Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.471
Filter
1.
J Agric Food Chem ; 72(20): 11617-11628, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728580

ABSTRACT

When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.


Subject(s)
Fruit , Gas Chromatography-Mass Spectrometry , Glycoside Hydrolases , Glycosides , Phenols , Smoke , Vitis , Hydrolysis , Glycosides/chemistry , Glycosides/metabolism , Glycosides/analysis , Smoke/analysis , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Phenols/chemistry , Phenols/metabolism , Vitis/chemistry , Fruit/chemistry , Fruit/enzymology , Wine/analysis , Wildfires , Biocatalysis
2.
Nat Commun ; 15(1): 4588, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816433

ABSTRACT

Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.


Subject(s)
Glycosyltransferases , Lycium , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosylation , Lycium/enzymology , Lycium/metabolism , Lycium/chemistry , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Glycosides/metabolism , Glycosides/chemistry , Crystallography, X-Ray , Piperidines/metabolism , Piperidines/chemistry , Substrate Specificity
3.
J Agric Food Chem ; 72(23): 13328-13340, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805380

ABSTRACT

Flavonol glycosides, contributing to the health benefits and distinctive flavors of tea (Camellia sinensis), accumulate predominantly as diglycosides and triglycosides in tea leaves. However, the UDP-glycosyltransferases (UGTs) mediating flavonol multiglycosylation remain largely uncharacterized. In this study, we employed an integrated proteomic and metabolomic strategy to identify and characterize key UGTs involved in flavonol triglycoside biosynthesis. The recombinant rCsUGT75AJ1 exhibited flavonoid 4'-O-glucosyltransferase activity, while rCsUGT75L72 preferentially catalyzed 3-OH glucosylation. Notably, rCsUGT73AC15 displayed substrate promiscuity and regioselectivity, enabling glucosylation of rutin at multiple sites and kaempferol 3-O-rutinoside (K3R) at the 7-OH position. Kinetic analysis revealed rCsUGT73AC15's high affinity for rutin (Km = 9.64 µM). Across cultivars, CsUGT73AC15 expression inversely correlated with rutin levels. Moreover, transient CsUGT73AC15 silencing increased rutin and K3R accumulation while decreasing their respective triglycosides in tea plants. This study offers new mechanistic insights into the key roles of UGTs in regulating flavonol triglycosylation in tea plants.


Subject(s)
Camellia sinensis , Flavonols , Glycosides , Glycosyltransferases , Plant Proteins , Camellia sinensis/genetics , Camellia sinensis/metabolism , Camellia sinensis/enzymology , Camellia sinensis/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Flavonols/metabolism , Flavonols/chemistry , Flavonols/biosynthesis , Glycosides/metabolism , Glycosides/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/enzymology , Kinetics , Rutin/metabolism , Rutin/chemistry
4.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38785231

ABSTRACT

The genus Catenibacillus (family Lachnospiraceae, phylum Bacillota) includes only one cultivated species so far, Catenibacillus scindens, isolated from human faeces and capable of deglycosylating dietary polyphenols and degrading flavonoid aglycones. Another human intestinal Catenibacillus strain not taxonomically resolved at that time was recently genome-sequenced. We analysed the genome of this novel isolate, designated Catenibacillus decagia, and showed its ability to deglycosylate C-coupled flavone and xanthone glucosides and O-coupled flavonoid glycosides. Most of the resulting aglycones were further degraded to the corresponding phenolic acids. Including the recently sequenced genome of C. scindens and ten faecal metagenome-assembled genomes assigned to the genus Catenibacillus, we performed a comparative genome analysis and searched for genes encoding potential C-glycosidases and other polyphenol-converting enzymes. According to genome data and physiological characterization, the core metabolism of Catenibacillus strains is based on a fermentative lifestyle with butyrate production and hydrogen evolution. Both C. scindens and C. decagia encode a flavonoid O-glycosidase, a flavone reductase, a flavanone/flavanonol-cleaving reductase and a phloretin hydrolase. Several gene clusters encode enzymes similar to those of the flavonoid C-deglycosylation system of Dorea strain PUE (DgpBC), while separately located genes encode putative polyphenol-glucoside oxidases (DgpA) required for C-deglycosylation. The diversity of dgpA and dgpBC gene clusters might explain the broad C-glycoside substrate spectrum of C. scindens and C. decagia. The other Catenibacillus genomes encode only a few potential flavonoid-converting enzymes. Our results indicate that several Catenibacillus species are well-equipped to deglycosylate and degrade dietary plant polyphenols and might inhabit a corresponding, specific niche in the gut.


Subject(s)
Flavonoids , Gastrointestinal Microbiome , Polyphenols , Humans , Polyphenols/metabolism , Flavonoids/metabolism , Genome, Bacterial , Genomics , Flavones/metabolism , Glycosides/metabolism , Phylogeny , Feces/microbiology , Glycosylation , Xanthones/metabolism
5.
Int J Biol Macromol ; 270(Pt 1): 132090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705322

ABSTRACT

Calceorioside B, a multifunctional phenylethanol glycosides (PhGs) derivative, exhibits a variety of notable properties, such as antithrombotic, anti-tumorigenic, anti-neocoronavirus, anti-inflammatory, and neuroprotective effects. However, the large-scale production of calceorioside B is routinely restricted by its existence as an intermediary compound derived from plants, and still unachieved through excellent and activity chemical synthesis. Here, a total of 51 fungal endophytes were isolated from four PhGs-producing plants, and endophyte Simplicillium sinense EFF1 from Echinacea purpurea was identified with the ability to de-rhamnosing isoacteoside to generate calceorioside B. According to the RNA-transcription of EFF1 under the various substrates, a key gene CL1206.Contig2 that undertakes the hydrolysis function was screened out and charactered by heterologous expression. The sequence alignment, phylogenetic tree construction and substrate specificity analysis revealed that CL1206 was a novel α-L-rhamnosidase that belongs to the glycosyl hydrolase family 78 (GH78). The optimum catalytic conditions for CL1206 were at pH 6.5 and 55 °C. Finally, the enzyme-catalyzed approach to produce calceorioside B from 50 % crude isoacteoside extract was explored and optimized, with the maximum conversion rate reaching 69.42 % and the average producing rate reaching 0.37 g-1.L-1.h-1, which offered a great biocatalyst for potential industrial calceorioside B production. This is the first case for microorganism and rhamnosidase to show the hydrolysis ability to caffeic acid-modified PhGs.


Subject(s)
Endophytes , Glycoside Hydrolases , Phylogeny , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Endophytes/metabolism , Substrate Specificity , Hydrolysis , Hydrogen-Ion Concentration , Glycosides/chemistry , Glycosides/biosynthesis , Glycosides/metabolism , Kinetics
6.
J Phys Chem B ; 128(19): 4621-4630, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38697651

ABSTRACT

Thymine DNA glycosylase (TDG)-mediated excision of 5-formylcytosine and 5-carboxylcytosine (5-caC) is a critical step in active DNA demethylation. Herein, we employed a combined quantum mechanics/molecular mechanics approach to investigate the reaction mechanism of TDG-catalyzed N-glycosidic bond cleavage of 5-caC. The calculated results show that TDG-catalyzed 5-caC excision follows a concerted (SN2) mechanism in which glycosidic bond dissociation is coupled with nucleophile attack. Protonation of the 5-caC anion contributes to the cleavage of the N-glycoside bond, in which the N3-protonated zwitterion and imino tautomers are more favorable than carboxyl-protonated amino tautomers. This is consistent with the experimental data. Furthermore, our results reveal that the configuration rearrangement process of the protonated 5-caC would lower the stability of the N-glycoside bond and substantially reduce the barrier height for the subsequent C1'-N1 bond cleavage. This should be attributed to the smaller electrostatic repulsion between the leaving base and the negative phosphate group as a result of the structural rearrangement.


Subject(s)
Cytosine , Glycosides , Quantum Theory , Thymine DNA Glycosylase , Thymine DNA Glycosylase/metabolism , Thymine DNA Glycosylase/chemistry , Cytosine/chemistry , Cytosine/metabolism , Cytosine/analogs & derivatives , Glycosides/chemistry , Glycosides/metabolism , Molecular Dynamics Simulation
7.
J Microbiol Methods ; 221: 106942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704038

ABSTRACT

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.


Subject(s)
Biofilms , Gas Chromatography-Mass Spectrometry , Polysaccharides, Bacterial , Streptococcus mutans , Biofilms/growth & development , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Gas Chromatography-Mass Spectrometry/methods , Polysaccharides, Bacterial/metabolism , Glycosides/metabolism , Methylation , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Polysaccharides/metabolism
8.
Angew Chem Int Ed Engl ; 63(25): e202402546, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38616162

ABSTRACT

Phenylethanoid glycosides (PhGs) exhibit a multitude of structural variations linked to diverse pharmacological activities. Assembling various PhGs via multienzyme cascades represents a concise strategy over traditional synthetic methods. However, the challenge lies in identifying a comprehensive set of catalytic enzymes. This study explores biosynthetic PhG reconstruction from natural precursors, aiming to replicate and amplify their structural diversity. We discovered 12 catalytic enzymes, including four novel 6'-OH glycosyltransferases and three new polyphenol oxidases, revealing the intricate network in PhG biosynthesis. Subsequently, the crystal structure of CmGT3 (2.62 Å) was obtained, guiding the identification of conserved residue 144# as a critical determinant for sugar donor specificity. Engineering this residue in PhG glycosyltransferases (FsGT61, CmGT3, and FsGT6) altered their sugar donor recognition. Finally, a one-pot multienzyme cascade was established, where the combined action of glycosyltransferases and acyltransferases boosted conversion rates by up to 12.6-fold. This cascade facilitated the reconstruction of 26 PhGs with conversion rates ranging from 5-100 %, and 20 additional PhGs detectable by mass spectrometry. PhGs with extra glycosyl and hydroxyl modules demonstrated notable liver cell protection. This work not only provides catalytic tools for PhG biosynthesis, but also serves as a proof-of-concept for cell-free enzymatic construction of diverse natural products.


Subject(s)
Glycosides , Glycosyltransferases , Protein Engineering , Glycosides/chemistry , Glycosides/biosynthesis , Glycosides/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry
9.
Appl Environ Microbiol ; 90(5): e0020524, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38625022

ABSTRACT

Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE: Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.


Subject(s)
Amycolatopsis , Coloring Agents , Glycosides , Coloring Agents/metabolism , Coloring Agents/chemistry , Glycosides/metabolism , Amycolatopsis/metabolism , Amycolatopsis/genetics , Amycolatopsis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Peroxidases/metabolism , Peroxidases/genetics , Peroxidase/metabolism , Peroxidase/chemistry , Peroxidase/genetics , Streptomyces lividans/metabolism , Streptomyces lividans/genetics , Streptomyces lividans/enzymology , Substrate Specificity
10.
Cell Stem Cell ; 31(4): 537-553.e5, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579684

ABSTRACT

In polycystic kidney disease (PKD), microscopic tubules expand into macroscopic cysts. Among the world's most common genetic disorders, PKD is inherited via heterozygous loss-of-function mutations but is theorized to require additional loss of function. To test this, we establish human pluripotent stem cells in allelic series representing four common nonsense mutations, using CRISPR base editing. When differentiated into kidney organoids, homozygous mutants spontaneously form cysts, whereas heterozygous mutants (original or base corrected) express no phenotype. Using these, we identify eukaryotic ribosomal selective glycosides (ERSGs) as PKD therapeutics enabling ribosomal readthrough of these same nonsense mutations. Two different ERSGs not only prevent cyst initiation but also limit growth of pre-formed cysts by partially restoring polycystin expression. Furthermore, glycosides accumulate in cyst epithelia in organoids and mice. Our findings define the human polycystin threshold as a surmountable drug target for pharmacological or gene therapy interventions, with relevance for understanding disease mechanisms and future clinical trials.


Subject(s)
Cysts , Polycystic Kidney Diseases , Humans , Mice , Animals , Codon, Nonsense/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/therapy , Polycystic Kidney Diseases/metabolism , Kidney/metabolism , Organoids/metabolism , Cysts/genetics , Cysts/metabolism , Glycosides/metabolism
11.
Planta ; 259(5): 113, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581452

ABSTRACT

MAIN CONCLUSION: Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.


Subject(s)
Glycoside Hydrolases , Polysaccharides , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Polysaccharides/metabolism , Carbohydrates , Plants/metabolism , Glycosides/metabolism
12.
Nat Commun ; 15(1): 3539, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670975

ABSTRACT

Bergenin, a rare C-glycoside of 4-O-methyl gallic acid with pharmacological properties of antitussive and expectorant, is widely used in clinics to treat chronic tracheitis in China. However, its low abundance in nature and structural specificity hampers the accessibility through traditional crop-based manufacturing or chemical synthesis. In the present work, we elucidate the biosynthetic pathway of bergenin in Ardisia japonica by identifying the highly regio- and/or stereoselective 2-C-glycosyltransferases and 4-O-methyltransferases. Then, in Escherichia coli, we reconstruct the de novo biosynthetic pathway of 4-O-methyl gallic acid 2-C-ß-D-glycoside, which is the direct precursor of bergenin and is conveniently esterified into bergenin by in situ acid treatment. Moreover, further metabolic engineering improves the production of bergenin to 1.41 g L-1 in a 3-L bioreactor. Our work provides a foundation for sustainable supply of bergenin and alleviates its resource shortage via a synthetic biology approach.


Subject(s)
Benzopyrans , Biosynthetic Pathways , Escherichia coli , Metabolic Engineering , Benzopyrans/metabolism , Benzopyrans/chemistry , Metabolic Engineering/methods , Escherichia coli/metabolism , Escherichia coli/genetics , Glycosyltransferases/metabolism , Methyltransferases/metabolism , Gallic Acid/metabolism , Gallic Acid/chemistry , Bioreactors , Glycosides/biosynthesis , Glycosides/metabolism , Glycosides/chemistry
13.
J Chem Ecol ; 50(3-4): 185-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441803

ABSTRACT

Sea cucumbers frequently expel their guts in response to predators and an aversive environment, a behavior perceived as releasing repellents involved in chemical defense mechanisms. To investigate the chemical nature of the repellent, the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China were collected and chemically analyzed. Two novel non-holostane triterpene glycosides were isolated, and the chemical structures were elucidated as 3ꞵ-O-[ꞵ-D-glucopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (1) and 3ꞵ-O-[ꞵ-D-quinovopyranosyl-(1→2)-ꞵ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (2) by spectroscopic and mass-spectrometric analyses, exemplifying a triterpene glycoside constituent of an oligosaccharide containing two sugar-units and a non-holostane aglycone. Zebrafish embryos were exposed to various doses of 1 and 2 from 4 to 96 hpf. Compound 1 exposure showed 96 h-LC50 41.5 µM and an increased zebrafish mortality rates in roughly in a dose- and time-dependent manner. Compound 2, with different sugar substitution, exhibited no mortality and moderate teratogenic toxicity with a 96 h-EC50 of 173.5 µM. Zebrafish embryos exhibited teratogenic effects, such as reduced hatchability and total body length. The study found that triterpene saponin from A. japonicus viscera had acute toxicity in zebrafish embryos, indicating a potential chemical defense role in the marine ecosystem.


Subject(s)
Glycosides , Sea Cucumbers , Triterpenes , Viscera , Zebrafish , Animals , Zebrafish/physiology , Glycosides/chemistry , Glycosides/toxicity , Glycosides/metabolism , Viscera/chemistry , Viscera/drug effects , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/metabolism , Sea Cucumbers/chemistry , Embryo, Nonmammalian/drug effects , Marine Toxins/toxicity , Marine Toxins/chemistry
14.
J Mol Biol ; 436(9): 168547, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38508304

ABSTRACT

Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+ß subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2ß2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).


Subject(s)
Bacterial Proteins , Deinococcus , Flavonoids , Genes, Bacterial , Multigene Family , Xanthones , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Deinococcus/genetics , Deinococcus/metabolism , Flavonoids/metabolism , Flavonoids/chemistry , Glycosides/metabolism , Glycosides/chemistry , Glycosylation , Models, Molecular , Xanthones/metabolism , Xanthones/chemistry
15.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403340

ABSTRACT

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Subject(s)
Dendrobium , Flavanones , Dendrobium/genetics , Dendrobium/chemistry , Flavanones/metabolism , Flavonoids , Cloning, Molecular , Glycosides/metabolism
16.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396813

ABSTRACT

Stevia rebaudiana (Bertoni) is a highly valuable crop for the steviol glycoside content in its leaves, which are no-calorie sweeteners hundreds of times more potent than sucrose. The presence of health-promoting phenolic compounds, particularly flavonoids, in the leaf of S. rebaudiana adds further nutritional value to this crop. Although all these secondary metabolites are highly desirable in S. rebaudiana leaves, the genes regulating the biosynthesis of phenolic compounds and the shared gene network between the regulation of biosynthesis of steviol glycosides and phenolic compounds still need to be investigated in this species. To identify putative candidate genes involved in the synergistic regulation of steviol glycosides and phenolic compounds, four genotypes with different contents of these compounds were selected for a pairwise comparison RNA-seq analysis, yielding 1136 differentially expressed genes. Genes that highly correlate with both steviol glycosides and phenolic compound accumulation in the four genotypes of S. rebaudiana were identified using the weighted gene co-expression network analysis. The presence of UDP-glycosyltransferases 76G1, 76H1, 85C1, and 91A1, and several genes associated with the phenylpropanoid pathway, including peroxidase, caffeoyl-CoA O-methyltransferase, and malonyl-coenzyme A:anthocyanin 3-O-glucoside-6″-O-malonyltransferase, along with 21 transcription factors like SCL3, WRK11, and MYB111, implied an extensive and synergistic regulatory network involved in enhancing the production of such compounds in S. rebaudiana leaves. In conclusion, this work identified a variety of putative candidate genes involved in the biosynthesis and regulation of particular steviol glycosides and phenolic compounds that will be useful in gene editing strategies for increasing and steering the production of such compounds in S. rebaudiana as well as in other species.


Subject(s)
Diterpenes, Kaurane , Stevia , Stevia/genetics , Stevia/metabolism , Glycosides/metabolism , Glucosides/metabolism , Gene Expression Profiling , Plant Leaves/genetics , Plant Leaves/metabolism
17.
Molecules ; 29(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338349

ABSTRACT

Safflower (Carthamus tinctorius L.) has been recognized for its medicinal value, but there have been limited studies on the glycosyltransferases involved in the biosynthesis of flavonoid glycosides from safflower. In this research, we identified two highly efficient flavonoid O-glycosyltransferases, CtOGT1 and CtOGT2, from safflower performing local BLAST alignment. By constructing a prokaryotic expression vector, we conducted in vitro enzymatic reactions and discovered that these enzymes were capable of catalyzing two-step O-glycosylation using substrates such as kaempferol, quercetin, and eriodictyol. Moreover, they exhibited efficient catalytic activity towards various compounds, including flavones (apigenin, scutellarein), dihydrochalcone (phloretin), isoflavones (genistein, daidzein), flavanones (naringenin, glycyrrhizin), and flavanonols (dihydrokaempferol), leading to the formation of O-glycosides. The broad substrate specificity of these enzymes is noteworthy. This study provides valuable insights into the biosynthetic pathways of flavonoid glycosides in safflower. The discovery of CtOGT1 and CtOGT2 enhances our understanding of the enzymatic processes involved in synthesizing flavonoid glycosides in safflower, contributing to the overall comprehension of secondary metabolite biosynthesis in this plant species.


Subject(s)
Carthamus tinctorius , Flavones , Carthamus tinctorius/metabolism , Glycosyltransferases/metabolism , Flavonoids/metabolism , Glycosides/metabolism , Flavones/metabolism
18.
J Biomater Sci Polym Ed ; 35(5): 579-604, 2024 04.
Article in English | MEDLINE | ID: mdl-38217851

ABSTRACT

Biocompatible fatty acids are natural biological materials which exhibit widespread biomedical applications. Nevertheless, their application in vesicle forms is hampered by strong pH sensitivity and poor stability to changes in ionic strength, temperature, and storage. In the investigation, the incorporation of alkyl glycoside (APG), a surfactant with non-ionic properties, into the oleic acid (OA) vesicles was undertaken as a means to address this issue. The newly formed OA/APG composite vesicles form in a pH range of between 5.4 and 7.4, which is close to the pH range of the physiological environment. The stability studies results showed that the OA/APG composite vesicles have excellent stability in terms of ionic strengths, temperature and storage. The formation of NAR-loaded OA/APG composite vesicles was demonstrated through FT-IR, DSC and XRD. In vitro topical delivery and skin retention studies confirmed that the composite vesicles improve skin permeation rate and have better skin permeation behavior. Antioxidant activity experiments confirmed that the antioxidant effect composite vesicles were significantly increased as compared to the naringenin (NAR). This finding has theoretical implications for the use of drug-loaded fatty acid vesicles in cosmetics industries and topical delivery systems.


Subject(s)
Antioxidants , Oleic Acid , Antioxidants/chemistry , Oleic Acid/chemistry , Glycosides/metabolism , Glycosides/pharmacology , Spectroscopy, Fourier Transform Infrared , Skin , Permeability
19.
Biosci Biotechnol Biochem ; 88(3): 270-275, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38169014

ABSTRACT

Secondary metabolites are specialized metabolic products synthesized by plants, insects, and bacteria, some of which exhibit significant physiological activities against other organisms. Plants containing bioactive secondary metabolites have been used in traditional medicine for centuries. In developed countries, one-fourth of medicines directly contain plant-derived compounds or indirectly contain them via semi-synthesis. These compounds have contributed considerably to the development of not only medicine but also molecular biology. Moreover, the biosynthesis of these physiologically active secondary metabolites has attracted substantial interest and has been extensively studied. However, in many cases, the degradation mechanisms of these secondary metabolites remain unclear. In this review, some unique microbial degradation pathways for lignans and C-glycosides are explored.


Subject(s)
Bacteria , Fungi , Glycosides , Lignans , Lignans/metabolism , Glycosides/metabolism , Bacteria/metabolism , Metabolic Networks and Pathways , Fungi/metabolism
20.
J Ethnopharmacol ; 324: 117720, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38211823

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: During the regression of liver fibrosis, a decrease in hepatic stellate cells (HSCs) can occur through apoptosis or inactivation of activated HSCs (aHSCs). A new approach for antifibrotic therapy involves transforming hepatic myofibroblasts into a quiescent-like state. Lamiophlomis rotata (Benth.) Kudo (L. rotata), an orally available Tibetan herb, has traditionally been used to treat skin disease, jaundice, and rheumatism. In our previous study, we found that the total polyphenolic glycoside extract of L. rotata (TPLR) promotes apoptosis in aHSCs for the treatment of hepatic fibrosis. However, whether TPLR induces aHSCs to become inactivated HSCs (iHSCs) is unclear, and the underlying mechanism remains largely unknown. PURPOSE: This study aimed to examine the impact of TPLR on the phenotypes of hepatic stellate cells (HSCs) during the regression of liver fibrosis and explore the potential mechanism of action. METHODS: The effect of TPLR on the phenotypes of hepatic stellate cells (HSCs) was assessed using immunofluorescence (IF) staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Transcriptomic and proteomic methods were employed to identify the main signaling pathways involved. Based on the omics results, the likely mechanism of TPLR on the phenotypes of aHSCs was confirmed through overexpression and knockdown experiments in TGF-ß1-activated LX-2 cells. Using a CCl4-induced liver fibrosis mouse model, we evaluated the anti-hepatic fibrosis effect of TPLR and explored its potential mechanism based on omics findings. RESULTS: TPLR was found to induce the differentiation of aHSCs into iHSCs by significantly decreasing the protein expression of α-SMA and Desmin. Transcriptomic and proteomic analyses revealed that the AGE/RAGE signaling pathway plays a crucial role in the morphological transformation of HSCs following TPLR treatment. In vitro experiments using RAGE overexpression and knockdown demonstrated that the mechanism by which TPLR affects the phenotype of HSCs is closely associated with the RAGE/RAS/MAPK/NF-κB axis. In a model of liver fibrosis, TPLR obviously inhibited the generation of AGEs and alleviated liver tissue damage and fibrosis by downregulating RAGE and its downstream targets. CONCLUSION: The AGE/RAGE axis plays a pivotal role in the transformation of activated hepatic stellate cells (aHSCs) into inactivated hepatic stellate cells (iHSCs) following TPLR treatment, indicating the potential of TPLR as a therapeutic agent for the management of liver fibrosis.


Subject(s)
Glycosides , Proteomics , Mice , Animals , Glycosides/pharmacology , Glycosides/metabolism , Liver Cirrhosis/metabolism , Liver , Gene Expression Profiling , Hepatic Stellate Cells , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...