Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.243
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1882-1887, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812200

ABSTRACT

Chemical constituents from the ethanol extract of Picrorhiza scrophulariiflora were isolated and purified by column chromatography. Their structures were identified by HR-MS, 1D and 2D-NMR, and their cytotoxicity was assessed by CCK-8 assay. Four compounds were isolated and identified as follows: 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosterol-5,25-diene-22-one(1), 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one(2), 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5-ene-22-one(3) and 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,23-(E)-diene-22-one(4). Compound 1 represents a new cucurbitane glycoside. The half inhibitory concentrations of the 4 compounds exceeded 100 µmol·L~(-1) against four tumor cell lines, indicating no significant cytotoxicity.


Subject(s)
Glycosides , Picrorhiza , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Cell Line, Tumor , Picrorhiza/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Drugs, Chinese Herbal/chemistry , Triterpenes
2.
Food Chem ; 453: 139622, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761729

ABSTRACT

For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.


Subject(s)
Diterpenes, Kaurane , Plant Extracts , Stevia , Sweetening Agents , Stevia/chemistry , Diterpenes, Kaurane/isolation & purification , Diterpenes, Kaurane/chemistry , Sweetening Agents/isolation & purification , Sweetening Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Humans , Glucosides/isolation & purification , Glucosides/chemistry , Animals , Glycosides/isolation & purification , Glycosides/chemistry
3.
Carbohydr Res ; 540: 109142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718742

ABSTRACT

Resin glycosides act as laxatives in crude drugs derived from plants of the Convolvulaceae family. These compounds have exhibited antibacterial, ionophoric, anti-inflammatory, antiviral, and multidrug resistance-modulating properties, as well as cytotoxicity against cancer cells. This study investigated the organic acid, hydroxyl fatty acid, monosaccharide, and glycosidic acid components of the crude resin glycoside fraction obtained from the methanol extract of Ipomoea alba L. (Convolvulaceae) seeds, which was subjected to alkaline and acidic hydrolysis. The alkaline hydrolysis yielded acetic, isobutyric, (E)-2-methylbut-2-enoic, and 2S-methyl-3S-hydroxybutyric acids as organic acid components, along with a glycosidic acid fraction. The acidic hydrolysis of the glycosidic acid fraction resulted in the isolation of 11S-hydroxytetradecanoic and 11S-hydroxyhexadecanoic acids as hydroxyl fatty acid components, as well as d-glucose, d-quinovose, d-fucose, d-xylose, and l-rhamnose as monosaccharide components. In addition, 10 new glycosidic acid methyl esters were isolated from the glycosidic acid fraction treated with trimethylsilyldiazomethane-hexane, along with one known glycosidic acid methyl ester. Of these, eight compounds contained new glycans. Four of these compounds were unusual natural glycosides with four glycosidic linkages to one monosaccharide. Their structures were determined using MS and NMR spectral analyses, which provided valuable insights into the unique glycosidic composition of I. alba seeds.


Subject(s)
Glycosides , Ipomoea , Seeds , Ipomoea/chemistry , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Seeds/chemistry , Resins, Plant/chemistry , Hydrolysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
4.
Phytochemistry ; 222: 114094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604325

ABSTRACT

Safflopentsides A-C (1-3), three highly oxidized rearranged derivatives of quinochalcone C-glycosides, were isolated from the safflower yellow pigments. Their structures were determined based on a detailed spectroscopic analysis (UV, IR, HR-ESI-MS, 1D and 2D NMR), and the absolute configurations were confirmed by the comparison of experimental ECD spectra with calculated ECD spectra. Compounds 1-3 have an unprecedented cyclopentenone or cyclobutenolide ring A containing C-glucosyl group, respectively. The plausible biosynthetic pathways of compounds have been presented. At 10 µM, 2 showed strong inhibitory activity against rat cerebral cortical neurons damage induced by glutamate and oxygen sugar deprivation.


Subject(s)
Carthamus tinctorius , Glycosides , Oxidation-Reduction , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Animals , Carthamus tinctorius/chemistry , Rats , Molecular Structure , Neurons/drug effects , Structure-Activity Relationship , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Dose-Response Relationship, Drug , Cerebral Cortex/drug effects , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/isolation & purification
5.
Mar Drugs ; 22(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667774

ABSTRACT

Five new biflorane-type diterpenoids, biofloranates E-I (1-5), and two new bicyclic diterpene glycosides, lemnaboursides H-I (6-7), along with the known lemnabourside, were isolated from the South China Sea soft coral Lemnalia bournei. Their chemical structures and stereochemistry were determined based on extensive spectroscopic methods, including time-dependent density functional theory (TDDFT) ECD calculations, as well as a comparison of them with the reported values. The antibacterial activities of the isolated compounds were evaluated against five pathogenic bacteria, and all of these diterpenes and diterpene glycosides showed antibacterial activities against Staphylococcus aureus and Bacillus subtilis, with MICs ranging from 4 to 64 µg/mL. In addition, these compounds did not exhibit noticeable cytotoxicities on A549, Hela, and HepG2 cancer cell lines, at 20 µM.


Subject(s)
Anthozoa , Anti-Bacterial Agents , Bacillus subtilis , Diterpenes , Glycosides , Microbial Sensitivity Tests , Staphylococcus aureus , Anthozoa/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Animals , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Staphylococcus aureus/drug effects , Bacillus subtilis/drug effects , HeLa Cells , Cell Line, Tumor , Hep G2 Cells , Molecular Structure , A549 Cells , China
6.
Mar Drugs ; 22(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667788

ABSTRACT

A new tetramic acid glycoside, aurantoside L (1), was isolated from the sponge Siliquariaspongia japonica collected at Tsushima Is., Nagasaki Prefecture, Japan. The structure of aurantoside L (1) composed of a tetramic acid bearing a chlorinated polyene system and a trisaccharide part was elucidated using spectral analysis. Aurantoside L (1) showed anti-parasitic activity against L. amazonensis with an IC50 value of 0.74 µM.


Subject(s)
Glycosides , Leishmania , Porifera , Porifera/chemistry , Animals , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Leishmania/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Pyrrolidinones/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/isolation & purification , Japan , Inhibitory Concentration 50
7.
J Nat Med ; 78(3): 741-752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573418

ABSTRACT

In this study, nine triterpene glycosides including seven previously undescribed compounds (1-7), were isolated from leaves of Cryptolepis buchananii R.Br. ex Roem. and Schult. using various chromatographic methods. The chemical structures of the compounds were elucidated to be 3-O-ß-D-glucopyranosyl-(1 → 6)-ß-D-glucopyranosyluncargenin C 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (1), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosyluncargenin C 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (2), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosyluncargenin C 28-O-ß-D-glucopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (3), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranosylhederagenin 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (4), 3-O-ß-D-glucopyranosylarjunolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (5), 3-O-ß-D-glucopyranosyl-(1 → 2)-ß- D-glucopyranosyl-6ß,23-dihydroxyursolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (6), 3-O-ß-D-glucopyranosyl-6ß,23-dihydroxyursolic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (7), asiatic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (8), and 3-O-ß-D-glucopyranosylasiatic acid 28-O-α-L-rhamnopyranosyl-(1 → 2)-ß-D-glucopyranosyl ester (9), through infrared, high-resolution electrospray ionization mass spectrometry, one- and two-dimensional nuclear magnetic resonance spectral analyses. The isolates inhibited nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells, with half-maximal inhibitory concentration (IC50) values of 18.8-58.5 µM, compared to the positive control compound, dexamethasone, which exhibited an IC50 of 14.1 µM.


Subject(s)
Glycosides , Nitric Oxide , Plant Leaves , Triterpenes , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Nitric Oxide/metabolism , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Mice , Animals , Molecular Structure , Plant Leaves/chemistry , RAW 264.7 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology
8.
J Nat Med ; 78(3): 709-721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575838

ABSTRACT

Methanol extract of the Cnidium officinale Makino rhizome, which is used as a crude drug Cnidium Rhizome (Cnidii Rhizoma; "Senkyu" in Japanese) and is listed in the Japanese Pharmacopoeia XVIII, showed intracellular triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Thirty-five constituents, including two new alkylphthalide glycosides, senkyunosides A (1) and B (2), and a neolignan with a new stereoisomeric structure (3), were isolated in the extract. Their stereostructures were elucidated based on chemical and spectroscopic evidence. Among the isolates, several alkylphthalides, (Z)-3-butylidene-7-methoxyphthalide (9) and senkyunolides G (10), H (14), and I (15), and a polyacetylene falcarindiol (26), were found to show significant activity without any cytotoxicity at 10 µM.


Subject(s)
Benzofurans , Cnidium , Rhizome , Triglycerides , Humans , Rhizome/chemistry , Hep G2 Cells , Cnidium/chemistry , Triglycerides/metabolism , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification
9.
J Nat Prod ; 87(4): 1084-1091, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38517947

ABSTRACT

Investigation of the secondary metabolites of Streptomyces virginiae CMB-CA091 isolated from the quartz-rich (tepui) soil of a cave in Venezuela yielded two new dimeric phenazine glycosides, tepuazines A and B (1 and 2); three new monomeric phenazine glycosides, tepuazines C-E (3-5); and a series of known analogues, baraphenazine G (6), phenazinolin D (7), izumiphenazine C (8), 4-methylaminobenzoyl-l-rhamnopyranoside (9), and 2-acetamidophenol (10). Structures were assigned to 1-10 on the basis of detailed spectroscopic analysis and biosynthetic considerations, with 1 and 2 featuring a rare 2-oxabicyclo[3.3.1]nonane-like ring C/D bridge shared with only a handful of known Streptomyces natural products. We propose a plausible convergent biosynthetic relationship linking all known members of this structure class that provides a rationale for the observed ring C/D configuration.


Subject(s)
Glycosides , Phenazines , Soil Microbiology , Streptomyces , Streptomyces/chemistry , Phenazines/chemistry , Glycosides/chemistry , Glycosides/isolation & purification , Molecular Structure , Venezuela , Caves , Quartz/chemistry
10.
Phytochemistry ; 222: 114071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552709

ABSTRACT

Eight pairs of dihydrohomoisoflavonoids (1-8), including four pairs of enantiomeric aglycones [(R,S)-portulacanones B (1) and C (2) and (R,S)-oleracones C (3) and Q (4)] and four pairs of epimeric glycosides [portulacasides A-D and epiportulacasides A-D (5-8)], were obtained from Portulaca oleracea L. Among them, (R,S)-oleracone Q (4) and four pairs of epimeric glycosides (5-8) were reported for the first time. The 50% EtOH fraction from the 70% EtOH extract prevented HepG2 human liver cancer cell damage induced by N-acetyl-p-aminophenol (APAP), and the cell survival rate was 62.3%. Portulacaside B (6a), which was isolated from the 50% EtOH fraction, exhibited hepatoprotective and anti-inflammatory effects. The compound increased the survival rate of APAP-damaged HepG2 human liver cancer cells from 40.0% to 51.2% and reduced nitric oxide production in RAW 264.7 macrophages, resulting in an inhibitory rate of 46.8%.


Subject(s)
Cell Survival , Portulaca , Humans , Portulaca/chemistry , Mice , Animals , Hep G2 Cells , RAW 264.7 Cells , Cell Survival/drug effects , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Acetaminophen/pharmacology , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification
11.
Fitoterapia ; 175: 105900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471573

ABSTRACT

Michelia champaca L. (Magnoliaceae) was cultivated in large scale for flowers as cosmetic raw materials, whereas the value of its leaves remains to be discovered. Our chemical study on the leaves yielded four new flavonol diglycosides, champaflavosides A-D (1-4), together with twenty-three known flavonoid glycosides (5-27). Their structures were determined by spectroscopic and chemical methods. Compounds 5-21 and 23-27 were not previously reported from the genus Michelia, and kaempferol 3-O-rutinoside (22) was obtained from this species for the first time. All the compounds were evaluated for antioxidant activity by four in vitro assays. Compounds 3-12 and 20 showed more potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than l-ascorbic acid (l-AA). Compounds 2-23, 25, and 27 exhibited 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical cation scavenging activity superior to l-AA. The ferric reducing antioxidant powers (FRAP) of compounds 2-13, 17, and 19 were higher than l-AA. Further, eighteen compounds demonstrated cellular reactive oxygen species (ROS) scavenging activity, of which champaflavoside D (4), rhamnetin 3-O-neohesperidoside (8), quercetin 3-O-(6-O-E-p-coumaroyl)-neohesperidoside (9), and liquiritin (27) were more potent than curcumin. The results revealed that the renewable leaves of M. champaca are a rich source of flavonoids and antioxidants.


Subject(s)
Antioxidants , Flavonoids , Glycosides , Plant Leaves , Plant Leaves/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Glycosides/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/chemistry , Molecular Structure , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Magnoliaceae/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , China , Kaempferols/pharmacology , Kaempferols/isolation & purification , Kaempferols/chemistry
12.
Fitoterapia ; 175: 105896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471574

ABSTRACT

Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.


Subject(s)
Cornus , Phytochemicals , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cornus/chemistry , Animals , Molecular Structure , Glycosides/pharmacology , Glycosides/isolation & purification , Antioxidants/pharmacology
13.
Fitoterapia ; 175: 105903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479620

ABSTRACT

A phytochemical study of the aerial parts of Piper mutabile C. DC. revealed seven undescribed compounds [two (2-7')-neolignans and five polyoxygenated cyclohexene glycosides] and six known propenylcatechol derivatives. The chemical structures of the isolated compounds were elucidated by extensive HR-ESI-MS and NMR analyses, as well as comparison with the literature. The absolute configurations of the (2-7')-neolignans were confirmed by GIAO 13C NMR calculations with a sorted training set strategy and TD-DFT calculation ECD spectra. The (2-7')-neolignans and polyoxygenated cyclohexene glycosides are unusual in natural sources. Undescribed neolignans 1 and 2 inhibited NO production in RAW 264.7 cells, with respective IC50 values of 14.4 and 9.5 µM.


Subject(s)
Cyclohexenes , Glycosides , Lignans , Nitric Oxide , Phytochemicals , Piper , Plant Components, Aerial , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Nitric Oxide/antagonists & inhibitors , RAW 264.7 Cells , Mice , Piper/chemistry , Molecular Structure , Plant Components, Aerial/chemistry , Animals , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Lignans/pharmacology , Lignans/isolation & purification , Lignans/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Glycosides/chemistry , Cyclohexenes/pharmacology , Cyclohexenes/isolation & purification , China
14.
Fitoterapia ; 175: 105917, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508501

ABSTRACT

The aim of this work is to explore the effects of herbal medicine on secondary metabolites of microorganisms during fermentation. Clonostachys rogersoniana was found to metabolize only small amounts of polyketide glycosides rogerson B and C on fresh potatoes, but after replacing the medium to the medicinal plant Rubus delavayi Franch., the type and content of the metabolized polyketones showed significant changes. The sugars and glycosides in R. delavayi are probably responsible for the changes in secondary metabolites. Six polyketide glycosides including a new metabolite, rogerson F, and two potential antitumor compounds, TMC-151C and TMC-151D, were isolated from the extract of R. delavayi fermented by C. rogersoniana. In addition, 13C labeling experiments were used to trace the biosynthesis process of these compounds. TMC-151C and TMC-151D showed significant cytotoxic activity against PANC-1, K562 and HCT116 cancer cells but had no obvious cytotoxic activity against BEAS-2B human normal lung epithelial cells. The yields of TMC-151C and TMC-151D reached 14.37 ± 1.52 g/kg and 1.98 ± 0.43 g/kg, respectively, after fermentation at 28 °C for 30 days. This is the first study to confirm that herbal medicine can induce microbes to metabolize active compounds. And the technology of fermenting medicinal materials can bring more economic value to medicinal plants.


Subject(s)
Fermentation , Hypocreales , Polyketides , Polyketides/metabolism , Polyketides/pharmacology , Humans , Cell Line, Tumor , Hypocreales/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Molecular Structure , Glycosides/pharmacology , Glycosides/isolation & purification , Plants, Medicinal/chemistry , Secondary Metabolism , China
15.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38457082

ABSTRACT

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Subject(s)
Antiviral Agents , Glycosides , Ipomoea , Resins, Plant , Seeds , Ipomoea/chemistry , Seeds/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Resins, Plant/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Molecular Structure , Herpesvirus 1, Human/drug effects , HL-60 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Magnetic Resonance Spectroscopy
16.
J Asian Nat Prod Res ; 26(6): 690-698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38192122

ABSTRACT

Two neolignan glycosides including a new one (1), along with seven iridoid glycosides (3 - 9) and nine flavonoid glycosides (10 - 18), were isolated from the leaves of Vaccinium bracteatum. Their structures were established mainly on the basis of 1D/2D NMR and ESIMS analyses, as well as comparison to known compounds in the literature. The structure of 1 with absolute stereochemistry was also confirmed by chemical degradation and ECD calculation. Selective compounds showed antiradical activity against ABTS and/or DPPH. Moreover, several isolates also suppressed the production of ROS in RAW264.7 cells and exerted neuroprotective effect toward PC12 cells.


Subject(s)
Flavonoids , Glycosides , Lignans , Plant Leaves , Plant Leaves/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Animals , Mice , PC12 Cells , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , Molecular Structure , Lignans/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Rats , RAW 264.7 Cells , Vaccinium/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Iridoids/chemistry , Iridoids/pharmacology , Iridoids/isolation & purification , Iridoid Glycosides/chemistry , Iridoid Glycosides/pharmacology , Iridoid Glycosides/isolation & purification , Reactive Oxygen Species , Picrates/pharmacology
17.
J Biol Chem ; 299(3): 102931, 2023 03.
Article in English | MEDLINE | ID: mdl-36682498

ABSTRACT

The sugar moieties of many glycosylated small molecule natural products are essential for their biological activity. Glycosyltransferases (GTs) are enzymes responsible for installing these sugar moieties on a variety of biomolecules. Many GTs active on natural products are inherently substrate promiscuous and thus serve as useful tools in manipulating natural product glycosylation to generate new combinations of sugar units (glycones) and scaffold molecules (aglycones) in a process called glycodiversification. It is important to have an effective screening tool to detect the activity of promiscuous enzymes and their resulting glycoside products. Toward this aim, we developed a strategy for screening natural product GTs in a high-throughput fashion enabled by rapid isolation and detection of chromophoric or fluorescent glycosylated natural products. This involves a solvent extraction step to isolate the resulting polar glycoside product from the unreacted aglycone acceptor substrate and the detection of the formed glycoside by the innate absorbance or fluorescence of the aglycone moiety. Using our approach, we screened a collection of natural product GTs against a panel of precursors to therapeutically important molecules. Three GTs showed previously unreported promiscuity toward anthraquinones resulting in novel ε-rhodomycinone glycosides. Considering the pharmaceutical value of clinically used anthraquinone glycosides that are biosynthesized from an ε-rhodomycinone precursor, and the significance that the sugar moiety has on the biological activity of these drugs, our results are of particular importance toward the glycodiversification of therapeutics in this class. The GTs identified and the novel compounds they produce show promise toward new biocatalytic tools and therapeutics.


Subject(s)
Biological Products , Drug Discovery , Glycosides , Glycosyltransferases , Anthraquinones/chemistry , Biological Products/chemistry , Glycosides/chemical synthesis , Glycosides/isolation & purification , Glycosyltransferases/metabolism , Sugars , High-Throughput Screening Assays , Drug Discovery/methods
18.
Bioorg Chem ; 129: 106193, 2022 12.
Article in English | MEDLINE | ID: mdl-36242982

ABSTRACT

Anti-virulence strategy represents an emerging alternative strategy in the war against increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) due to its milder selection pressure on bacterial resistance. Sortase A (SrtA), as an important virulence factor, is a membrane-localized cysteine transpeptidase which anchors cell surface proteins to the cell wall. Natural products in medicinal plants are the source of targeting bacterial virulence factors. Here, we found polyphenolic glycosides (1-15), including thirteen new derivatives isolated from the stems of Caesalpinia cucullata, exhibited weak to moderate SrtA inhibitory activity without affecting the growth of MRSA, and compound 7 (53.7 % inhibition at 100 µM) was superior to the positive control curcumin. Meanwhile, compounds 2, 4 and 8 could effectively reduce the dose of ceftiofur in combination in vitro with fractional inhibitory concentration index (FICI) ranging from 0.188 to 0.375, which meant polyphenolic glycosides have got antibacterial activity with different ways. Here, we reported all new compounds structures determined by spectroscopy methods and their antibacterial activities, together, the relationship between structures with the inhibitory efficiency. The results indicated that polyphenolic glycosides could be used as promising therapeutic agents to prevent resistance development for S. aureus infections.


Subject(s)
Anti-Bacterial Agents , Caesalpinia , Glycosides , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Caesalpinia/chemistry , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests
19.
J Food Sci ; 87(7): 2831-2846, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35661363

ABSTRACT

Buckwheat hulls are discarded as waste, although they have more phenolic compounds than buckwheat groats. The antioxidant activities of buckwheat hull extracts prepared with water, 50% ethanol, and 100% ethanol were investigated in bulk oil, oil-in-water (O/W), and water-in-oil (W/O) emulsions. The relationship between the phenolic compositions of the extracts and their antioxidant activities in the three different lipid systems was also evaluated. Fifty percent ethanol extract had the highest total phenolic content (327 mg gallic acid equivalent [GAE]/g extract) followed by water and 100% ethanol extracts (211 and 163 mg GAE/g extract, respectively). The total oxidation rate (k) was not significantly different among the bulk oils added with the buckwheat hull extracts. However, in the O/W emulsion, the k was more reduced by the 50% and 100% ethanol extracts than by the water extract at the concentration of 100 µg GAE/g (2.9, 2.8, and 3.7 Totox/day, respectively). The k of the W/O emulsion was more reduced by the 100% ethanol extract than by the water and 50% ethanol extract at the concentration of 100 µg GAE/g (3.8, 4.7, and 4.5 Totox/day, respectively). Multivariate statistical analysis revealed that the contents of phenolic acids and their derivatives were the highest in the water extract among the extracts, while the contents of flavonoid glycosides and methylated polyphenols were the highest in the 50% and 100% ethanol extracts, respectively. The results suggest that flavonoid glycosides and methylated polyphenols could be potential candidates for retarding the oxidation of the emulsion system. PRACTICAL APPLICATION: Buckwheat hull extracts could retard lipid oxidation. Flavonoid glycosides and methylated polyphenols in buckwheat hull extracts may have an antioxidative effect on lipids. Thus, buckwheat hulls could be used as an antioxidant in lipid systems, as flavonoid glycosides and methylated polyphenols are properly extracted from buckwheat hulls.


Subject(s)
Antioxidants , Fagopyrum , Oils , Phenols , Antioxidants/analysis , Antioxidants/isolation & purification , Antioxidants/pharmacology , Emulsions/chemistry , Ethanol/chemistry , Fagopyrum/chemistry , Flavonoids/analysis , Gallic Acid/analysis , Glycosides/analysis , Glycosides/isolation & purification , Glycosides/pharmacology , Oils/chemistry , Phenols/analysis , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/analysis , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/isolation & purification , Polyphenols/pharmacology , Seeds/chemistry
20.
Food Funct ; 13(6): 3308-3317, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35254360

ABSTRACT

In Asia, the flower of Hosta plantaginea (Lam.) Aschers (hosta flower) is both an edible food and medicine. The hosta flower is often used as a material for cooking porridge and scented tea and in combination with other plants for alleviating pharyngitis. To clarify the anti-pharyngitis effect of the hosta flower and evaluate its potential active ingredients, an ethanol extract of the hosta flower was prepared and partially purified via chromatography on a column packed with D101 macroporous resin, which was eluted with different concentrations of ethanol. The anti-pharyngitis effect of the crude extract and the various partially purified fractions was examined in an ammonia-induced acute pharyngitis rat model. The 30% ethanol-eluted fraction significantly alleviated the severity of pharyngitis in the rat, as evaluated by changes in the levels of cytokines (IL-1ß, IL-6, and TNF-α) and histological changes in the pharynx tissues. Subsequent HPLC-QTOF/MS (high-performance liquid chromatography coupled with quadrupole-time of flight tandem mass spectrometry) analysis of this fraction revealed kaempferol and its glycosides as the main components. Three of the main components were isolated and identified by 1D NMR. Their pharmacokinetics were studied for the first time by UHPLC-QQQ/MS (ultrahigh-performance liquid chromatography coupled with mass spectrometry). The findings suggested that the 30% ethanol-eluted fraction of the hosta flower extract may be a potential functional food for treating pharyngitis.


Subject(s)
Flavonoids/therapeutic use , Glycosides/therapeutic use , Hosta/chemistry , Pharyngitis/drug therapy , Plant Extracts/therapeutic use , Animals , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacokinetics , Flowers/chemistry , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacokinetics , Male , Pharyngitis/pathology , Phytotherapy , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...