Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.261
Filter
1.
Genome Biol ; 25(1): 148, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845023

ABSTRACT

BACKGROUND: Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS: We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS: Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.


Subject(s)
Goats , Animals , Goats/genetics , Sheep/genetics , Evolution, Molecular , Genomic Structural Variation , Quantitative Trait Loci , Genome , Genetic Variation , Domestication , Phenotype , Selection, Genetic , Bone Morphogenetic Protein Receptors, Type I/genetics
2.
BMC Genomics ; 25(1): 443, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704563

ABSTRACT

BACKGROUND: The transcriptome and metabolome dissection of the skeletal muscle of high- and low- growing individuals from a crossbred population of the indigenous Chongming white goat and the Boer goat were performed to discover the potential functional differentially expressed genes (DEGs) and differential expression metabolites (DEMs). RESULTS: A total of 2812 DEGs were detected in 6 groups at three time stages (3,6,12 Month) in skeletal muscle using the RNA-seq method. A DEGs set containing seven muscle function related genes (TNNT1, TNNC1, TNNI1, MYBPC2, MYL2, MHY7, and CSRP3) was discovered, and their expression tended to increase as goat muscle development progressed. Seven DEGs (TNNT1, FABP3, TPM3, DES, PPP1R27, RCAN1, LMOD2) in the skeletal muscle of goats in the fast-growing and slow-growing groups was verified their expression difference by reverse transcription-quantitative polymerase chain reaction. Further, through the Liquid chromatography-mass spectrometry (LC-MS) approach, a total of 183 DEMs in various groups of the muscle samples and these DEMs such as Queuine and Keto-PGF1α, which demonstrated different abundance between the goat fast-growing group and slow-growing group. Through weighted correlation network analysis (WGCNA), the study correlated the DEGs with the DEMs and identified 4 DEGs modules associated with 18 metabolites. CONCLUSION: This study benefits to dissection candidate genes and regulatory networks related to goat meat production performance, and the joint analysis of transcriptomic and metabolomic data provided insights into the study of goat muscle development.


Subject(s)
Goats , Meat , Muscle, Skeletal , Transcriptome , Animals , Goats/genetics , Goats/metabolism , Muscle, Skeletal/metabolism , Meat/analysis , Metabolomics , Gene Expression Profiling , Metabolome
3.
BMC Genom Data ; 25(1): 44, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714950

ABSTRACT

BACKGROUND: China has thousands years of goat breeding and abundant goat genetic resources. Additionally, the Hainan black goat is one of the high-quality local goat breeds in China. In order to conserve the germplasm resources of the Hainan black goat, facilitate its genetic improvement and further protect the genetic diversity of goats, it is urgent to develop a single nucleotide polymorphism (SNP) chip for Hainan black goat. RESULTS: In this study, we aimed to design a 10K liquid chip for Hainan black goat based on genotyping by pinpoint sequencing of liquid captured targets (cGPS). A total of 45,588 candidate SNP sites were obtained, 10,677 of which representative SNP sites were selected to design probes, which finally covered 9,993 intervals and formed a 10K cGPS liquid chip for Hainan black goat. To verify the 10K cGPS liquid chip, some southern Chinese goat breeds and a sheep breed with similar phenotype to the Hainan black goat were selected. A total of 104 samples were used to verify the clustering ability of the 10K cGPS liquid chip for Hainan black goat. The results showed that the detection rate of sites was 97.34% -99.93%. 84.5% of SNP sites were polymorphic. The heterozygosity rate was 3.08%-36.80%. The depth of more than 99.4% sites was above 10X. The repetition rate was 99.66%-99.82%. The average consistency between cGPS liquid chip results and resequencing results was 85.58%. In addition, the phylogenetic tree clustering analysis verified that the SNP sites on the chip had better clustering ability. CONCLUSION: These results indicate that we have successfully realized the development and verification of the 10K cGPS liquid chip for Hainan black goat, which provides a useful tool for the genome analysis of Hainan black goat. Moreover, the 10K cGPS liquid chip is conducive to the research and protection of Hainan black goat germplasm resources and lays a solid foundation for its subsequent breeding work.


Subject(s)
Goats , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Animals , Goats/genetics , Polymorphism, Single Nucleotide/genetics , Oligonucleotide Array Sequence Analysis/methods , China , Genotyping Techniques/methods , Genotype , Sequence Analysis, DNA/methods , Breeding/methods
4.
Sci Data ; 11(1): 488, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734729

ABSTRACT

Domesticated herbivores are an important agricultural resource that play a critical role in global food security, particularly as they can adapt to varied environments, including marginal lands. An understanding of the molecular basis of their biology would contribute to better management and sustainable production. Thus, we conducted transcriptome sequencing of 100 to 105 tissues from two females of each of seven species of herbivore (cattle, sheep, goats, sika deer, horses, donkeys, and rabbits) including two breeds of sheep. The quality of raw and trimmed reads was assessed in terms of base quality, GC content, duplication sequence rate, overrepresented k-mers, and quality score distribution with FastQC. The high-quality filtered RNA-seq raw reads were deposited in a public database which provides approximately 54 billion high-quality paired-end sequencing reads in total, with an average mapping rate of ~93.92%. Transcriptome databases represent valuable resources that can be used to study patterns of gene expression, and pathways that are related to key biological processes, including important economic traits in herbivores.


Subject(s)
Herbivory , Transcriptome , Animals , Cattle/genetics , Female , Rabbits/genetics , Databases, Genetic , Deer/genetics , Equidae/genetics , Goats/genetics , Horses/genetics , Sheep/genetics
5.
Anim Biotechnol ; 35(1): 2346223, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38739480

ABSTRACT

Adipocyte play an important role in human health and meat quality by influencing the tenderness, flavor, and juiciness of mutton It has been shown that neuron-derived neurotrophic factor (NENF) is closely related to energy metabolism and adipocyte differentiation in bovine. However, the role of NENF in the goats remains unclear. The aim of this study was to detect the expression of NENF in goat subcutaneous and intramuscular adipocytes, temporal expression profiles of the NENF, and overexpressed NENF on the differentiation of different adipocytes. In this study, PCR amplification successfully cloned the goat NENF gene with a fragment length of 521 bp. In addition, the time point of highest expression of NENF differed between these two adipocytes differentiation processes. Overexpression of NENF in intramuscular and subcutaneous adipocytes promoted the expression levels of differentiation markers CEBPß and SREBP, which in turn promoted the differentiation of intramuscular and subcutaneous adipocytes. This study will provide basic data for further study of the role of goats in goat adipocyte differentiation and for the final elucidation of its molecular mechanisms in regulating goat adipocyte deposition.


Subject(s)
Adipocytes , Cell Differentiation , Goats , Animals , Goats/genetics , Adipocytes/cytology , Adipocytes/metabolism , Cell Differentiation/physiology , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism
6.
BMC Genomics ; 25(1): 477, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745140

ABSTRACT

BACKGROUND: Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS: To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS: The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.


Subject(s)
Genomics , Goats , Linkage Disequilibrium , Milk , Tropical Climate , Animals , Goats/genetics , Milk/metabolism , Genomics/methods , Adaptation, Physiological/genetics , Selection, Genetic , Polymorphism, Single Nucleotide , Pakistan , Phenotype , Breeding
7.
J Agric Food Chem ; 72(20): 11640-11651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725129

ABSTRACT

Milk and dairy products represent important sources of nutrition in our daily lives. The identification of species within dairy products holds importance for monitoring food adulteration and ensuring traceability. This study presented a method that integrated double-tube and duplex real-time polymerase chain reaction (PCR) with multiplex TaqMan probes to enable the high-throughput detection of animal-derived ingredients in milk and dairy products. The detection system utilized one pair of universal primers, two pairs of specific primers, and eight animal-derived specific probes for cow, buffalo, goat, sheep, camel, yak, horse, and donkey. These components were optimized within a double-tube and four-probe PCR multiplex system. The developed double-tube detection system could simultaneously identify the above eight targets with a detection limit of 10-0.1 pg/µL. Validation using simulated adulterated milk samples demonstrated a detection limit of 0.1%. The primary advantage of this method lies in the simplification of the multiplex quantitative real-time PCR (qPCR) system through the use of universal primers. This method provides an efficient approach for detecting ingredients in dairy products, providing powerful technical support for market supervision.


Subject(s)
Dairy Products , Food Contamination , Goats , Milk , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Animals , Milk/chemistry , Real-Time Polymerase Chain Reaction/methods , Cattle/genetics , Food Contamination/analysis , Dairy Products/analysis , Multiplex Polymerase Chain Reaction/methods , Sheep/genetics , Goats/genetics , Horses/genetics , Buffaloes/genetics , Camelus/genetics , Equidae/genetics , DNA Primers/genetics
8.
Anim Biotechnol ; 35(1): 2356110, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38804592

ABSTRACT

The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/ß-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/ß-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/ß-catenin pathway in cashmere goats.


Subject(s)
Forkhead Box Protein M1 , Goats , Hair Follicle , MicroRNAs , Stem Cells , Wnt Signaling Pathway , Animals , Goats/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Wnt Signaling Pathway/genetics , Hair Follicle/metabolism , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Stem Cells/physiology , Stem Cells/metabolism , Gene Knockdown Techniques
9.
Animal ; 18(5): 101154, 2024 May.
Article in English | MEDLINE | ID: mdl-38703755

ABSTRACT

The Latvian local goat (LVK) breed represents the only native domestic goat breed in Latvia, but its limited population places it within the endangered category. However, the LVK breed has not yet undergone a comprehensive genetic characterization. Therefore, we completed whole genome sequencing to reveal the genetic foundation of the LVK breed while identifying genetic traits linked to the somatic cell count (SCC) levels. The study included 40 genomes of LVK goats sequenced to acquire at least 35x or 10x coverage. A Principal component analysis, a genetic distance tree, and an admixture analysis showed LVK's similarity to some European breeds, such as Finnish Landrace, Alpine, and Saanen, which aligns with the breed's history. An analysis of genome-wide heterozygosity, nucleotide diversity, and LD analysis indicated that the LVK population exhibits substantial levels of genetic diversity. LVK genome was dominated by short runs of homozygosity (ROHs, ≤ 500 kb) with a median length of 25 kb. With FROH 2.49%, average inbreeding levels were low; however, FROH ranged broadly from 0.13 to 12.2%. With the exception of one pure-blood breeding buck exhibiting FROH of 9.3% and FSNP of 8.5%, animals with at least 66% LVK ancestry showed moderate or no inbreeding. Overall, this study demonstrated that the LVK goats can be differentiated from imported breeds, although the population has a complex genetic structure. We were able to identify potential genetic traits associated with SCC levels, although the kinship of the animals and the heterogenic substructure of the population might have largely influenced the association analysis. We identified 26 genetic variants associated with SCC levels, which included the potentially relevant SNP rs662053371 in the OSBPL8 gene, indicating a potential signal linked to lipid metabolism in goats. To conclude, these findings present valuable insight into the genetic structure of the LVK breed for the conservation of local genetic resources.


Subject(s)
Genetic Variation , Goats , Animals , Goats/genetics , Latvia , Breeding , Cell Count/veterinary , Polymorphism, Single Nucleotide , Whole Genome Sequencing/veterinary , Female , Male , Genome
10.
Yi Chuan ; 46(5): 421-430, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763776

ABSTRACT

Inner Mongolia cashmere goat is an excellent livestock breed formed through long-term natural selection and artificial breeding, and is currently a world-class dual-purpose breed producing cashmere and meat. Multi trait animal model is considered to significantly improve the accuracy of genetic evaluation in livestock and poultry, enabling indirect selection between traits. In this study, the pedigree, genotype, environment, and phenotypic records of early growth traits of Inner Mongolia cashmere goats were used to build multi trait animal model., Then three methods including ABLUP, GBLUP, and ssGBLUP wereused to estimate the genetic parameters and genomic breeding values of early growth traits (birth weight, weaning weight, average daily weight gain before weaning, and yearling weight). The accuracy and reliability of genomic estimated breeding value are further evaluated using the five fold cross validation method. The results showed that the heritability of birth weight estimated by three methods was 0.13-0.15, the heritability of weaning weight was 0.13-0.20, heritability of daily weight gain before weaning was 0.11-0.14, and the heritability of yearling weight was 0.09-0.14, all of which belonged to moderate to low heritability. There is a strong positive genetic correlation between weaning weight and daily weight gain before weaning, daily weight gain before weaning and yearling weight, with correlation coefficients of 0.77-0.79 and 0.56-0.67, respectively. The same pattern was found in phenotype correlation among traits. The accuracy of the estimated breeding values by ABLUP, GBLUP, and ssGBLUP methods for birth weight is 0.5047, 0.6694, and 0.7156, respectively; the weaning weight is 0.6207, 0.6456, and 0.7254, respectively; the daily weight gain before weaning was 0.6110, 0.6855, and 0.7357 respectively; and the yearling weight was 0.6209, 0.7155, and 0.7756, respectively. In summary, the early growth traits of Inner Mongolia cashmere goats belong to moderate to low heritability, and the speed of genetic improvement is relatively slow. The genetic improvement of other growth traits can be achieved through the selection of weaning weight. The ssGBLUP method has the highest accuracy and reliability in estimating genomic breeding value of early growth traits in Inner Mongolia cashmere goats, and is significantly higher than that from ABLUP method, indicating that it is the best method for genomic breeding of early growth weight in Inner Mongolia cashmere goats.


Subject(s)
Breeding , Goats , Animals , Goats/genetics , Goats/growth & development , Phenotype , Genomics/methods , Female , Male , Birth Weight/genetics , Models, Genetic
11.
Trop Anim Health Prod ; 56(5): 170, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769239

ABSTRACT

There are no studies regarding the estimation of genetic parameters and genetic trends for reproductive traits and somatic cells in goats. Their knowledge allows optimization of selection schemes. The objective of this study was to estimate genetic parameters and genetic and phenotypic trends for age at first kidding (AFK), kidding interval (KIN) and somatic cell score (SCS). Analyses were conducted within and across seven US goat breeds, namely, Nubian (NU), Alpine (AL), LaMancha (LM), Toggenburg (TO), Saanen (SA), Nigerian Dwarf (ND) and Oberhasli (OB), and a set of all of these breeds (AB). The restricted maximum likelihood methodology and trivariate animal models were used. Genetic and phenotypic trends were estimated using regression models. The average and standard deviation of AFK, KIN and SCS for AB were 573.6 ± 178.5 days, 418.8 ± 125.5 days and 4.67 ± 2.23 Log2, respectively. The heritabilities (h2) and standard errors of AFK, KIN and SCS for AB were 0.28 ± 0.02, 0.04 ± 0.02 and 0.22 ± 0.01, respectively. The h2 ranged from 0.15 (SA) to 0.37 (NU) for AFK, from 0.04 (AB) to 0.10 (AL) for KIN, and from 0.11 (TO) to 0.26 (LM and ND) for SCS. Genetic correlations between AFK and KIN and between AFK and SCS for AB were positive and weak (0.07 and 0.12, respectively) but significant (P < 0.01). Genetic correlations between SCS and KIN were significant (P < 0.01) for all the breeds and ranged from -0.15 (NU) to 0.44 (AL). Genetic correlations between AFK and SCS in the NU and AL breeds were similar (approximately 0.21). A positive genetic trend was found for KIN in the SA breed, which caused an increase in the number of days between consecutive kiddings. The genetic trend of SCS for the NU, AL and ND breeds was negative and decreased annually, which is beneficial for producers. These first results show the intensity and direction of some favorable/unfavorable relationships between AFK or KIN and SCS Log2 in some U.S. goat genetic groups.


Subject(s)
Goats , Reproduction , Animals , Goats/genetics , Female , Breeding , Phenotype , United States , Male , Dairying
12.
BMC Genomics ; 25(1): 349, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589806

ABSTRACT

The fleece traits are important economic traits of goats. With the reduction of sequencing and genotyping cost and the improvement of related technologies, genomic selection for goats has become possible. The research collect pedigree, phenotype and genotype information of 2299 Inner Mongolia Cashmere goats (IMCGs) individuals. We estimate fixed effects, and compare the estimates of variance components, heritability and genomic predictive ability of fleece traits in IMCGs when using the pedigree based Best Linear Unbiased Prediction (ABLUP), Genomic BLUP (GBLUP) or single-step GBLUP (ssGBLUP). The fleece traits considered are cashmere production (CP), cashmere diameter (CD), cashmere length (CL) and fiber length (FL). It was found that year of production, sex, herd and individual ages had highly significant effects on the four fleece traits (P < 0.01). All of these factors should be considered when the genetic parameters of fleece traits in IMCGs are evaluated. The heritabilities of FL, CL, CP and CD with ABLUP, GBLUP and ssGBLUP methods were 0.26 ~ 0.31, 0.05 ~ 0.08, 0.15 ~ 0.20 and 0.22 ~ 0.28, respectively. Therefore, it can be inferred that the genetic progress of CL is relatively slow. The predictive ability of fleece traits in IMCGs with GBLUP (56.18% to 69.06%) and ssGBLUP methods (66.82% to 73.70%) was significantly higher than that of ABLUP (36.73% to 41.25%). For the ssGBLUP method is significantly (29% ~ 33%) higher than that with ABLUP, and which is slightly (4% ~ 14%) higher than that of GBLUP. The ssGBLUP will be as an superiors method for using genomic selection of fleece traits in Inner Mongolia Cashmere goats.


Subject(s)
Genome , Goats , Humans , Animals , Goats/genetics , Genomics/methods , Phenotype , Genotype , Models, Genetic
13.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Article in English | MEDLINE | ID: mdl-38583827

ABSTRACT

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Subject(s)
Epithelial Cells , Goats , Lipid Metabolism , Mammary Glands, Animal , MicroRNAs , Phosphotransferases (Alcohol Group Acceptor) , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Goats/genetics , Lipid Metabolism/genetics , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Female , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/deficiency , Up-Regulation/genetics , Lipid Droplets/metabolism , Gene Expression Regulation , Triglycerides/metabolism
14.
Trop Anim Health Prod ; 56(4): 137, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649642

ABSTRACT

This study aimed to explore polymorphisms in the promoter region of the caprine BMPR1B (Bone morphogenetic protein receptor 1 beta) gene and its association with body measurement and litter size traits in Damani does. A total of 53 blood samples were collected to analyze the association between the BMPR1B gene polymorphism and 11 phenotypic traits in Damani female goats. The results revealed that three novel SNPs were identified in the promoter region of the caprine BMPR1B gene, including g.67 A > C (SNP1), g.170 G > A(SNP2), and g.501A > T (SNP3), among which the SNP1 and SNP2 were significantly (p < 0.05) associated with litter size and body measurement traits in Damani goats. In SNP1 the AC genotype could be used as a marker for litter size, and the CC genotype for body weight in Damani goats. In SNP2, the genotype GG was significantly (p < 0.05) associated with ear and head length. Therefore, we can conclude from the present study, that genetic variants AC and CC of the caprine BMPR1B gene could be used as genetic markers for economic traits through marker-assisted selection for the breed improvement program of the Damani goat.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Goats , Litter Size , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Animals , Goats/genetics , Goats/physiology , Litter Size/genetics , Female , Bone Morphogenetic Protein Receptors, Type I/genetics , Genotype , Iran
15.
Front Endocrinol (Lausanne) ; 15: 1361100, 2024.
Article in English | MEDLINE | ID: mdl-38628581

ABSTRACT

Introduction: Melatonin can treat androgenetic alopecia in males. Goats can be used as animal models to study melatonin treatment for human alopecia. In this study, a meta-analysis of melatonin's effects on goat hair follicles was pursued. Methods: Literature from the last 20 years was searched in Scopus, Science Direct, Web of Science and PubMed. Melatonin's effect on goat hair follicles and litter size were performed through a traditional meta-analysis and trial sequential analysis. A network meta-analysis used data from oocyte development to blastocyst. The hair follicle genes regulated by melatonin performed KEGG and PPI. We hypothesized that there are differences in melatonin receptors between different goats, and therefore completed melatonin receptor 1A homology modelling and molecular docking. Results: The results showed that melatonin did not affect goat primary follicle or litter size. However, there was a positive correlation with secondary follicle growth. The goat melatonin receptor 1A SNPs influence melatonin's functioning. The wild type gene defect MR1 is a very valuable animal model. Discussion: Future studies should focus on the relationship between goat SNPs and the effect of embedded melatonin. This study will provide theoretical guidance for the cashmere industry and will be informative for human alopecia research.


Subject(s)
Hair Follicle , Melatonin , Animals , Alopecia , Goats/genetics , Melatonin/pharmacology , Models, Animal , Molecular Docking Simulation , Receptors, Melatonin/genetics
16.
Sci Rep ; 14(1): 9858, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684760

ABSTRACT

The progression of muscle development is a pivotal aspect of animal ontogenesis, where miRNA and mRNA exert substantial influence as prominent players. It is important to understand the molecular mechanisms involved in skeletal muscle development to enhance the quality and yield of meat produced by Leizhou goats. We employed RNA sequencing (RNA-SEQ) technology to generate miRNA-mRNA profiles in Leizhou goats, capturing their developmental progression at 0, 3, and 6 months of age. A total of 977 mRNAs and 174 miRNAs were found to be differentially expressed based on our analysis. Metabolic pathways, calcium signaling pathways, and amino acid synthesis and metabolism were found to be significantly enriched among the differentially expressed mRNA in the enrichment analysis. Meanwhile, we found that among these differentially expressed mRNA, some may be related to muscle development, such as MYL10, RYR3, and CSRP3. Additionally,, we identified five muscle-specific miRNAs (miR-127-3p, miR-133a-3p, miR-193b-3p, miR-365-3p, and miR-381) that consistently exhibited high expression levels across all three stages. These miRNAs work with their target genes (FHL3, SESN1, PACSIN3, LMCD1) to regulate muscle development. Taken together, our findings suggest that several miRNAs and mRNAs are involved in regulating muscle development and cell growth in goats. By uncovering the molecular mechanisms involved in muscle growth and development, these findings contribute valuable knowledge that can inform breeding strategies aimed at enhancing meat yield and quality in Leizhou goats.


Subject(s)
Gene Expression Profiling , Goats , MicroRNAs , Muscle, Skeletal , RNA, Messenger , Animals , Goats/genetics , Goats/growth & development , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Muscle Development/genetics , Gene Expression Regulation, Developmental , Transcriptome
17.
Genomics ; 116(3): 110844, 2024 May.
Article in English | MEDLINE | ID: mdl-38608737

ABSTRACT

The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.


Subject(s)
Cell Proliferation , Goats , Hair Follicle , Melatonin , Wnt Proteins , Animals , Hair Follicle/metabolism , Hair Follicle/cytology , Hair Follicle/growth & development , Goats/genetics , Goats/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Cells, Cultured
18.
J Proteomics ; 301: 105183, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688390

ABSTRACT

Puberty is considered a prerequisite for affecting reproductive performance and productivity. Little was known about molecular changes in pubertal goat ovaries. Therefore, we measured and performed a correlation analysis of the mRNA and proteins changes in the pre-pubertal and pubertal goat ovaries. The results showed that only six differentially expressed genes and differentially abundant proteins out of 18,139 genes and 7550 proteins quantified had significant correlations. CNTN2 and THBS1, discovered in the mRNA-mRNA interaction network, probably participated in pubertal and reproductive regulation by influencing GnRH receptor signals, follicular development, and ovulation. The predicted core transcription factors may either promote or inhibit the expression of reproductive genes and act synergistically to maintain normal reproductive function in animals. The interaction between PKM and TIMP3 with other proteins may impact animal puberty through energy metabolism and ovarian hormone secretion. Pathway enrichment analyses revealed that the co-associated key pathways between ovarian genes and proteins at puberty included calcium signalling pathway and olfactory transduction. These pathways were associated with gonadotropin-releasing hormone synthesis and secretion, signal transmission, and cell proliferation. In summary, these results enriched the potential molecules and signalling pathways that affect puberty and provided new insights for regulating and promoting the onset of puberty. SIGNIFICANCE: This study conducted the first transcriptomic and proteomic correlation analysis of pre-pubertal and pubertal goat ovaries and identified six significantly correlated molecules at both the gene and protein levels. Meanwhile, we were drawn to several molecules and signalling pathways that may play a regulatory role in the onset of puberty and reproduction by influencing reproductive-related gene expression, GnRH receptor signals, energy metabolism, ovarian hormone secretion, follicular development, and ovulation. This information contributed to identify potential biomarkers in pubertal goat ovaries, which was vital for predicting the onset of puberty and improving livestock performance.


Subject(s)
Goats , Ovary , Proteomics , Sexual Maturation , Animals , Female , Goats/genetics , Sexual Maturation/physiology , Ovary/metabolism , Proteomics/methods , Gene Expression Profiling , Transcriptome
19.
Mamm Genome ; 35(2): 160-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38589518

ABSTRACT

Ladakh, one of the highest inhabited regions globally, hosts the unique Changthangi goat, renowned for producing Pashmina, the world's most luxurious natural fiber. In comparison, the fiber derived from Changthangi sheep is considered next only to Pashmina. This research endeavors to compare the skin transcriptome profiles of Changthangi goats and Changthangi sheep, aiming to discern the molecular determinants behind the recognition of Changthangi goats as the source of Pashmina. Drawing upon previously conducted studies, a collective of 225 genes correlated with fiber characteristics were extracted from the differentially expressed genes noticed between the two species (p-value of ≤ 0.05 and a log2 fold change of ≥ 1.5). These genes were analyzed using DAVID software to understand their biological functions and to identify enriched KEGG and Reactome pathways. The protein-protein interaction networks were constructed using Cytoscape, cytoHubba, and STRING to focus on key genes and infer their biological significance. Comparative transcriptome analysis revealed significantly higher expression of genes involved in signaling pathways like Wnt, MAPK, PI3K-Akt, Hedgehog, associated with fiber development and quality in Changthangi goats. These pathways play crucial roles in hair follicle (HF) formation, maintenance of epidermal stem cells, and fiber characteristics. Findings also highlight the enrichment of cell adhesion molecules and ECM-receptor interaction, emphasizing their roles in HF structure, growth, and signaling. This investigation offers an in-depth understanding of the molecular intricacies governing Pashmina production in Changthangi goats, providing valuable insights into their unique genetic makeup and underlying mechanisms influencing the exceptional quality of Pashmina fibers.


Subject(s)
Gene Expression Profiling , Goats , Skin , Transcriptome , Animals , Goats/genetics , Goats/metabolism , Skin/metabolism , Sheep/genetics , Sheep/metabolism , Protein Interaction Maps/genetics , Signal Transduction/genetics , Wool/metabolism , Wool Fiber
20.
Domest Anim Endocrinol ; 88: 106850, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640803

ABSTRACT

Kisspeptins are neuropeptides encoded by the Kiss1 gene that was discovered as a metastasis suppressor gene in melanoma and breast cancer. Kisspeptin has pivotal functions for gonadotropin-releasing hormone secretion and plays integrated roles in the hypothalamic-pituitary-gonadal axis. However, little is known about the peripheral expression of kisspeptin in ruminants, especially in the female reproductive tract. Here, the objectives of the current study were to investigate the spatial localization of kisspeptin and mRNA expression of Kiss1 and its receptor (Kiss1r) in the fallopian tubes (FT) and uterus of goats at varied reproductive activity (cyclic versus true anoestrous goats, n=6, each). Specimens of the uterus and FT were collected and fixed using paraformaldehyde to investigate the localizations of kisspeptin in the selected tissues by immunohistochemistry. Another set of samples was snape-frozen to identify the expressions of mRNAs encoding Kiss1 and Kiss1r using real-time PCR. Results revealed immunolocalizations of kisspeptin in the uterus and the FT. The staining of kisspeptin was found mainly in the mucosal epithelium of the uterus the FT, and the endometrial glands. Very intense staining of kisspeptin was found in the uterine and FT specimens in the true anoestrous goats compared to that in cyclic ones. The expression of mRNA encoding Kiss1 gene was significantly higher in the uterine specimen of cyclic goats (1.00±0.09) compared to that in the true anoestrous goats (0.62±0.08) (P ˂0.05), while the expression of mRNA encoding Kiss1r was significantly (P ˂0.001) higher in the uterine tissues of true anoestrous goats (1.78±0.17) compared to that in cyclic ones (1.00±0.11). In conclusion, immunohistochemical localization of kisspeptin and the expression of mRNA encoding Kiss1/Kiss1r revealed spatial changes in the uterus and FT of goats according to the reproductive potential of goats (cyclic versus true anoestrous goats). However, the definitive local role of kisspeptin in the uterus and FT need further investigation.


Subject(s)
Fallopian Tubes , Goats , Kisspeptins , Uterus , Animals , Female , Goats/physiology , Goats/genetics , Goats/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Uterus/metabolism , Fallopian Tubes/metabolism , Fallopian Tubes/chemistry , RNA, Messenger/metabolism , RNA, Messenger/genetics , Reproduction/physiology , Gene Expression Regulation/physiology , Receptors, Kisspeptin-1/genetics , Receptors, Kisspeptin-1/metabolism , Anestrus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...