Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 514
Filter
1.
J Chem Theory Comput ; 20(10): 4350-4362, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742760

ABSTRACT

The majority of drug-like molecules contain at least one ionizable group, and many common drug scaffolds are subject to tautomeric equilibria. Thus, these compounds are found in a mixture of protonation and/or tautomeric states at physiological pH. Intrinsically, standard classical molecular dynamics (MD) simulations cannot describe such equilibria between states, which negatively impacts the prediction of key molecular properties in silico. Following the formalism described by de Oliveira and co-workers (J. Chem. Theory Comput. 2019, 15, 424-435) to consider the influence of all states on the binding process based on alchemical free-energy calculations, we demonstrate in this work that the multistate method replica-exchange enveloping distribution sampling (RE-EDS) is well suited to describe molecules with multiple protonation and/or tautomeric states in a single simulation. We apply our methodology to a series of eight inhibitors of factor Xa with two protonation states and a series of eight inhibitors of glycogen synthase kinase 3ß (GSK3ß) with two tautomeric states. In particular, we show that given a sufficient phase-space overlap between the states, RE-EDS is computationally more efficient than standard pairwise free-energy methods.


Subject(s)
Molecular Dynamics Simulation , Protons , Thermodynamics , Glycogen Synthase Kinase 3 beta/chemistry , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Factor Xa Inhibitors/chemistry , Isomerism , Humans
2.
Biomed Pharmacother ; 175: 116677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701570

ABSTRACT

The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3ß (GSK-3ß). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The combined inhibition of NAAA and GSK-3ß by two selected small-molecule compounds, ARN16186 (an NAAA inhibitor) and AF3581 (a GSK-3ß inhibitor), effectively mitigated disease progression, rescuing the animals from paralysis and preventing a worsening of the pathology. The complementary activity of the two inhibitors reduced the infiltration of immune cells into the spinal cord and led to the formation of thin myelin sheaths around the axons post-demyelination. Specifically, the inhibition of NAAA and GSK-3ß modulated the over-activation of NF-kB and STAT3 transcription factors in the EAE-affected mice and induced the nuclear translocation of ß-catenin, reducing the inflammatory insult and promoting the remyelination process. Overall, this work demonstrates that the dual-targeting of key aspects responsible for MS progression could be an innovative pharmacological approach to tackle the pathology.


Subject(s)
Amidohydrolases , Encephalomyelitis, Autoimmune, Experimental , Glycogen Synthase Kinase 3 beta , Mice, Inbred C57BL , Multiple Sclerosis , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Mice , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Female , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , NF-kappa B/metabolism , Enzyme Inhibitors/pharmacology , Myelin Sheath/metabolism , Myelin Sheath/drug effects
3.
Front Immunol ; 15: 1360436, 2024.
Article in English | MEDLINE | ID: mdl-38812516

ABSTRACT

Bladder cancer is a common type of cancer around the world, and the majority of patients are diagnosed with non-muscle-invasive bladder cancer (NMIBC). Although low-risk NMIBC has a good prognosis, the disease recurrence rate and development of treatment-refractory disease remain high in intermediate- to high-risk NMIBC patients. To address these challenges for the treatment of NMIBC, a novel combination therapy composed of an oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12, granulocyte-macrophage colony-stimulating factor (GM-CSF), and relaxin (RLX; HY-oAd) and a clinical-stage glycogen synthase kinase (GSK)-3ß inhibitor (9-ING-41; elraglusib) was investigated in the present report. Our findings demonstrate that HY-oAd and 9-ING-41 combination therapy (HY-oAd+9-ING-41) exerted superior inhibition of tumor growth compared with respective monotherapy in a syngeneic NMIBC tumor model. HY-oAd+9-ING-41 induced high-level tumor extracellular matrix (ECM) degradation and a more potent antitumor immune response than the respective monotherapy. In detail, HY-oAd+9-ING-41 induced superior accumulation of intratumoral T cells, prevention of immune cell exhaustion, and induction of tumor-specific adaptive immune response compared to either monotherapy. Collectively, these results demonstrate that the combination of HY-oAd and 9-ING-41 may be a promising approach to elicit a potent antitumor immune response against bladder cancer.


Subject(s)
Adenoviridae , Glycogen Synthase Kinase 3 beta , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Animals , Adenoviridae/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Mice , Humans , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Cell Line, Tumor , Combined Modality Therapy , Female
4.
ACS Chem Neurosci ; 15(11): 2099-2111, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38747979

ABSTRACT

Despite recent FDA approvals, Alzheimer's disease (AD) still represents an unmet medical need. Among the different available therapeutic approaches, the development of multitarget molecules represents one of the most widely pursued. In this work, we present a second generation of dual ligands directed toward highly networked targets that are deeply involved in the development of the disease, namely, Histone Deacetylases (HDACs) and Glycogen Synthase Kinase 3ß (GSK-3ß). The synthesized compounds are highly potent GSK-3ß, HDAC2, and HDAC6 inhibitors with IC50 values in the nanomolar range of concentrations. Among them, compound 4 inhibits histone H3 and tubulin acetylation at 0.1 µM concentration, blocks hyperphosphorylation of tau protein, and shows interesting immunomodulatory and neuroprotective properties. These features, together with its ability to cross the blood-brain barrier and its favorable physical-chemical properties, make compound 4 a promising hit for the development of innovative disease-modifying agents.


Subject(s)
Alzheimer Disease , Glycogen Synthase Kinase 3 beta , Histone Deacetylase Inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , tau Proteins/metabolism , Histone Deacetylases/metabolism , Phosphorylation/drug effects , Acetylation , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/antagonists & inhibitors
5.
Biomolecules ; 14(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672518

ABSTRACT

Glycogen synthase kinase 3-beta (GSK3ß) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3ß in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3ß enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3ß is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (ß)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3ß has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3ß may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3ß inhibitors as bone-protecting agents. Some studies demonstrated that GSK3ß inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3ß silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3ß on osteoclastogenesis and bone resorption.


Subject(s)
Glycogen Synthase Kinase 3 beta , Osteoclasts , Osteogenesis , Humans , Animals , Osteoclasts/metabolism , Osteoclasts/drug effects , Osteoclasts/cytology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Osteogenesis/drug effects , Bone Resorption/metabolism , Bone Resorption/drug therapy , Signal Transduction/drug effects , RANK Ligand/metabolism , RANK Ligand/pharmacology
6.
Molecules ; 29(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675602

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 µM) with pyrimidone compound 5 (GSK-3ß: IC50 = 3 µM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3ß (GSK-3ß). The optimal compound 18a possessed potent dual AChE/GSK-3ß inhibition (AChE: IC50 = 0.047 ± 0.002 µM, GSK-3ß: IC50 = 0.930 ± 0.080 µM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 µM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Cholinesterase Inhibitors , Drug Design , Glycogen Synthase Kinase 3 beta , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Cell Line, Tumor , Sulfur/chemistry , Structure-Activity Relationship , Acridines/chemistry , Acridines/pharmacology , Acridines/chemical synthesis , Tacrine/chemistry , Tacrine/pharmacology , Tacrine/chemical synthesis , Molecular Structure
7.
Cell Death Dis ; 15(4): 302, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684682

ABSTRACT

Mucopolysaccharidosis (MPS) type II is caused by a deficiency of iduronate-2-sulfatase and is characterized by the accumulation of glycosaminoglycans (GAGs). Without effective therapy, the severe form of MPS II causes progressive neurodegeneration and death. This study generated multiple clones of induced pluripotent stem cells (iPSCs) and their isogenic controls (ISO) from four patients with MPS II neurodegeneration. MPS II-iPSCs were successfully differentiated into cortical neurons with characteristic biochemical and cellular phenotypes, including axonal beadings positive for phosphorylated tau, and unique electrophysiological abnormalities, which were mostly rescued in ISO-iPSC-derived neurons. RNA sequencing analysis uncovered dysregulation in three major signaling pathways, including Wnt/ß-catenin, p38 MAP kinase, and calcium pathways, in mature MPS II neurons. Further mechanistic characterization indicated that the dysregulation in calcium signaling led to an elevated intracellular calcium level, which might be linked to compromised survival of neurons. Based on these dysregulated pathways, several related chemicals and drugs were tested using this mature MPS II neuron-based platform and a small-molecule glycogen synthase kinase-3ß inhibitor was found to significantly rescue neuronal survival, neurite morphology, and electrophysiological abnormalities in MPS II neurons. Our results underscore that the MPS II-iPSC-based platform significantly contributes to unraveling the mechanisms underlying the degeneration and death of MPS II neurons and assessing potential drug candidates. Furthermore, the study revealed that targeting the specific dysregulation of signaling pathways downstream of GAG accumulation in MPS II neurons with a well-characterized drug could potentially ameliorate neuronal degeneration.


Subject(s)
Glycogen Synthase Kinase 3 beta , Induced Pluripotent Stem Cells , Mucopolysaccharidosis II , Neurons , Induced Pluripotent Stem Cells/metabolism , Humans , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Mucopolysaccharidosis II/pathology , Mucopolysaccharidosis II/metabolism , Mucopolysaccharidosis II/genetics , Cell Differentiation/drug effects , Wnt Signaling Pathway/drug effects , Signal Transduction/drug effects , Calcium Signaling/drug effects , Nerve Degeneration/pathology , Calcium/metabolism
8.
Bioorg Chem ; 147: 107378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643562

ABSTRACT

Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3ß (GSK-3ß) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3ß and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3ß and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3ß and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3ß and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.


Subject(s)
Alzheimer Disease , Glycogen Synthase Kinase 3 beta , Wnt Signaling Pathway , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Wnt Signaling Pathway/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Casein Kinase Idelta/antagonists & inhibitors , Casein Kinase Idelta/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Structure , Animals , Structure-Activity Relationship
9.
Cell Death Differ ; 31(4): 431-446, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418695

ABSTRACT

Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation, has emerged as a promising therapeutic strategy for cancer treatment, particularly in hepatocellular carcinoma (HCC). However, the mechanisms underlying the regulation of ferroptosis in HCC remain to be unclear. In this study, we have identified a novel regulatory pathway of ferroptosis involving the inhibition of Apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme with dual functions in DNA repair and redox regulation. Our findings demonstrate that inhibition of APE1 leads to the accumulation of lipid peroxidation and enhances ferroptosis in HCC. At the molecular level, the inhibition of APE1 enhances ferroptosis which relies on the redox activity of APE1 through the regulation of the NRF2/SLC7A11/GPX4 axis. We have identified that both genetic and chemical inhibition of APE1 increases AKT oxidation, resulting in an impairment of AKT phosphorylation and activation, which leads to the dephosphorylation and activation of GSK3ß, facilitating the subsequent ubiquitin-proteasome-dependent degradation of NRF2. Consequently, the downregulation of NRF2 suppresses SLC7A11 and GPX4 expression, triggering ferroptosis in HCC cells and providing a potential therapeutic approach for ferroptosis-based therapy in HCC. Overall, our study uncovers a novel role and mechanism of APE1 in the regulation of ferroptosis and highlights the potential of targeting APE1 as a promising therapeutic strategy for HCC and other cancers.


Subject(s)
Carcinoma, Hepatocellular , DNA-(Apurinic or Apyrimidinic Site) Lyase , Ferroptosis , Liver Neoplasms , Humans , Ferroptosis/drug effects , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Cell Line, Tumor , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mice , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/genetics , Mice, Nude , Lipid Peroxidation/drug effects , Signal Transduction/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors
10.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511396

ABSTRACT

Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to atherosclerotic calcification. In a previous study, we showed that glycogen synthase kinase-3ß (GSK3ß) inhibition induced ß-catenin and reduced mothers against DPP homolog 1 (SMAD1) in order to redirect osteoblast-like cells towards endothelial lineage, thereby reducing vascular calcification in Matrix Gla Protein (Mgp) deficiency and diabetic Ins2Akita/wt mice. Here, we report that GSK3ß inhibition or endothelial-specific deletion of GSK3ß reduces atherosclerotic calcification. We also find that alterations in ß-catenin and SMAD1 induced by GSK3ß inhibition in the aortas of Apoe-/- mice are similar to Mgp-/- mice. Together, our results suggest that GSK3ß inhibition reduces vascular calcification in atherosclerotic lesions through a similar mechanism to that in Mgp-/- mice.


Subject(s)
Atherosclerosis , Glycogen Synthase Kinase 3 beta , Vascular Calcification , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Calcification, Physiologic , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/genetics , Vascular Calcification/drug therapy , Vascular Calcification/chemically induced
11.
ChemMedChem ; 17(24): e202200456, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36194001

ABSTRACT

The glycogen synthase kinase 3ß (GSK-3ß) is a ubiquitous enzyme that is a validated target for the development of potential therapeutics useful in several diseases including retinal degeneration. Aiming at developing an innovative class of allosteric inhibitors of GSK-3ß potentially useful for retinal degeneration, we explored the class of squaramides. The developed compounds (6 a-l) were obtained through a nontoxic one-pot synthetic protocol, which employs low-cost goods and avoids any purification step. Ethanol was used as the reaction solvent, simultaneously allowing the pure reaction products' recovery (by precipitation). Out of this set of squaramides, 6 j stood out, from computational and enzymatic converging data, as an ATP non-competitive inhibitor of GSK-3ß of micromolar potency. When engaged in cellular studies using retinal pigment epithelial cells (ARPE-19) transfected with a luciferase reporter gene under the control of T-cell factor/lymphoid enhancer factor (TCF/LEF) binding sites, 6 j was able to dose-dependently induce ß-catenin nuclear accumulation, as shown by the increased luciferase activity at a concentration of 2.5 µM.


Subject(s)
Epithelial Cells , Glycogen Synthase Kinase 3 beta , Quinine , Retinal Degeneration , TCF Transcription Factors , Humans , beta Catenin/metabolism , Epithelial Cells/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Luciferases/metabolism , Signal Transduction , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , Quinine/analogs & derivatives , Quinine/chemical synthesis , Retinal Pigment Epithelium
12.
J Enzyme Inhib Med Chem ; 37(1): 1724-1736, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35698879

ABSTRACT

Glycogen synthase kinase 3ß (GSK-3ß) catalyses the hyperphosphorylation of tau protein in the Alzheimer's disease (AD) pathology. A series of novel thieno[3,2-c]pyrazol-3-amine derivatives were designed and synthesised and evaluated as potential GSK-3ß inhibitors by structure-guided drug rational design approach. The thieno[3,2-c]pyrazol-3-amine derivative 16b was identified as a potent GSK-3ß inhibitor with an IC50 of 3.1 nM in vitro and showed accepted kinase selectivity. In cell levels, 16b showed no toxicity on the viability of SH-SY5Y cells at the concentration up to 50 µM and targeted GSK-3ß with the increased phosphorylated GSK-3ß at Ser9. Western blot analysis indicated that 16b decreased the phosphorylated tau at Ser396 in a dose-dependent way. Moreover, 16b effectively increased expressions of ß-catenin as well as the GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth. Therefore, the thieno[3,2-c]pyrazol-3-amine derivative 16b could serve as a promising GSK-3ß inhibitor for the treatment of AD.


Subject(s)
Alzheimer Disease , Amines , Glycogen Synthase Kinase 3 beta , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amines/chemical synthesis , Amines/pharmacology , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , Phosphorylation , tau Proteins/metabolism
13.
Eur J Med Chem ; 236: 114301, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35390715

ABSTRACT

Glycogen synthase kinase-3ß (GSK-3ß) is a conserved serine/threonine kinase that participates in the transmission of multiple signaling pathways and plays an important role in the occurrence and development of human diseases, such as metabolic diseases, neurological diseases and cancer, making it to be a potential and promising drug target. To date, copious GSK-3ß inhibitors have been synthesized, but only few have entered clinical trials. Most of them exerts poor selectivity, concomitant off-target effects and side effects. This review summarizes the structural characteristics, biological functions and relationship with diseases of GSK-3ß, as well as the selectivity profile and therapeutic potential of different categories of GSK-3ß inhibitors. Strategies for increasing selectivity and reducing adverse effects are proposed for the future design of GSK-3ß inhibitors.


Subject(s)
Glycogen Synthase Kinase 3 beta , Neoplasms , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , Neoplasms/drug therapy
14.
Sci Rep ; 12(1): 4090, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260764

ABSTRACT

S-SCAM/MAGI-2 gene duplication is associated with schizophrenia (SCZ). S-SCAM overexpression in the forebrain induces SCZ-like phenotypes in a transgenic (Tg) mouse model. Interestingly, S-SCAM Tg mice show male-specific impairments in synaptic plasticity and working memory. However, mechanisms underlying the sex-specific deficits remain unknown. Here we report that S-SCAM Tg mice have male-specific deficits in synaptic GSK3ß functions, as shown by reduced synaptic protein levels and increased inhibitory phosphorylation of GSK3ß. This GSK3ß hyper-phosphorylation was associated with increased CaMKII activities. Notably, synaptic levels of Axin1, to which GSK3ß binds in competition with S-SCAM, were also reduced in male S-SCAM Tg mice. We demonstrated that Axin-binding is required for the S-SCAM overexpression-induced synaptic GSK3ß reduction. Axin stabilization using XAV939 rescued the GSK3ß deficits and restored the temporal activation of GSK3ß during long-term depression in S-SCAM overexpressing neurons. Interestingly, synaptic Axin2 levels were increased in female S-SCAM Tg mice. Female sex hormone 17ß-estradiol increased Axin2 expression and increased synaptic GSK3ß levels in S-SCAM overexpressing neurons. These results reveal the role of S-SCAM in controlling Axin-dependent synaptic localization of GSK3ß. Moreover, our studies point out the pathological relevance of GSK3ß hypofunction found in humans and contribute to understanding the molecular underpinnings of sex differences in SCZ.


Subject(s)
Adaptor Proteins, Signal Transducing , Axin Protein , Guanylate Kinases , Neuronal Plasticity , Neurons , Adaptor Proteins, Signal Transducing/genetics , Animals , Axin Protein/genetics , Axin Protein/metabolism , Female , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Guanylate Kinases/genetics , Male , Mice , Neurons/metabolism , Sex Factors , Signal Transduction/physiology
15.
Mol Biol Rep ; 49(5): 3783-3792, 2022 May.
Article in English | MEDLINE | ID: mdl-35179667

ABSTRACT

BACKGROUND: Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3ß is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3ß inhibition protects human NP cell against apoptosis under oxidative stress. METHODS AND RESULTS: Immunofluorescence staining was used to show the expression of GSK-3ß in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot (WB) were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3ß specific inhibitor SB216763. Co-Immunoprecipitation (Co-IP) was used to demonstrate the interaction between GSK-3ß and Bcl-2. We delineated the protective effect of GSK-3ß specific inhibitor SB216763 on human NPCs apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3ß inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. CONCLUSIONS: We concluded that the GSK-3ß inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3ß and Bcl-2 and subsequently reducing cytochrome c(Cyto-C) release and caspase-3 activation. Together, inhibition of GSK-3ß using SB216763 in NPCs may be a favorable therapeutic strategy to slow intervertebral disc degeneration.


Subject(s)
Glycogen Synthase Kinase 3 beta , Nucleus Pulposus , Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Indoles/pharmacology , Maleimides/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism
16.
Nat Commun ; 13(1): 899, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173161

ABSTRACT

Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3ß to facilitate GSK3ß phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3ß targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.


Subject(s)
Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hexokinase/metabolism , Neoplasms/pathology , A Kinase Anchor Proteins/metabolism , A549 Cells , Animals , CHO Cells , Carcinogenesis/pathology , Cell Line, Tumor , Cricetulus , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Deoxyglucose/pharmacology , Epithelial-Mesenchymal Transition/physiology , Female , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycosylation , HCT116 Cells , HEK293 Cells , Hexokinase/genetics , Humans , Mice , Mice, Inbred BALB C , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasm Metastasis/pathology , Phosphorylation/drug effects , Rats , Snail Family Transcription Factors/metabolism
17.
Int. j. morphol ; 40(1): .84-90, feb. 2022.
Article in English | LILACS | ID: biblio-1385595

ABSTRACT

SUMMARY: Rheumatoid arthritis (RA), an inflammatory autoimmune disease that causes cartilage degradation and tissue destruction, can affect synovial joints such as the knee joint. The link between the nitrosative stress enzyme inducible nitric oxide synthase (iNOS) and the cytokine interleukin-1 (IL-1β) in RA-induced knee joint synovial membrane damage with and without the incorporation of the GSK3β inhibitor TDZD-8 has never been studied. As a result, we used active immunization method with collagen type II (COII) for twenty one days to induce RA in rats. TDZD-8 (1 mg/kg; i.p.) was given daily into matched immunized rats for three weeks after day 21 (COII+TDZD-8). Blood and tissue samples were taken 42 days after immunization. A dramatic increase in rheumatoid factor (RF) blood levels, as well as considerable synovial tissue damage and inflammatory cell infiltration of the synovial membrane, were used to validate the onset of RA following COII immunization. COII immunization increased tissue levels of iNOS protein and IL- 1β mRNA and protein expression, which TDZD-8 suppressed considerably (p<0.0001). Furthermore, there was a significantly (p<0.001) positive correlation between iNOS, inflammatory biomarkers, and RF. We concluded that TDZD-8 reduced RA-induced IL-1β -iNOS axis-mediated arthritis in the rat knee joint synovium.


RESUMEN: La artritis reumatoide (AR), es una enfermedad autoinmune inflamatoria que causa la degradación del cartílago y la destrucción del tejido, pudiendo afectar las articulaciones sinoviales, como la articulación de la rodilla. No se ha estudiado el vínculo entre la óxido nítrico sintasa inducible por la enzima del estrés nitrosativo (iNOS) y la citocina interleucina-1 (IL-1β) en el daño de la membrana sinovial de la articulación de la rodilla provocado por AR con y sin la incorporación del inhibidor de GSK3β TDZD-8. Utilizamos el método de inmunización activa con colágeno tipo II (COII) durante veintiún días para inducir AR en ratas. Se administró TDZD-8 (1 mg/kg; i.p.) diariamente a ratas inmunizadas emparejadas durante tres semanas después del día 21 (COII+TDZD- 8). Se tomaron muestras de sangre y tejido 42 días después de la inmunización. Se observó un gran aumento de los niveles sanguíneos del factor reumatoideo (FR), así como un daño considerable del tejido sinovial e infiltración de células inflamatorias en la membrana sinovial, para validar la aparición de la AR después de la inmunización con COII. La inmunización con COII aumentó los niveles tisulares de la proteína iNOS y la expresión de proteína y ARNm de IL-1β, que TDZD-8 suprimió considerablemente (p<0,0001). Además, hubo una correlación positiva significativa (p<0,001) entre iNOS, biomarcadores inflamatorios y FR. Concluimos que TDZD- 8 redujo la artritis mediada por el eje IL-1β-iNOS inducida por la AR en la sinovial de la articulación de la rodilla de rata.


Subject(s)
Animals , Rats , Arthritis, Rheumatoid/immunology , Thiadiazoles/administration & dosage , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Arthritis, Rheumatoid/chemically induced , Immunohistochemistry , Rats, Wistar , Collagen Type II/administration & dosage , Disease Models, Animal , Interleukin-1beta , Glycogen Synthase Kinase 3 beta/administration & dosage , Nitrosative Stress/drug effects , Inflammation
18.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055183

ABSTRACT

Parkinson's disease (PD) is a progressive movement disorder caused by nigrostriatal neurodegeneration. Since chronically activated neuroinflammation accelerates neurodegeneration in PD, we considered that modulating chronic neuroinflammatory response might provide a novel therapeutic approach. Glycogen synthase kinase 3 (GSK-3) is a multifunctional serine/threonine protein kinase with two isoforms, GSK-3α and GSK-3ß, and GSK-3ß plays crucial roles in inflammatory response, which include microglial migration and peripheral immune cell activation. GSK-3ß inhibitory peptide (IAGIP) is specifically activated by activated inhibitory kappa B kinase (IKK), and its therapeutic effects have been demonstrated in a mouse model of colitis. Here, we investigated whether the anti-inflammatory effects of IAGIP prevent neurodegeneration in the rodent model of PD. IAGIP significantly reduced MPP+-induced astrocyte activation and inflammatory response in primary astrocytes without affecting the phosphorylations of ERK or JNK. In addition, IAGIP inhibited LPS-induced cell migration and p65 activation in BV-2 microglial cells. In vivo study using an MPTP-induced mouse model of PD revealed that intravenous IAGIP effectively prevented motor dysfunction and nigrostriatal neurodegeneration. Our findings suggest that IAGIP has a curative potential in PD models and could offer new therapeutic possibilities for targeting PD.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , I-kappa B Kinase/metabolism , Parkinson Disease/drug therapy , Peptides/administration & dosage , Animals , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , HCT116 Cells , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Parkinson Disease/pathology , Peptides/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/pharmacology
19.
Life Sci ; 291: 120267, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34974076

ABSTRACT

Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/physiopathology , Drug Repositioning , Hypoglycemic Agents/pharmacology , Tauopathies/drug therapy , Antidepressive Agents/pharmacology , Antihypertensive Agents/pharmacology , Apoptosis/drug effects , Diabetes Mellitus, Type 2/physiopathology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , Molecular Targeted Therapy/methods , Proto-Oncogene Proteins c-akt/metabolism , Tauopathies/physiopathology , COVID-19 Drug Treatment
20.
Eur J Med Chem ; 229: 114095, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34995924

ABSTRACT

The natural product harmine, a representative ß-carboline alkaloid from the seeds of Peganum harmala L. (Zygophyllaceae), possesses a broad spectrum of biological activities. In this study, a novel series of harmine derivatives containing N-benzylpiperidine moiety were identified for the treatment of Alzheimer's disease (AD). The results showed that all the derivatives possessed significant anti-acetylcholinesterase (AChE) activity and good selectivity over butyrylcholinesterase (BChE). In particular, compound ZLWH-23 exhibited potent anti-AChE activity (IC50 = 0.27 µM) and selective BChE inhibition (IC50 = 20.82 µM), as well as acceptable glycogen synthase kinase-3 (GSK-3ß) inhibition (IC50 = 6.78 µM). Molecular docking studies and molecular dynamics simulations indicated that ZLWH-23 could form stable interaction with AChE and GSK-3ß. Gratifyingly, ZLWH-23 exhibited good selectivity for GSK-3ß over multi-kinases and very low cytotoxicity towards SH-SY5Y, HEK-293T, HL-7702, and HepG2 cell lines. Importantly, ZLWH-23 displayed efficient reduction against tau hyperphosphorylation on Ser-396 site in Tau (P301L) 293T cell model. Collectively, harmine-based derivatives could be considered as possible drug leads for the development of AD therapies.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Antineoplastic Agents/chemistry , Carbolines/chemical synthesis , Cholinesterase Inhibitors/chemical synthesis , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carbolines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cholinesterase Inhibitors/pharmacology , Drug Design , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...