Cardiomyopathy, Hypertrophic , Glycogen Storage Disease Type II , Humans , alpha-Glucosidases/genetics , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/genetics , Genotype , Glycogen , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/diagnosis , Muscle Hypotonia , Phenotype , Retrospective Studies , Treatment Outcome
20.
Mol Genet Metab ; 140(3): 107644, 2023 11.
Article in English | MEDLINE | ID: mdl-37515933

ABSTRACT

Pompe disease is an autosomal recessive disorder caused by a deficiency of α-glucosidase, resulting in the accumulation of glycogen in smooth, cardiac, and skeletal muscles, leading to skeletal muscle dysfunction, proximal muscle weakness, and early respiratory insufficiency. Although many patients exhibit decreased bone mineral density (BMD) and increased fractures, there is currently no official protocol for surveillance and management of osteoporosis and osteopenia in late onset Pompe disease (LOPD). Enzyme replacement therapy (ERT) has therapeutic effects on muscle function; however, very few studies report on the effect of ERT on bone mineralization in LOPD patients. Our study included 15 Pompe patients from 25 to 76 years of age on ERT for variable durations. Progressive impact of ERT on BMD of the hips and spine, and the frequency of osteopenia or osteoporosis was studied using DEXA scanning, and correlations were made with age of initiation of ERT, duration of ERT and six-minute walk test. We found a significant positive correlation between the age of ERT initiation and age of the subject, with increases in the Z-scores for the femur and lumbar region. Females had a significantly higher risk for developing osteoporosis compared to males. These results highlight the significance of ERT on reducing progression of osteoporosis in LOPD patients.


Subject(s)
Glycogen Storage Disease Type II , Osteoporosis , Male , Female , Humans , Glycogen Storage Disease Type II/drug therapy , Bone Density , Enzyme Replacement Therapy/methods , alpha-Glucosidases/genetics , alpha-Glucosidases/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...