Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 925
Filter
1.
PLoS One ; 19(6): e0301611, 2024.
Article in English | MEDLINE | ID: mdl-38843180

ABSTRACT

Coxiella burnetii is the worldwide zoonotic infectious agent for Q fever in humans and animals. Farm animals are the main reservoirs of C. burnetii infection, which is mainly transmitted via tick bites. In humans, oral, percutaneous, and respiratory routes are the primary sources of infection transmission. The clinical signs vary from flu-like symptoms to endocarditis for humans' acute and chronic Q fever. While it is usually asymptomatic in livestock, abortion, stillbirth, infertility, mastitis, and endometritis are its clinical consequences. Infected farm animals shed C. burnetii in birth products, milk, feces, vaginal mucus, and urine. Milk is an important source of infection among foods of animal origin. This study aimed to determine the prevalence and molecular characterization of C. burnetii in milk samples of dairy animals from two districts in Punjab, Pakistan, as it has not been reported there so far. Using a convenience sampling approach, the current study included 304 individual milk samples from different herds of cattle, buffalo, goats, and sheep present on 39 farms in 11 villages in the districts of Kasur and Lahore. PCR targeting the IS1111 gene sequence was used for its detection. Coxiella burnetii DNA was present in 19 of the 304 (6.3%) samples. The distribution was 7.2% and 5.2% in districts Kasur and Lahore, respectively. The results showed the distribution in ruminants as 3.4% in buffalo, 5.6% in cattle, 6.7% in goats, and 10.6% in sheep. From the univariable analysis, the clinical signs of infection i.e. mastitis and abortion were analyzed for the prevalence of Coxiella burnetii. The obtained sequences were identical to the previously reported sequence of a local strain in district Lahore, Sahiwal and Attock. These findings demonstrated that the prevalence of C. burnetii in raw milk samples deserves more attention from the health care system and veterinary organizations in Kasur and Lahore of Punjab, Pakistan. Future studies should include different districts and human populations, especially professionals working with animals, to estimate the prevalence of C. burnetii.


Subject(s)
Buffaloes , Coxiella burnetii , Goats , Milk , Q Fever , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Animals , Pakistan/epidemiology , Milk/microbiology , Q Fever/epidemiology , Q Fever/microbiology , Q Fever/veterinary , Cattle , Buffaloes/microbiology , Goats/microbiology , Sheep/microbiology , Animals, Domestic/microbiology , Female , DNA, Bacterial/genetics , Prevalence , Farms , Humans
2.
Appl Microbiol Biotechnol ; 108(1): 356, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822843

ABSTRACT

The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while ß-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest ß-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Gastrointestinal Tract , Goats , RNA, Ribosomal, 16S , Animals , Goats/microbiology , Gastrointestinal Tract/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Phylogeny , DNA, Bacterial/genetics , Biodiversity , Female
3.
Sci Rep ; 14(1): 12621, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824201

ABSTRACT

Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.


Subject(s)
Anaplasma , Anaplasmosis , Animals, Domestic , Ehrlichia , Genetic Variation , Goats , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , China/epidemiology , Ehrlichia/genetics , Ehrlichia/isolation & purification , Goats/microbiology , Dogs , Cattle , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Prevalence , Animals, Domestic/microbiology , RNA, Ribosomal, 16S/genetics , Ticks/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Phylogeny
4.
Microbiome ; 12(1): 104, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845047

ABSTRACT

BACKGROUND: Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS: A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS: By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Goats , Mucins , Polysaccharides , Animals , Goats/microbiology , Sheep/microbiology , Mucins/metabolism , Polysaccharides/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Feces/microbiology , Metagenome , Genome, Bacterial , Metagenomics/methods , Phylogeny , High-Throughput Nucleotide Sequencing
5.
Microb Pathog ; 191: 106678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718954

ABSTRACT

A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to ß-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.


Subject(s)
Anti-Bacterial Agents , Genome, Bacterial , Goats , Lung , Microbial Sensitivity Tests , RNA, Ribosomal, 16S , Virulence Factors , Animals , Goats/microbiology , RNA, Ribosomal, 16S/genetics , Mice , Anti-Bacterial Agents/pharmacology , Lung/microbiology , Lung/pathology , Virulence Factors/genetics , Goat Diseases/microbiology , Whole Genome Sequencing , Phylogeny , Virulence , Drug Resistance, Bacterial , DNA, Bacterial/genetics
6.
Acta Trop ; 255: 107235, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688445

ABSTRACT

Coxiellosis in animals is caused by the zoonotic pathogen, Coxiella burnetii. Although the disease is of public health importance it remains underdiagnosed and underreported. The cross- sectional study was aimed to estimate the occurrence of the disease in livestock of study area and also to identify the risk factors associated with the disease in animals. Blood, serum, and vaginal swabs samples were collected from 200 ruminants (cattle, sheep, and goats), across various farms in Karnataka, India. These samples were then screened using ELISA and PCR (com1 and IS1111). A questionnaire was administered to the farm owners to collect the risk factor-related information. About 5.26 % cattle, 12.3 % sheep, and 12.5 % goats were positive by ELISA. By PCR, 9.47 % cattle, 9.3 % sheep, and 10 % goats were positive. Overall, the occurrence of 14.73 %, 18.46 % and 17.5 % was estimated in cattle, sheep and goat, respectively. PCR targeting the IS1111 gene detected higher number of samples as positive as compared to the com1 gene PCR. Higher number of vaginal swab samples were detected as positive as compared to blood. History of reproductive disorders (OR: 4.30; 95 %CI:1.95- 9.46), abortion (OR: 30.94; 95 %CI:6.30- 151.84) and repeat breeding (OR:11.36; 95 %CI:4.16- 30.99) were significantly associated with coxiellosis (p < 0.005). Multivariable analysis by logistic regression model analysis suggested retained abortion, repeat breeding and rearing of animal in semi-intensive system as factors significantly associated with the infection. Cultural identification of the PCR positive samples were cultured using embryonated egg propagation and cell culture techniques and positivity was confirmed in six samples. Phylogenetic analysis of the com1 and IS1111 gene revealed clustering based on similar geographic locations. The study estimated the occurrence of the disease in the study area and identified the potential risk factors.


Subject(s)
Cattle Diseases , Coxiella burnetii , Goat Diseases , Goats , Polymerase Chain Reaction , Q Fever , Sheep Diseases , Animals , Q Fever/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Risk Factors , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Goats/microbiology , Sheep/microbiology , Cattle , Female , India/epidemiology , Cross-Sectional Studies , Goat Diseases/microbiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Enzyme-Linked Immunosorbent Assay , Ruminants/microbiology , Surveys and Questionnaires , Vagina/microbiology
7.
ScientificWorldJournal ; 2024: 5605552, 2024.
Article in English | MEDLINE | ID: mdl-38655561

ABSTRACT

Background: Pasteurella species are frequently encountered as serious diseases in small ruminants. It is the main cause of respiratory pasteurellosis in sheep and goats of all age groups. Methods: The cross-sectional study was conducted from December 2022 to April 2023 in Haramaya district, eastern Ethiopia, to isolate and identify Pasteurella multocida and Mannheimia haemolytica and estimate their prevalence, associated risk factors, and antimicrobial sensitivity of isolates in small ruminants using a purposive sampling method. A total of 384 samples (156 nasal swabs from clinic cases and 228 lung swabs from abattoir cases) were collected. STATA 14 software was used to analyze the data. In addition, multivariable logistic regression analysis was performed to assess an association of risk factors. Results: Out of the 384 samples examined, 164 were positive for pasteurellosis, resulting in a 42.70% prevalence. Similarly, 63 (38.4%) of the 164 positive results were from nasal swabs, while 101 (61.6%) came from lung samples. M. haemolytica accounted for 126 (76.82%) of the isolates, while P. multocida accounted for 38 (23.17%). Of the 63 nasal swab isolates, 33 (37%) were from goats and 30 (42.8%) were from sheep. And 17 (10.89%) and 46 (29.58%), respectively, were P. multocida and M. haemolytica. Of the 46 (40%) of the 101 (44.3%) isolates of the pneumonic lung, samples were from goats, while 55 (48.47%) were from sheep. In this study, the risk factors (species, age, and body condition score) were found to be significant (p < 0.05). Pasteurella isolates evaluated for antibiotic susceptibility were highly resistant to oxacillin (90.90%), followed by gentamycin (72.72%), and penicillin (63.63%). However, the isolates were highly sensitive to chloramphenicol (90.90%), followed by tetracycline (63.63%), and ampicillin (54.54%). Conclusion: This study showed that M. haemolytica and P. multocida are the common causes of mannheimiosis and pasteurellosis in small ruminants, respectively, and isolates were resistant to commonly used antibiotics in the study area. Thus, an integrated vaccination strategy, antimicrobial resistance monitoring, and avoidance of stress-inducing factors are recommended.


Subject(s)
Anti-Bacterial Agents , Goats , Mannheimia haemolytica , Microbial Sensitivity Tests , Pasteurella multocida , Sheep Diseases , Animals , Pasteurella multocida/drug effects , Pasteurella multocida/isolation & purification , Mannheimia haemolytica/drug effects , Mannheimia haemolytica/isolation & purification , Ethiopia/epidemiology , Sheep/microbiology , Goats/microbiology , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Goat Diseases/microbiology , Goat Diseases/epidemiology , Prevalence , Risk Factors , Pasteurella Infections/microbiology , Pasteurella Infections/veterinary , Pasteurella Infections/epidemiology
8.
Braz J Microbiol ; 55(2): 1931-1939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573541

ABSTRACT

Q fever is a zoonotic disease caused by the obligate intracellular pathogen Coxiella burnetii, for which domestic ruminants are the primary source of infection in humans. Herein, we investigated the presence of C. burnetii in humans, sheep, and goats in the semi-arid region of northeastern Brazil. The presence of anti-C. burnetii antibodies was surveyed using indirect immunofluorescence assay, and detection of C. burnetii DNA was performed by polymerase chain reaction (PCR). Anti-C. burnetii antibodies were detected in 60% of farms, 4.8% of goats, 1.5% of sheep, and 4.5% of human samples. PCR was positive in 18.9% of blood samples, 7.7% of milk samples, and 7.7% of vaginal mucus samples. A DNA sequence of a C. burnetii DNA sample extracted from the goat vaginal mucus showed 99.2-99.4% nucleotide identity with other strains previously reported in Brazil. These results indicate that C. burnetii is present in the surveyed area, where it poses a risk to both public and animal health. These findings indicate an urgent need for educative actions to protect population, as well as better training of veterinarians to detect and report Q fever.


Subject(s)
Antibodies, Bacterial , Coxiella burnetii , Goat Diseases , Goats , Q Fever , Sheep Diseases , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/immunology , Brazil/epidemiology , Animals , Q Fever/veterinary , Q Fever/microbiology , Q Fever/epidemiology , Goats/microbiology , Humans , Sheep , Goat Diseases/microbiology , Goat Diseases/epidemiology , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Antibodies, Bacterial/blood , Female , Zoonoses/microbiology , DNA, Bacterial/genetics
9.
Acta Trop ; 254: 107163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428630

ABSTRACT

Coxiella burnetii is the causative agent of zoonotic Q fever. Animals are the natural reservoirs of C. burnetii, and domestic livestock represent the major sources of human infection. C. burnetii infection in pregnant females may causes abortion during late pregnancy, whereby massive shedding of C. burnetii with abortion products becomes aerosolized and persists in the environment. Therefore, monitoring and surveillance of this infection in livestock is important for the prevention of the C. burnetii transmission. Previous serological surveys have shown that C. burnetii infection is endemic in livestock in China. However, few data are available on the diagnosis of C. burnetii as a cause of abortion by molecular methods in livestock. To get a better understanding of the impact of C. burnetii infection on domestic livestock in China, a real-time PCR investigation was carried out on collected samples from different domestic livestock suffering abortion during 2021-2023. A total of 338 samples collected from eight herds of five livestock species were elected. The results showed that 223 (66 %) of the collected samples were positive for C. burnetii DNA using real-time PCR. For the aborted samples, 82 % (128/15) of sheep, 81 % (34/42) of goats, 44 % (15/34) of cattle, 69 % (18/26) of camels, and 50 % (17/34) of donkeys were positive for C. burnetii. Besides, 44 % (8/18) and 4 % (1/25) of asymptomatic individuals of sheep and donkey were also positive for C. burnetii. In addition, the positive samples were further confirmed by amplification and sequencing of the C. burnetii-specific isocitrate dehydrogenase (icd) gene. Phylogenetic analysis based on specific gene fragments of icd genes revealed that the obtained sequences in this study were clustered into two different groups associated with different origin of hosts and geographic regions. This is the first report confirming that C. burnetii exists in aborted samples of sheep, goats, cattle, donkeys and camels in China. Further studies are needed to fully elucidate the epidemiology of this pathogen in livestock as well as the potential risks to public health.


Subject(s)
Coxiella burnetii , Goats , Livestock , Q Fever , Real-Time Polymerase Chain Reaction , Animals , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/classification , China/epidemiology , Q Fever/veterinary , Q Fever/microbiology , Q Fever/epidemiology , Livestock/microbiology , Sheep , Female , Goats/microbiology , Abortion, Veterinary/microbiology , Cattle , Pregnancy , DNA, Bacterial/genetics , Sheep Diseases/microbiology , Sheep Diseases/epidemiology
10.
Braz J Microbiol ; 55(1): 911-917, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37999910

ABSTRACT

Brucellosis, caused by Brucella bacteria, is a common zoonotic infectious disease with various clinical manifestations in humans and animals. The disease is endemic in human and ruminant populations in Iran, with a particular prevalence in areas where humans have close interactions with livestock. Since domestic animals serve as the primary reservoir for brucellosis, this study aimed to identify the presence of Brucella spp. among aborted small ruminants in southeast Iran. Between 2021 and 2022, aborted fetuses of small ruminants (46 sheep and 4 goats) were collected from Zarand County in the Kerman province. Swab samples from the abomasum contents of these fetuses were obtained and subjected to DNA extraction. The samples were then tested for Brucella spp. detection using the polymerase chain reaction (PCR) method. Out of the 50 aborted fetuses examined, Brucella spp. was detected in 15 (30%) specimens, comprising 13 (28%) sheep and 2 (50%) goats. Species typing revealed the presence of Brucella ovis (6 sheep and 1 goat), Brucella melitensis (6 sheep), and Brucella abortus (1 sheep) among the positive specimens. This cross-sectional study highlights the high prevalence of various Brucella species in samples from small ruminant abortions in southeast Iran. Additionally, the identified Brucella species were not limited to their primary host livestock. These indicated potential cross-species transmission among small ruminants.


Subject(s)
Brucella melitensis , Brucellosis , Goat Diseases , Sheep Diseases , Humans , Pregnancy , Female , Animals , Sheep , Iran/epidemiology , Cross-Sectional Studies , Ruminants , Brucellosis/epidemiology , Brucellosis/veterinary , Brucellosis/diagnosis , Brucella melitensis/genetics , Goats/microbiology , Livestock , Sheep Diseases/microbiology , Goat Diseases/epidemiology , Goat Diseases/microbiology
11.
Ticks Tick Borne Dis ; 15(1): 102254, 2024 01.
Article in English | MEDLINE | ID: mdl-37989016

ABSTRACT

Anaplasmosis, caused by bacteria of the genus Anaplasma, is an important tick-borne disease that causes economic losses to livestock farms in many countries. Even though Anaplasma spp. have been detected in goats and sheep worldwide, few studies investigate the occurrence and genetic identity of these agents in small ruminants from Brazil. Thus, this work aimed to detect and determine the genetic identity of Anaplasma spp. in small ruminants from the Baixo Parnaíba region, state of Maranhão, northeastern Brazil. For this purpose, blood samples were collected from 161 animals (91 goats; 70 sheep) from 4 municipalities in the Baixo Parnaíba region. Sheep and goat serum samples were subjected to recombinant membrane surface protein (MSP5)-based iELISA. Whole blood samples were subject to DNA extraction and molecular diagnosis using PCR assays for Anaplasma spp. targeting msp1ß, msp1α, 16S rRNA and msp4 genes. Positive samples were sequenced and then subjected to Anaplasma marginale msp1α genetic diversity analysis and phylogenetic inferences based on the 16S rRNA and msp4 genes. The serological survey detected the presence of anti-A. marginale IgG antibodies in 18 animals (11.1%): 2.9% (2/70) sheep and 17.4% (16/91) goats. Anaplasma marginale DNA was detected in 2 goats (1.2%) using qPCR based on the msp1ß gene. Two distinct A. marginale msp1α strains, namely α ß and α ß ΓγΓγΓγΓγ were found in the infected goats, each one found in a different animal, both belonging to the H genotype. Phylogenetic analysis based on the 16S rRNA gene showed the sequences positioned in three different clades and grouped with sequences from 'Candidatus Anaplasma boleense', A. platys and A. marginale. Phylogenetic inferences based on the msp4 gene positioned the sequence variants in the A. marginale clade. The present work represents the first molecular detection of sequence variants phylogenetic associated to 'Candidatus Anaplasma boleense' and A. platys and α ß and α ß ΓγΓγΓγΓγ in goats from Brazil.


Subject(s)
Anaplasma marginale , Anaplasmosis , Goat Diseases , Sheep Diseases , Animals , Sheep , Anaplasma/genetics , RNA, Ribosomal, 16S/genetics , Brazil/epidemiology , Phylogeny , Anaplasmosis/microbiology , Ruminants , Anaplasma marginale/genetics , Membrane Proteins/genetics , Goats/microbiology , DNA , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology
12.
Can Vet J ; 64(12): 1114-1118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046428

ABSTRACT

Domestic sheep (Ovis aries) can carry the bacterium Mycoplasma ovipneumoniae (M. ovipneumoniae) in their upper respiratory tract, often with little effect on health and productivity. However, for bighorn sheep (Ovis canadensis) populations, there is a link between M. ovipneumoniae infection and pneumonia, poor lamb recruitment, and high fatality rate. Because of these outcomes, preventing transmission of M. ovipneumoniae to free-ranging wild sheep has garnered interest from both the livestock and wildlife sectors. We hypothesized that treatment with intranasal and systemic enrofloxacin would reduce the prevalence of M. ovipneumoniae-positive animals in a flock of domestic sheep. Initially, the prevalence decreased in the treated group; but by 34 d post-treatment, the number of M. ovipneumoniae-positive sheep returned to near pretreatment prevalence. Key clinical message: Test-and-slaughter is a method used to reduce the risk of transmission of pneumonia-causing M. ovipneumoniae from domestic sheep and goats to free-ranging wild sheep. In an effort to find an alternative, we used enrofloxacin to treat a flock of M. ovipneumoniae-positive domestic sheep; however, long-term reduction of M. ovipneumoniae prevalence in the flock was not achieved.


Traitement antibiotique de Mycoplasma ovipneumoniae chez le mouton domestique (Ovis aries): travail à l'interface bétail-faune au Yukon, Canada. Les moutons domestiques (Ovis aries) peuvent être porteurs de la bactérie Mycoplasma ovipneumoniae (M. ovipneumoniae) dans leurs voies respiratoires supérieures, avec souvent peu d'effets sur la santé et la productivité. Cependant, pour les populations de mouflons d'Amérique (Ovis canadensis), il existe un lien entre l'infection à M. ovipneumoniae et la pneumonie, un faible recrutement d'agneaux et un taux de mortalité élevé. En raison de ces résultats, la prévention de la transmission de M. ovipneumoniae aux moutons sauvages en liberté a suscité l'intérêt des secteurs de l'élevage et de la faune sauvage. Nous avons émis l'hypothèse qu'un traitement par enrofloxacine intranasale et systémique réduirait la prévalence d'animaux positifs à M. ovipneumoniae dans un troupeau de moutons domestiques. Initialement, la prévalence a diminué dans le groupe traité; mais 34 jours après le traitement, le nombre de moutons positifs à M. ovipneumoniae est revenu à une prévalence proche de celle précédant le traitement.Message clinique clé :L'essai et l'abattage sont une méthode utilisée pour réduire le risque de transmission de M. ovipneumoniae, responsable de la pneumonie, des moutons et chèvres domestiques aux moutons sauvages en liberté. Dans le but de trouver une alternative, nous avons utilisé l'enrofloxacine pour traiter un troupeau de moutons domestiques positifs à M. ovipneumoniae; cependant, aucune réduction à long terme de la prévalence de M. ovipneumoniae dans le troupeau n'a été obtenue.(Traduit par Dr Serge Messier).


Subject(s)
Goat Diseases , Mycoplasma ovipneumoniae , Pneumonia, Mycoplasma , Pneumonia , Sheep Diseases , Sheep, Bighorn , Animals , Sheep , Animals, Wild , Sheep, Domestic , Livestock , Yukon Territory , Enrofloxacin/therapeutic use , Pneumonia/veterinary , Goats/microbiology , Canada/epidemiology , Sheep, Bighorn/microbiology , Sheep Diseases/drug therapy , Sheep Diseases/epidemiology , Sheep Diseases/prevention & control , Anti-Bacterial Agents/therapeutic use , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/veterinary
13.
BMC Biotechnol ; 23(1): 51, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049781

ABSTRACT

BACKGROUND: Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS: Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS: In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.


Subject(s)
Cellulase , Cellulases , Animals , Cellulase/metabolism , Metagenome , Goats/genetics , Goats/metabolism , Goats/microbiology , Rumen/metabolism , Rumen/microbiology , Escherichia coli/genetics , Bacteria , Cellulases/genetics , Cellulose
14.
Sci Rep ; 13(1): 20086, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37973848

ABSTRACT

Goats contribute significantly to the global food security and industry. They constitute a main supplier of meat and milk for large proportions of people in Egypt and worldwide. Brucellosis is a zoonotic infectious disease that causes a significant economic loss in animal production. A case-control genome-wide association analysis (GWAS) was conducted using the infectious status of the animal as a phenotype. The does that showed abortion during the last third period of pregnancy and which were positive to both rose bengal plate and serum tube agglutination tests, were considered as cases. Otherwise, they were considered as controls. All animals were genotyped using the Illumina 65KSNP BeadChip. Additionally, the diversity and composition of vaginal and fecal microbiota in cases and controls were investigated using PCR-amplicone sequencing of the V4 region of 16S rDNA. After applying quality control criteria, 35,818 markers and 66 does were available for the GWAS test. The GWAS revealed a significantly associated SNP (P = 5.01 × 10-7) located on Caprine chromosome 15 at 29 megabases. Four other markers surpassed the proposed threshold (P = 2.5 × 10-5). Additionally, fourteen genomic regions accounted for more than 0.1% of the variance explained by all genome windows. Corresponding markers were located within or in close vicinity to several candidate genes, such as ARRB1, RELT, ATG16L2, IGSF21, UBR4, ULK1, DCN, MAPB1, NAIP, CD26, IFIH1, NDFIP2, DOK4, MAF, IL2RB, USP18, ARID5A, ZAP70, CNTN5, PIK3AP1, DNTT, BLNK, and NHLRC3. These genes play important roles in the regulation of immune responses to the infections through several biological pathways. Similar vaginal bacterial community was observed in both cases and controls while the fecal bacterial composition and diversity differed between the groups (P < 0.05). Faeces from the control does showed a higher relative abundance of the phylum Bacteroidota compared to cases (P < 0.05), while the latter showed more Firmicutes, Spirochaetota, Planctomycetota, and Proteobacteria. On the genus level, the control does exhibited higher abundances of Rikenellaceae RC9 gut group and Christensenellaceae R-7 group (P < 0.05), while the infected does revealed higher Bacteroides, Alistipes, and Prevotellaceae UCG-003 (P < 0.05). This information increases our understanding of the genetics of the susceptibility to Brucella in goats and may be useful in breeding programs and selection schemes that aim at controlling the disease in livestock.


Subject(s)
Brucellosis , Microbiota , Humans , Pregnancy , Female , Animals , Goats/microbiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Brucellosis/microbiology , Bacteria/genetics , Ubiquitin Thiolesterase/genetics
15.
BMC Vet Res ; 19(1): 213, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853405

ABSTRACT

Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.


Subject(s)
Anaplasmosis , Cattle Diseases , Goat Diseases , Sheep Diseases , Tick-Borne Diseases , Animals , Cattle , Sheep , Anaplasma/genetics , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Goats/microbiology , Ruminants/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , China/epidemiology , Genetic Variation , Phylogeny , Goat Diseases/epidemiology , Goat Diseases/microbiology , Cattle Diseases/epidemiology , Sheep Diseases/epidemiology
16.
Vector Borne Zoonotic Dis ; 23(10): 495-506, 2023 10.
Article in English | MEDLINE | ID: mdl-37527189

ABSTRACT

Background: Anaplasma ovis is an intra-erythrocytic gram negative rickettsial bacterium that infects small ruminants, resulting in huge economic losses worldwide. Materials and Methods: The present investigation aims at reporting the molecular prevalence of A. ovis in 1200 asymptomatic goats that were enrolled from 4 districts (Layyah, Lohdran, Dera Ghazi Khan, and Rajanpur) in Punjab, Pakistan by targeting the msp4 gene of bacterium. Risk factors associated with the prevalence of A. ovis and phylogeny of bacterium were also documented. Results: 184 out of 1200 (15%) goat blood samples were infected with A. ovis. The prevalence of the pathogen varied with the sampling sites (p = 0.005), and the highest prevalence was detected in goats from Layyah (19%) followed by Rajanpur (17%), Dera Ghazi Khan (15%), and Lohdran district (9%). The represented partial msp4 gene amplicon was confirmed by Sanger sequencing and deposited to GenBank (OP225957-59). Phylogenetic analysis revealed that the amplified isolates resembled the msp4 sequences reported from Iran, Mangolia, Sudan, and the United States. Sex and age of goats, herd composition and size, and the presence of ticks on goats and dogs associated with herds were the rick factors associated with the prevalence of A. ovis. Red blood cells, lymphocytes (%), neutrophils (%), hemoglobin, and hematocrit levels in blood and Aspartate amino transferase, urea, and creatinine levels in serum were disturbed in A. ovis infected goats when compared with uninfected animals. Conclusion: We are reporting the prevalence of A. ovis in Pakistani goats from four districts of Punjab and these data will help in developing the integrated control policies against this tick-borne pathogen that is infecting our goat breeds.


Subject(s)
Anaplasma ovis , Anaplasmosis , Dog Diseases , Goat Diseases , Sheep Diseases , Ticks , Animals , Sheep , Dogs , Anaplasma ovis/genetics , Anaplasmosis/microbiology , Phylogeny , Goats/microbiology , Pakistan/epidemiology , Ticks/microbiology , Ruminants , Anaplasma , Goat Diseases/epidemiology , Goat Diseases/microbiology , Prevalence , Sheep Diseases/epidemiology , Sheep Diseases/microbiology
17.
J Proteomics ; 288: 104982, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37532014

ABSTRACT

High growth rates and body weight are important traits of young dairy goats that can shorten generation intervals, improve animal performance, and increase economic benefits. In the present study, ninety-nine, 6-month-old, female goats were fed with the same diet and kept under the same management condition. The ten goats with highest average daily gain (ADG, HADG, 135.27 ± 4.59 g/d) and ten goats with lowest ADG (LADG, 87.74 ± 3.13 g/d) were selected to identify the key serum metabolites associated with ADG, and to investigate the relationships of serum metabolome profiles with digestive tract microbiota. The results showed that a total of 125 serum metabolites were significantly different between HADG and LADG. Of these, 43 serum metabolites were significantly higher levels in HADG, including D-ornithine, l-glutamine, L-histidine, carnosine, LysoPC (16:1(9Z)/0:0), DCTP and hydroxylysine, while, 82 serum metabolites were significantly higher levels in LADG, including P-salicylic acid and deoxycholic acid 3-glucuronide. Pathway analysis indicated that these different metabolites were mainly involved in amino acid and lipid metabolism. Furthermore, Spearman's rank correlation analysis revealed that these differential serum metabolites were correlated with ADG and ADG-related bacteria. Notably, serum hydroxylysine and L-histidine could be used as biomarkers for distinguishing HADG and LADG goats, with an accuracy of >92.0%. SIGNIFICANCE: Our study confirms that individual microbiota and metabolic differences contribute to the variations of growth rate in young goats. Some serum metabolites may be useful in improving the growth performance of young goats, which provides directions for developing further nutritional regulation in the goat industry to achieve healthy feeding and efficiency enhancement.


Subject(s)
Goats , Histidine , Animals , Female , Goats/microbiology , Goats/physiology , Hydroxylysine , Diet/veterinary , Metabolome
18.
Can Vet J ; 64(6): 595-597, 2023 06.
Article in English | MEDLINE | ID: mdl-37265813

ABSTRACT

Two 3-week-old goat kids from a herd of ~50 to 60 goats were examined by a veterinarian. The goats were in lateral recumbency with an inability to rise. Unilateral cranial nerve deficiencies included cervical rotation, nystagmus, ptosis, facial paralysis, and absence of palpebral reflex. One of the 2 kids had a fever. The kids died and necropsy examinations were performed. Histopathology findings were highly suggestive of Listeria monocytogenes infection, which was confirmed by bacterial culture. This case suggests that listeriosis should be included in the differential diagnosis for goats with neurological signs even if they are not fed silage or haylage and are kept in a clean barn.


Listériose dans un troupeau de chèvres. Deux chevreaux de 3 semaines d'un troupeau d'environ 50 à 60 chèvres ont été examinés par un vétérinaire. Les chèvres étaient en décubitus latéral avec une incapacité à se lever. Les déficiences unilatérales des nerfs crâniens comprenaient une rotation cervicale, du nystagmus, une ptose, une paralysie faciale et l'absence de réflexe palpébral. Un des 2 chevreaux avait de la fièvre. Les chevreaux sont morts et des nécropsies ont été effectués. Les résultats de l'histopathologie étaient très évocateurs d'une infection à Listeria monocytogenes, qui a été confirmée par culture bactérienne. Ce cas suggère que la listériose devrait être incluse dans le diagnostic différentiel pour les chèvres présentant des signes neurologiques même si elles ne sont pas nourries avec de l'ensilage ou de l'ensilage préfané et sont gardées dans une étable propre.(Traduit par Dr Serge Messier).


Subject(s)
Goat Diseases , Listeriosis , Animals , Goats/microbiology , Goats/physiology , Listeriosis/diagnosis , Listeriosis/veterinary , Listeriosis/microbiology , Fever/veterinary , Goat Diseases/diagnosis , Goat Diseases/microbiology
19.
Appl Microbiol Biotechnol ; 107(14): 4593-4603, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37219572

ABSTRACT

Caseous lymphadenitis (CLA), an infectious disease caused by Corynebacterium pseudotuberculosis in small ruminants, is highly prevalent worldwide. Economic losses have already been associated with the disease, and little is known about the host-pathogen relationship associated with the disease. The present study aimed to perform a metabolomic study of the C. pseudotuberculosis infection in goats. Serum samples were collected from a herd of 173 goats. The animals were classified as controls (not infected), asymptomatic (seropositives but without detectable CLA clinical signs), and symptomatic (seropositive animals presenting CLA lesions), according to microbiological isolation and immunodiagnosis. The serum samples were analyzed using nuclear magnetic resonance (1H-NMR), nuclear Overhauser effect spectroscopy (NOESY), and Carr-Purcell-Meiboom-Gill (CPMG) sequences. The NMR data were analyzed using chemometrics, and principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were performed to discover specific biomarkers responsible for discrimination between the groups. A high dissemination of the infection by C. pseudotuberculosis was observed, being 74.57% asymptomatic and 11.56% symptomatic. In the evaluation of 62 serum samples by NMR, the techniques were satisfactory in the discrimination of the groups, being also complementary and mutually confirming, demonstrating possible biomarkers for the infection by the bacterium. Twenty metabolites of interest were identified by NOESY and 29 by CPMG, such as tryptophan, polyunsaturated fatty acids, formic acid, NAD+, and 3-hydroxybutyrate, opening promising possibilities for the use of these results in new therapeutic, immunodiagnosis, and immunoprophylactic tools, as well as for studies of the immune response against C. pseudotuberculosis. KEY POINTS: • Sixty-two samples from healthy, CLA asymptomatic, and symptomatic goats were screened • Twenty metabolites of interest were identified by NOESY and 29 by CPMG • 1H-NMR NOESY and CPMG were complementary and mutually confirming.


Subject(s)
Corynebacterium Infections , Corynebacterium pseudotuberculosis , Lymphadenitis , Animals , Corynebacterium pseudotuberculosis/metabolism , Goats/microbiology , Lymphadenitis/diagnosis , Lymphadenitis/veterinary , Lymphadenitis/microbiology , Corynebacterium Infections/diagnosis , Corynebacterium Infections/veterinary , Corynebacterium Infections/microbiology , Magnetic Resonance Spectroscopy
20.
Comp Immunol Microbiol Infect Dis ; 96: 101980, 2023 May.
Article in English | MEDLINE | ID: mdl-37079984

ABSTRACT

The present study aimed at the molecular detection of Anaplasma spp. in different samples obtained from cattle, goats and free-living Rhipicephalus microplus ticks from Argentina. DNA of members of the Anaplasmataceae family was detected by different PCR assays. The phylogenetic analyses of the obtained partial DNA sequences of the 16 S rDNA gene resulted in the identification of two different Anaplasma spp.: (I) Anaplasma platys-like bacteria (in blood sample from cattle and pools of R. microplus larvae and (II) Candidatus Anaplasma boleense (in blood samples from goats and one pool of R. microplus larvae of R. microplus). Candidatus A. boleense was found in two provinces that belong to different biogeographic regions, which leads to the conclusion that this bacterium may be widely distributed in Argentina. Interestingly, both Anaplasma spp. were found in the same R. microplus population in Chaco province, indicating that these two strains of Anaplasma are circulating in the same tick population. The results of this work represent the first report of the circulation of A. platys-like bacteria and Ca. A. boleense in domestic ruminants and free-living R. microplus ticks in Argentina. Further studies to determine the prevalence of infection, dispersion, clinical impact, transmission routes and cross-reactivity in serological tests of both Anaplasma species are needed.


Subject(s)
Anaplasmosis , Cattle Diseases , Goat Diseases , Rhipicephalus , Animals , Cattle , Phylogeny , Argentina/epidemiology , Anaplasma/genetics , Rhipicephalus/microbiology , Ruminants , Goats/microbiology , Bacteria , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Goat Diseases/epidemiology , Goat Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...