Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 75: 24-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24565948

ABSTRACT

Living gymnosperms comprise only a little more than 1000 species, but represent four of the five main lineages of seed plants, including cycads, ginkgos, gnetophytes and conifers. This group has huge ecological and economic value, and has drawn great interest from the scientific community. Here we review recent advances in our understanding of gymnosperm evolution and biogeography, including phylogenetic relationships at different taxonomic levels, patterns of species diversification, roles of vicariance and dispersal in development of intercontinental disjunctions, modes of molecular evolution in different genomes and lineages, and mechanisms underlying the formation of large nuclear genomes. It is particularly interesting that increasing evidence supports a sister relationship between Gnetales and Pinaceae (the Gnepine hypothesis) and the contribution of recent radiations to present species diversity, and that expansion of retrotransposons is responsible for the large and complex nuclear genome of gymnosperms. In addition, multiple coniferous genera such as Picea very likely originated in North America and migrated into the Old World, further indicating that the center of diversity is not necessarily the place of origin. The Bering Land Bridge acted as an important pathway for dispersal of gymnosperms in the Northern Hemisphere. Moreover, the genome sequences of conifers provide an unprecedented opportunity and an important platform for the evolutionary studies of gymnosperms, and will also shed new light on evolution of many important gene families and biological pathways in seed plants.


Subject(s)
Biological Evolution , Cycadopsida/classification , Genome, Plant , Phylogeny , Chromosome Mapping , Cycadopsida/genetics , Gnetophyta/classification , Gnetophyta/genetics , Phylogeography , Retroelements , Sequence Analysis, DNA
2.
BMC Evol Biol ; 13: 72, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23530702

ABSTRACT

BACKGROUND: The extant Gnetales include three monotypic families, namely, Ephedraceae (Ephedra), Gnetaceae (Gnetum), and Welwitschiaceae (Welwitschia), all of which possess compound female cones that comprise a main axis and 1 to multiple pairs/whorls of bracts subtending a female reproductive unit or having lower pairs/whorls of bracts sterile. However, the evolutionary origin of such a reproductive architecture in Gnetales is controversial in the light of the competing anthophyte versus gnetifer hypotheses of seed plant relationships. Hence, macrofossils demonstrating the structure of compound female cones of the Gnetales should be important to decipher the early evolution of the order. RESULTS: A new ephedroid plant Chengia laxispicata gen. et sp. nov. is described from the Early Cretaceous Yixian Formation of western Liaoning, Northeast China. The fossil represents a part of a leafy shooting system with reproductive organs attached. The main shoot bears internodes and swollen nodes, from which lateral branches arise oppositely. Reproductive organs consist of female spikes terminal to twigs or axillary to linear leaves. Spikes are loosely arranged, having prominent nodes and internodes. Bracts of the spikes are decussately opposite and comprise 4-8 pairs of bracts. Each bract subtends an ellipsoid seed. Seeds are sessile, with a thin outer envelope and a distal micropylar tube. CONCLUSIONS: Chengia laxispicata gen. et sp. nov. provides a missing link between archetypal fertile organs in the crown lineage of the Gnetales and compound female cones of the extant Ephedraceae. Combined with a wealth of Ephedra and ephedroid macrofossils from the Early Cretaceous, we propose a reduction and sterilization hypothesis that the female cone of the extant Ephedraceae may have stemmed from archetypal fertile organs in the crown lineage of the Gnetales. These have undergone sequentially intermediate links similar to female cones of Cretaceous Siphonospermum, Chengia, and Liaoxia by reduction and sterilization of the lower fertile bracts, shortenings of internodes and peduncles as well as loss of reproductive units in all inferior bracts. The basal family Ephedraceae including Ephedra of the extant Gnetales was demonstrated to have considerable diversity by the Early Cretaceous, so an emended familial diagnosis is given here. The Jehol Biota in Northeast China and adjacent areas contains a plethora of well-preserved macrofossils of Ephedra and ephedroids that show different evolutionary stages including primitive and derived characters of Ephedraceae, so Northeast China and adjacent areas may represent either the centre of origination or one of the centres for early diversification of the family.


Subject(s)
Biological Evolution , Fossils , Gnetophyta/classification , Gnetophyta/genetics , China , Gnetophyta/anatomy & histology , Gnetophyta/physiology , Phylogeography
3.
Genome Biol Evol ; 3: 1340-8, 2011.
Article in English | MEDLINE | ID: mdl-22016337

ABSTRACT

Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae-the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny.


Subject(s)
Genome, Chloroplast , Gnetophyta/classification , Phylogeny , Seeds/genetics , Tracheophyta/classification , DNA, Chloroplast/genetics , Gnetophyta/genetics , Models, Genetic , Tracheophyta/genetics
4.
BMC Evol Biol ; 10: 183, 2010 Jun 17.
Article in English | MEDLINE | ID: mdl-20565755

ABSTRACT

BACKGROUND: Knowledge on fossil and evolutionary history of the Gnetales has expanded rapidly; Ephedra and ephedroids as well as the Gnetum-Welwitschia clade are now well documented in the Early Cretaceous. However, hypotheses on evolutionary relationships among living and fossil species are hampered by restricted knowledge of morphological variation in living groups and recent studies indicate that gnetalean diversity and character evolution may be more complex than previously assumed and involve additional extinct groups (Bennettitales, Erdtmanithecales and unassigned fossil taxa). RESULTS: Here we describe a new fossil related to Gnetales, Siphonospermum simplex from the Early Cretaceous Yixian Formation, an impression/compression of a reproductive shoot. The slender main axis bears one pair of opposite and linear leaves with primary parallel venation. The reproductive units are ovoid, without supporting bracts and borne on one median and two lateral branches. The most conspicuous feature of the fossil is the long, thread-like micropylar tube formed by the integument. Each ovule is surrounded by two different layers representing one or two seed envelopes; an inner sclerenchymatous layer and an outer probably parenchymatous layer. CONCLUSIONS: The vegetative and reproductive features of Siphonospermum simplex exclude a relationship to any other group than the Gnetales. A combination of opposite phyllotaxis, linear leaves and ovules surrounded by seed envelope(s) and with a long exposed micropylar tube are known only for extant and extinct Gnetales. Siphonospermum simplex constitutes a new lineage within the Gnetales. Its morphology cannot be directly linked to any previously known plant, but the organization of the reproductive units indicates that it belongs to the Gnetum-Welwitschia clade. Based on the absence of cone bracts and the inferred histology of the seed envelope(s) it could be related to Gnetum, however, there are also affinities with the ephedran lineage, some of which are likely plesiomorphic features, others perhaps not. Phylogeny and character evolution in the Bennettitales, Erdtmanithecales and Gnetales are currently only partly understood and under debate; the exact systematic position of Siphonospermum simplex, i.e., its position within the Gnetales, cannot be resolved with certainty.


Subject(s)
Fossils , Gnetophyta/classification , Biological Evolution , China , Phylogeny
5.
Curr Genet ; 55(3): 323-37, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19449185

ABSTRACT

The exact phylogenetic position of Gnetales, a small, highly modified group of gymnosperms with an accelerated rate of molecular evolution, is one of the most challenging issues for seed plant systematics. Recent results from entire plastid genome (ptDNA) sequencing revealed the absence of the entire suite of plastid ndh genes in several species of Gnetales and the pine family (Pinaceae) potentially highlighting a major structural feature linking these two groups-concerted loss of all plastid genes for the NADH dehydrogenase complex. However, the precise extent of ndh gene loss in gymnosperms has not been surveyed. Using a slot-blot hybridization method, we probed all 11 ndh genes in 162 species from 70 of 85 gymnosperm genera. We find that all ndh genes are absent across Gnetales and Pinaceae, but not in any other group of gymnosperms. This feature represents either a major synapomorphy for a clade consisting of these two lineages or, less likely, a convergent loss. Our survey substantially extends previous inferences based on more limited sampling and, if the former evolutionary interpretation is correct, it provides additional support for the contentious "gnepine" hypothesis, which places Gnetales as sister to Pinaceae.


Subject(s)
Evolution, Molecular , Gnetophyta/genetics , NADPH Dehydrogenase/genetics , Phylogeny , Plant Proteins/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Genetic Variation , Gnetophyta/classification , Gnetophyta/enzymology , Mutation , Nucleic Acid Hybridization/methods , Plastids/enzymology , Plastids/genetics , Species Specificity
6.
Ann Bot ; 98(1): 123-40, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16675607

ABSTRACT

BACKGROUND AND AIMS: The extant species of the seed plant group Gnetales (Ephedra, Gnetum and Welwitschia) have been considered a remnant of a much greater, now extinct, diversity due to the pronounced differences in form and ecology among the genera. Until recently, this hypothesis has not been supported by evidence from the fossil record. This paper adds to the expanding information on Gnetales from the Early Cretaceous and describes coalified seeds from Barremian-Albian localities in Portugal and USA. METHODS: The fossils were extracted from sediment samples by sieving in water. Adhering mineral matrix was removed by chemical treatment. Seeds were investigated using light and scanning electron microscopy. Morphology and anatomy of the seeds were documented and compared with those of extant species. KEY RESULTS: The fossils share characters with extant Ephedra, for example papillae on the inner surface of the seed envelope and in situ polyplicate pollen grains that shed the exine during germination. They differ from extant Ephedra seeds in morphological and anatomical details as well as in their smaller size. Two new species of Ephedra are described together with one species assigned to a new genus of Gnetales. Other Ephedra-like seeds, for which pollen and critical morphological details are currently unknown, are also present in the samples. CONCLUSIONS: These Cretaceous seeds document that key reproductive characters and pollen germination processes have remained unchanged within Ephedra for about 120 million years or more. There is sufficient variety in details of morphology to suggest that a diversity of Ephedra and Ephedra-like species were present in the Early Cretaceous flora. Their presence in Portugal and eastern North America indicates that they were widespread on the Laurasian continent. The fossil seeds are similar to seeds of Erdtmanithecales and this supports the previously suggested relationship between Erdtmanithecales and Gnetales.


Subject(s)
Ephedra/ultrastructure , Fossils , Seeds/ultrastructure , Biological Evolution , Ephedra/classification , Ephedra/embryology , Gnetophyta/classification , Gnetophyta/embryology , Gnetophyta/ultrastructure , Microscopy, Electron, Scanning , Phylogeny , Pollen/anatomy & histology , Portugal , Seeds/anatomy & histology , Seeds/cytology , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...