Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 462
Filter
1.
Front Biosci (Landmark Ed) ; 29(5): 183, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38812295

ABSTRACT

BACKGROUND: The present study aimed to investigate the in-vitro anti-diabetic, anti-cholinesterase, and anti-inflammatory potential of extracts from different parts of Ficus benghalensis, including leaves, stem, and roots, as well as isolated column fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C). METHODS: The extracts and subsequent fractions were evaluated for their inhibitory activity against key enzymes involved in diabetes [α-glucosidase and α-amylase], neurodegenerative diseases [acetylcholinesterase and butyrylcholinesterase], and inflammation (cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX)). RESULTS: The results showed that F. benghalensis leaf extract exhibited the highest α-glucosidase inhibitory activity (73.84%) and α-amylase inhibitory activity (76.29%) at 1000 µg/mL. The stem extract (65.50%) and F-B-2 C fraction (69.67%) also demonstrated significant α-glucosidase inhibitory activity. In terms of anti-cholinesterase activity, the extracts of roots, leaves, and stem showed promising inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with half maximal inhibitory concentration (IC50) values ranging from 50.50 to 474.83 µg/mL. The derived fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C) also exhibited notable inhibition of AChE and BChE, with IC50 values from 91.85 to 337.94 µg/mL. Moreover, the F-B-3 C fraction demonstrated the highest COX-2 inhibitory potential (85.72%), followed by F-B-1 C (83.13%), the stem extract (80.85%), and the leaves extract (79.00%). The F-B-1 C fraction showed the highest 5-LOX inhibitory activity (87.63%), while the root extract exhibited the lowest inhibition (73.39%). CONCLUSIONS: The results demonstrated promising bioactivity, suggesting the potential of F. benghalensis as a source of natural compounds with therapeutic applications. Further studies are required to identify and isolate the active components responsible for these effects and to evaluate their in-vivo efficacy and safety.


Subject(s)
Anti-Inflammatory Agents , Cholinesterase Inhibitors , Ficus , Hypoglycemic Agents , Plant Extracts , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Plant Leaves/chemistry , Butyrylcholinesterase/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , alpha-Amylases/antagonists & inhibitors , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/isolation & purification , Acetylcholinesterase/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Plant Roots/chemistry
2.
Org Biomol Chem ; 22(20): 4179-4189, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38716654

ABSTRACT

Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 µM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.


Subject(s)
Aspergillus , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Neuroprotective Agents , Polyketides , alpha-Glucosidases , Aspergillus/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , PC12 Cells , Animals , Rats , alpha-Glucosidases/metabolism , Cell Survival/drug effects , Molecular Structure
3.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792084

ABSTRACT

Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.


Subject(s)
Cistus , Hypoglycemic Agents , Neuroprotective Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Humans , Cistus/chemistry , Resins, Plant/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Proliferation/drug effects , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Hep G2 Cells , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification
4.
Phytochemistry ; 223: 114122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710376

ABSTRACT

Quantitative analysis of Rumex nepalensis var. remotiflorus revealed that its roots contain rich anthraquinones, which has emodin, chrysophanol, and physcion contents of up to 0.30, 0.67, and 0.98 mg/g, respectively. Further phytochemical study led to the isolation and purification of seven undescribed phenolic constituents, including one flavan derivative with a 13-membered ring, polygorumin A (1), two dianthrone glucosides, polygonumnolides F and G (2, 3), two diphenylmethanones, rumepalens A and B (4, 5), and a pair of epimeric oxanthrone C-glucosides, rumejaposides K and L (6a, 6b) from the roots of R. nepalensis var. remotiflorus. Furthermore, 1 undescribed natural product, 1-ß-D-glucoside-6'-[(2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate]-3-hydroxy-5-methylphenyl (19), and 21 known phenolic compounds were obtained from the aforementioned plant for the first time. Their structures were elucidated through extensive spectroscopic data analysis. Notably, compounds 1, 4-5, and 7-9 exhibited inhibitory activity on α-glucosidase with IC50 values ranging from 1.61 ± 0.17 to 32.41 ± 0.87 µM. In addition, the isolated dianthrone, chrysophanol bianthrone (14), showed obvious cytotoxicity against four human cancer cell lines (HL-60, SMMC-7721, A-549, and MDA-MB-231) with IC50 values ranging from 3.81 ± 0.17 to 35.15 ± 2.24 µM. In silico target prediction and molecular docking studies demonstrated that the mechanism of the anticancer activity of 14 may be related to the interaction with protein kinase CK2.


Subject(s)
Antineoplastic Agents, Phytogenic , Glycoside Hydrolase Inhibitors , Phenols , Rumex , alpha-Glucosidases , Humans , Phenols/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Rumex/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Structure-Activity Relationship , Cell Line, Tumor , Plant Roots/chemistry , Dose-Response Relationship, Drug , Cell Proliferation/drug effects
5.
Bioorg Chem ; 148: 107428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733749

ABSTRACT

Five pairs of new merosesquiterpenoid enantiomers, named dauresorcinols A-E (1-5), were isolated from the leaves of Rhododendron dauricum. Their structures were elucidated by comprehensive spectroscopic data analysis, quantum chemical calculations, Rh2(OCOCF3)4-induced ECD, and single-crystal X-ray diffraction analysis. Dauresorcinols A (1) and B (2) possess two new merosesquiterpene skeletons bearing an unprecedented 2,6,7,10,14-pentamethyl-11-oxatetracyclo[8.8.0.02,7.012,17]octadecane and a caged 15-isohexyl-1,5,15-trimethyl-2,10-dioxatetracyclo[7.4.1.111,14.03,8]pentadecane motif, respectively. Plausible biosynthetic pathways of 1-5 are proposed involving key oxa-electrocyclization and Wagner-Meerwein rearrangement reactions. (+)/(-)-1 and 3-5 showed potent α-glucosidase inhibitory activity, 3 to 22 times stronger than acarbose, an antidiabetic drug targeting α-glucosidase. Docking results provide a basis to design and develop merosesquiterpenoids as potent α-glycosidase inhibitors.


Subject(s)
Glycoside Hydrolase Inhibitors , Rhododendron , Rhododendron/chemistry , Stereoisomerism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Molecular Structure , Structure-Activity Relationship , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Humans , Dose-Response Relationship, Drug , Plant Leaves/chemistry , Crystallography, X-Ray , Models, Molecular
6.
SAR QSAR Environ Res ; 35(5): 391-410, 2024 May.
Article in English | MEDLINE | ID: mdl-38769919

ABSTRACT

Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p-hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).


Subject(s)
Acetylcholinesterase , Alpinia , Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Rhizome , Alpinia/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Rhizome/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , alpha-Glucosidases/metabolism , Quantitative Structure-Activity Relationship , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Humans
7.
Molecules ; 29(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38675548

ABSTRACT

The fungus Xylaria sp. Z184, harvested from the leaves of Fallopia convolvulus (L.) Á. Löve, has been isolated for the first time. Chemical investigation on the methanol extract of the culture broth of the titles strain led to the discovery of three new pyranone derivatives, called fallopiaxylaresters A-C (1-3), and a new bisabolane-type sesquiterpenoid, named fallopiaxylarol A (4), along with the first complete set of spectroscopic data for the previously reported pestalotiopyrone M (5). Known pyranone derivatives (6-11), sesquiterpenoids (12-14), isocoumarin derivatives (15-17), and an aromatic allenic ether (18) were also co-isolated in this study. All new structures were elucidated by the interpretation of HRESIMS, 1D, 2D NMR spectroscopy, and quantum chemical computation approach. The in vitro antimicrobial, anti-inflammatory, and α-glucosidase-inhibitory activities of the selected compounds and the crude extract were evaluated. The extract was shown to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells, with an inhibition rate of 77.28 ± 0.82% at a concentration of 50 µg/mL. The compounds 5, 7, and 8 displayed weak antibacterial activity against Staphylococcus areus subsp. aureus at a concentration of 100 µM.


Subject(s)
Sesquiterpenes , Xylariales , Mice , Animals , RAW 264.7 Cells , Xylariales/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Lipopolysaccharides , Microbial Sensitivity Tests , Macrophages/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification
8.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675588

ABSTRACT

Two α-pyrone analogs were isolated from the endophytic fungus Diaporthe sp. CB10100, which is derived from the medicinal plant Sinomenium acutum. These analogs included a new compound, diaporpyrone F (3), and a known compound, diaporpyrone D (4). The structure of 3 was identified by a comprehensive examination of HRESIMS, 1D and 2D NMR spectroscopic data. Bioinformatics analysis revealed that biosynthetic gene clusters for α-pyrone analogs are common in fungi of Diaporthe species. The in vitro α-glucosidase inhibitory activity and antibacterial assay of 4 revealed that it has a 46.40% inhibitory effect on α-glucosidase at 800 µM, while no antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Mycolicibacterium (Mycobacterium) smegmatis or Klebsiella pneumoniae at 64 µg/mL. Molecular docking and molecular dynamics simulations of 4 with α-glucosidase further suggested that the compounds are potential α-glucosidase inhibitors. Therefore, α-pyrone analogs can be used as lead compounds for α-glucosidase inhibitors in more in-depth studies.


Subject(s)
Ascomycota , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrones , alpha-Glucosidases , Pyrones/chemistry , Pyrones/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Ascomycota/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Molecular Structure , Microbial Sensitivity Tests
9.
J Nat Med ; 78(3): 655-663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429480

ABSTRACT

The preliminary α-glucosidase inhibitory activity of the methanol extract of the leaves of Sandoricum koetjape Merr. exhibited promising results. The leaves was extracted with methanol to obtain the methanol extract that was continuedly partitioned with hexane and ethyl acetate. Those fractions were further purified by various chromatographic techniques. The isolation of the potent fractions furnished two new cycloartane-type triterpenoids (1 and 2) along with ten known compounds (3-12). Their chemical structures were unambiguously established by interpretation of NMR (1 D & 2 D) and high-resolution electrospray ionization mass spectrometry (HRESIMS) data. Furthermore, the configurations of two new compounds were determined by using NOESY spectrum as well as comparing their NMR data to the reference. These compounds were evaluated against α-glucosidase. All tested compounds revealed potent activity with IC50 value in the range of 2.17-49.2 µM compared to that of acarbose (IC50 100.6 µM). Compound 10 showed the lowest IC50 value. This compound was reported as a mixed-type inhibitor. Compound 3 possessed the second strong activity with an IC50 value of 14.0 µM and was further investigated on kinetic analysis which revealed as a mixed-type inhibitor with Ki and Ki' values of 59.1 and 155.2 µM, respectively.


Subject(s)
Glycoside Hydrolase Inhibitors , Plant Extracts , Plant Leaves , Triterpenes , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Plant Leaves/chemistry , alpha-Glucosidases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
10.
Chem Biodivers ; 21(5): e202400245, 2024 May.
Article in English | MEDLINE | ID: mdl-38436134

ABSTRACT

Despite Aloe's traditional use, Aloe juvenna Brandham & S.Carter is poorly characterized. Other Aloes are known for their antidiabetic activity. This study describes the antidiabetic potentials and phytoconstituents of the A. juvenna leaves methanolic extract (AJME). Twenty-six phytoconstituents of AJME were described using HPLC/MS-MS. Lupeol and vitexin were isolated using column chromatography. The antidiabetic activity of AJME was investigated using an in vivo high-fat diet/streptozotocin-induced diabetic rat model and in vitro α-glucosidase and α-amylase inhibitory activity assays. AJME demonstrated its α-amylase inhibitory activity (IC50=313±39.9 ppm) with no effect on α-glucosidase. In vivo, AJME dose-dependently improved hyperglycaemia in a high-fat diet/streptozotocin-induced diabetic rat model. Notably, the higher dose (1600 mg/kg) of AJME significantly downregulated serum interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-1 genes, suggesting its anti-inflammatory effect. These findings indicate AJME's potential as a significant antidiabetic agent through its α-amylase inhibition, hypoglycaemic, and anti-inflammatory properties.


Subject(s)
Aloe , Anti-Inflammatory Agents , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Plant Extracts , Plant Leaves , Streptozocin , alpha-Amylases , Animals , Aloe/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Male , Diet, High-Fat , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Rats, Sprague-Dawley
11.
Chem Biodivers ; 21(5): e202400409, 2024 May.
Article in English | MEDLINE | ID: mdl-38459792

ABSTRACT

From Garcinia pedunculata Roxb. fruits, two undescribed aromatic compounds including a benzofuran and a depsidone derivative, and a new natural product, together with four known compounds were isolated. Through the analysis of spectroscopic data, high resolution mass spectrum and calculated nuclear magnetic resonance, their structures were determined. The α-glucosidase inhibitory activity of the isolates was evaluated. And compound 3 exhibited a moderate inhibitory effect on α-glucosidase. The molecular docking of compound 3 was performed to elucidate the interaction with α-glucosidase.


Subject(s)
Fruit , Garcinia , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Garcinia/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Fruit/chemistry , alpha-Glucosidases/metabolism , Molecular Structure , Structure-Activity Relationship , Depsides/chemistry , Depsides/isolation & purification , Depsides/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology
12.
Chem Biodivers ; 21(5): e202301788, 2024 May.
Article in English | MEDLINE | ID: mdl-38484132

ABSTRACT

Curcuma angustifolia Roxb. is a plant with medicinal potential, traditionally used to treat different diseases. The present study aimed to determine the antidiabetic activity of C. angustifolia rhizome in vitro and in silico. The methanolic extract of C. angustifolia rhizome was analyzed by FTIR and GC-MS to determine the phytochemicals present. The antidiabetic potential of the extract was evaluated by different assays in vitro. The extract inhibited both α-amylase and α-glucosidase enzymes and the glucose diffusion through the dialysis membrane in a concentration-dependent manner with IC50 values of 530.39±0.09, 293.75±0.11, and 551.74±0.3 µg/ml respectively. The methanolic extract also improved yeast cell's ability to take up glucose across plasma membranes and the adsorption of glucose. The findings were supported by molecular docking studies. The results showed that the methanol extract of C. angustifolia rhizome has significant antidiabetic activity and thus can be also studied to isolate the potential compound with antidiabetic activities.


Subject(s)
Curcuma , Hypoglycemic Agents , Methanol , Molecular Docking Simulation , Plant Extracts , Rhizome , alpha-Amylases , alpha-Glucosidases , Curcuma/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Rhizome/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Methanol/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Glucose/metabolism
13.
Int J Biol Macromol ; 266(Pt 1): 130982, 2024 May.
Article in English | MEDLINE | ID: mdl-38522693

ABSTRACT

This work aimed to propose a rapid method to screen the bioactive peptides with anti-α-glucosidase activity instead of traditional multiple laborious purification and identification procedures. 242 peptides binding to α-glycosidase were quickly screened and identified by bio-affinity ultrafiltration combined with LC-MS/MS from the double enzymatic hydrolysate of black beans. Top three peptides with notable anti-α-glucosidase activity, NNNPFKF, RADLPGVK and FLKEAFGV were further rapidly screened and ranked by the three artificial intelligence tools (three-AI-tool) BIOPEP database, PeptideRanker and molecular docking from the 242 peptides. Their IC50 values were in order as 4.20 ± 0.11 mg/mL, 2.83 ± 0.03 mg/mL, 1.32 ± 0.09 mg/mL, which was opposite to AI ranking, for the hydrophobicity index of the peptides was not included in the screening criteria. According to the kinetics, FT-IR, CD and ITC analyses, the binding of the three peptides to α-glucosidase is a spontaneous and irreversible endothermic reaction that results from hydrogen bonds and hydrophobic interactions, which mainly changes the α-helix structure of α-glucosidase. The peptide-activity can be evaluated vividly by AFM in vitro. In vivo, the screened FLKEAFGV and RADLPGVK can lower blood sugar levels as effectively as acarbose, they are expected to be an alternative to synthetic drugs for the treatment of Type 2 diabetes.


Subject(s)
Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Peptides , Tandem Mass Spectrometry , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Peptides/chemistry , Peptides/pharmacology , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Chromatography, Liquid/methods , Kinetics , Ultrafiltration/methods , Fabaceae/chemistry , Liquid Chromatography-Mass Spectrometry
14.
Chem Biodivers ; 21(5): e202400380, 2024 May.
Article in English | MEDLINE | ID: mdl-38498616

ABSTRACT

The chemical investigation of the stems of Knema globularia led to the isolation of two new benzoquinones derivatives, embenones A and B (1 and 2), along with three known compounds (3-5). The structures of the isolated compounds were determined using spectroscopic techniques, including HRESIMS, 1D and 2D NMR, in conjunction with comparison to existing literature data. Compounds 1 and 2 represent new carbon skeletons in nature. Furthermore, all isolated compounds were evaluated for their α-glucosidase inhibitory activity, with compounds 1-3 exhibiting superior potency relative to the positive control (acarbose, IC50 331 µM). Their IC50 values ranged from 1.40 to 96.1 µM.


Subject(s)
Benzoquinones , Glycoside Hydrolase Inhibitors , Plant Stems , alpha-Glucosidases , Benzoquinones/chemistry , Benzoquinones/isolation & purification , Benzoquinones/pharmacology , Plant Stems/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , alpha-Glucosidases/metabolism , Vietnam , Structure-Activity Relationship , Molecular Structure , Molecular Conformation , Southeast Asian People
15.
J Enzyme Inhib Med Chem ; 37(1): 554-562, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35152818

ABSTRACT

Aiming at finding natural sources of antidiabetics agents, 15 extracts from Brazilian medicinal plants of the Atlantic Forest and Amazon region were tested against α-glucosidase enzyme. Plants were selected based on the taxonomic relationships with genera including several species with antidiabetic activity. In this screening, the extracts obtained from the flowers of Hyptis monticola and the leaves of Lantana trifolia and Lippia origanoides resulted endowed with promising anti-α-glucosidase activity. The extracts from H. monticola and from L. origanoides collected in two different areas, were characterised by ultra-high performance liquid chromatography coupled to mass spectrometry. Bioassay-guided fractionation led to the identification of several enzyme inhibiting compounds, among them the mechanism of action of naringenin and pinocembrin was investigated. The two L. origanoides extracts showed differences in bioactivity and in the phytochemical profiles. The fractionation of the extract from H. monticola led to a partial loss of the inhibitory effect.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Hyptis/chemistry , Lantana/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , alpha-Glucosidases/metabolism , Brazil , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Flowers/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Mass Spectrometry , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship
16.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164118

ABSTRACT

Diabetes mellitus is a chronic disease affecting the globe and its incidence is increasing pandemically. The use of plant-derived natural products for diabetes management is of great interest. Polar fraction of Artemisia annua L. leaves has shown antidiabetic activity in vivo. In the present study, three major compounds were isolated from this polar fraction; namely, 3,5-dicaffeoylquinic acid (1); 4,5-dicaffeoylquinic acid (2), and 3,4- dicaffeoylquinic acid methyl ester (3), using VLC-RP-18 and HPLC techniques. The potential protective effects of these compounds against diabetes and its complications were investigated by employing various in vitro enzyme inhibition assays. Furthermore, their antioxidant and wound healing effectiveness were evaluated. Results declared that these dicaffeoylquinic acids greatly inhibited DPPIV enzyme while moderately inhibited α-glucosidase enzyme, where compounds 1 and 3 displayed the most prominent effects. In addition, compound 3 showed pronounced inhibition of α-amylase enzyme. Moreover, these compounds markedly inhibited aldose reductase enzyme and exerted powerful antioxidant effects, among which compound 3 exhibited the highest activity implying a notable potentiality in impeding diabetes complications. Interestingly, compounds 2 and 3 moderately accelerated scratch wound healing. Our findings suggest that these dicaffeoylquinic acids can be promising therapeutic agents for managing diabetes and its complications.


Subject(s)
Artemisia annua/chemistry , Diabetes Complications/prevention & control , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Plant Leaves/chemistry , Quinic Acid/analogs & derivatives , Cell Line , Diabetes Complications/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology
17.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209111

ABSTRACT

The recent study investigated the in vitro anti-diabetic impact of the crude extract (MeOH) and subfractions ethyl acetate (EtOAc); chloroform; n-butanol; n-hexane; and aqueous fraction of S. edelbergii and processed the active EtOAc fraction for the identification of chemical constituents for the first time via ESI-LC-MS analysis through positive ionization mode (PIM) and negative ionization mode (NIM); the identified compounds were further validated through computational analysis via standard approaches. The crude extract and subfractions presented appreciable activity against the α-glucosidase inhibitory assay. However, the EtOAc fraction with IC50 = 0.14 ± 0.06 µg/mL revealed the maximum potential among the fractions used, followed by the MeOH and n-hexane extract with IC50 = 1.47 ± 0.14 and 2.18 ± 0.30 µg/mL, respectively. Moreover, the acarbose showed an IC50 = 377.26 ± 1.20 µg/ mL whereas the least inhibition was observed for the chloroform fraction, with an IC50 = 23.97 ± 0.14 µg/mL. Due to the significance of the EtOAc fraction, when profiled for its chemical constituents, it presented 16 compounds among which the flavonoid class was dominant, and offered eight compounds, of which six were identified in NIM, and two compounds in PIM. Moreover, five terpenoids were identified-three and two in NIM and PIM, respectively-as well as two alkaloids, both of which were detected in PIM. The EtOAc fraction also contained one phenol that was noticed in PIM. The detected flavonoids, terpenoids, alkaloids, and phenols are well-known for their diverse biomedical applications. The potent EtOAc fraction was submitted to computational analysis for further validation of α-glucosidase significance to profile the responsible compounds. The pharmacokinetic estimations and protein-ligand molecular docking results with the support of molecular dynamic simulation trajectories at 100 ns suggested that two bioactive compounds-dihydrocatalpol and leucosceptoside A-from the EtOAc fraction presented excellent drug-like properties and stable conformations; hence, these bioactive compounds could be potential inhibitors of alpha-glucosidase enzyme based on intermolecular interactions with significant residues, docking score, and binding free energy estimation. The stated findings reflect that S. edelbergii is a rich source of bioactive compounds offering potential cures for diabetes mellitus; in particular, dihydrocatalpol and leucosceptoside A could be excellent therapeutic options for the progress of novel drugs to overcome diabetes mellitus.


Subject(s)
Drug Discovery , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Models, Molecular , Plant Extracts/chemistry , Plant Extracts/pharmacology , Scutellaria/chemistry , Chemical Fractionation , Chromatography, Liquid , Drug Discovery/methods , Enzyme Activation/drug effects , Glycoside Hydrolase Inhibitors/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Plant Extracts/isolation & purification , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Tandem Mass Spectrometry
18.
Drug Des Devel Ther ; 16: 83-105, 2022.
Article in English | MEDLINE | ID: mdl-35027819

ABSTRACT

PURPOSE: Aralia taibaiensis, a medicinal food plant, and total saponins from its root bark extract inhibit α-glucosidase activity, which is associated with type 2 diabetes; however, the inhibitory mechanism is unknown. Furthermore, a green extraction technique superior to conventional hot reflux extraction (HRE) is needed for the rapid and easy extraction of A. taibaiensis total saponins (TSAT) to exploit and utilize this resource. Our aim was to develop a green extraction method for obtaining TSAT and to investigate the mechanism by which TSAT inhibits α-glucosidase. MATERIALS AND METHODS: In this study, the ultrasound-assisted extraction (UAE) process was optimized using a Box-Behnken design, and the extraction mechanism was investigated using scanning electron microscopy (SEM). High-performance liquid chromatography (HPLC) was used for qualitative and quantitative analyses of TSAT. In vitro glycosylation assays, enzyme kinetics, fluorescence spectroscopy measurements, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR) and molecular docking techniques were used to investigate the mechanism by which the A. taibaiensis active ingredients inhibit α-glucosidase. RESULTS: The optimal parameters for the extraction yield were obtained as an ethanol concentration of 73%, ultrasound time of 34 min, ultrasound temperature of 61 °C and solid-liquid ratio of 16 g/mL, which were better than HRE. The SEM analysis showed that UAE effectively disrupted plant cells, thus increasing the TSAT yield. In vitro α-glucosidase inhibition experiments showed that both TSAT and its active ingredient, araloside A, inhibited α-glucosidase activity by binding to α-glucosidase, thereby changing the conformation and microenvironment of α-glucosidase to subsequently inhibit enzyme activity. CONCLUSION: The optimal extraction conditions identified here established a basis for future scale-up of ultrasound extraction parameters with the potential for obtaining maximum yields. In vitro enzyme inhibition experiments investigated the mechanism of the TSAT interaction with α-glucosidase and further explored whether araloside A may be the main contributor to the good inhibition of α-glucosidase activity by TSAT.


Subject(s)
Aralia/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Saponins/chemistry , Saponins/isolation & purification , Sonication , Chromatography, High Pressure Liquid , Microscopy, Electron, Scanning , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Spectroscopy, Fourier Transform Infrared
19.
J Asian Nat Prod Res ; 24(2): 196-202, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33876656

ABSTRACT

Chemical investigation on chloroform extract of Phlogacanthus turgidus led to the isolation of one new compound namely turgidol, together with five known triterpenoids, lupeol, lupenone, betulin, betulinic acid, and taraxerol. Their structures and stereochemistry have been determined by 1 D and 2 D NMR analysis, high resolution mass spectrometry, and compared with those in literatures. The relative configuration of turgidol was defined using DFT-NMR chemical shift calculations and subsequent DP4+ probability method. Turgidol, betulin, and betulinic acid were evaluated for cytotoxic activity toward K562 cancer cell line and the alpha-glucosidase inhibition.


Subject(s)
Acanthaceae , Triterpenes , Acanthaceae/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Humans , K562 Cells , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Triterpenes/isolation & purification , Triterpenes/pharmacology , Vietnam , alpha-Glucosidases
20.
Phytochemistry ; 194: 113016, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34794092

ABSTRACT

The composition of a plant, together with its efficacy, vary depending on its maturity and plant parts. In this study, the chemical constituents of immature fruits of Maclura tricuspidata (Moraceae) were investigated together with their anti-diabetic and antioxidant effects. A total of 34 compounds were isolated from the immature fruits of M. tricuspidata using various chromatographic methods. Structure elucidation using extensive spectroscopic analysis led to the characterization of isolated compounds as isoflavonoids with prenyl substituents. Among them, macluraisoflavones A-O were first isolated from nature. The anti-diabetic and antioxidant activity of the isolated compounds were also suggested by α-glucosidase inhibitory activity and DPPH radical scavenging activity, respectively. In particular, macluraisoflavone I, an isoflavonoid with 2,2-dimethylpyran and 2-hydroperoxy-3-methylbut-3-enyl moieties, showed potent α-glucosidase inhibitory activity and DPPH radical scavenging activity. Further molecular docking analysis suggested hydrogen bond and alkyl interactions between α-glucosidase and macluraisoflavone I. Therefore, the immature fruits of M. tricuspidata can be used as an important natural product with antioxidant and anti-diabetic properties.


Subject(s)
Antioxidants/pharmacology , Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Maclura , Antioxidants/isolation & purification , Flavonoids/isolation & purification , Fruit/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Maclura/chemistry , Molecular Docking Simulation , alpha-Glucosidases
SELECTION OF CITATIONS
SEARCH DETAIL
...