Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50.048
Filter
1.
Anal Chim Acta ; 1310: 342705, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811142

ABSTRACT

BACKGROUND: Reliability and robustness have been recognized as key challenges for Surface-enhanced Raman scattering (SERS) analytical techniques. Quantifying the concentration of an analyte using a single characteristic peak from SERS has been a controversial topic because the Raman signal is susceptible to highly concentrated electromagnetic hotspots, inhomogeneity of SERS substrate, or non-standardization of measurement conditions. Ratiometric SERS strategies have been demonstrated as a promising solution to effectively balance and compensate for signal fluctuations caused by matrix heterogeneity. However, it is not easy to construct ratiometric SERS sensors with monitoring the ratio of two different signal intensities for target analysis. RESULTS: An attempt has been made to develop a novel ratiometric biosensor that can be applied to detect okadaic acid (OA). Aptamer-anchored magnetic particles were first combined with gold-tagged short complementary DNA (Au-cDNA) to create heterogeneous nanostructures. When the target was present, the Au-cDNA was dissociated from nanostructures, and 4-nitrothiophenol (4-NTP) was initiated to reduce to 4-aminothiophenol (4-ATP) in the presence of hydrogen sources. The SERS ratio change of 4-NTP and 4-ATP was finally detected by AuNPs-coated film. OA was successfully quantified, and the detection limit was as low as 2.4524 ng/mL. The constructed biosensor had good stability and reproducibility with a relative standard deviation of less than 4.47%. The proposed method used gold nanoparticles as an intermediate to achieve catalytic signal amplification and subsequently increased the sensitivity of the biosensor. SIGNIFICANCE AND NOVELTY: Catalytic reaction-based ratiometric SERS biosensors combine the multiple advantages of catalytic signal amplification and signal self-calibration and provide new insights into the development of stable, reproducible, and reliable SERS detection techniques. This ratiometric SERS technique offered a universal method that is anticipated to be applicable for the detection of other targets by substituting the aptamer.


Subject(s)
Biosensing Techniques , Gold , Metal Nanoparticles , Okadaic Acid , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Gold/chemistry , Biosensing Techniques/methods , Okadaic Acid/analysis , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Food Contamination/analysis , Limit of Detection , Food Analysis/methods , Surface Properties
2.
Anal Chim Acta ; 1310: 342723, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811138

ABSTRACT

BACKGROUND: Eugenol compounds (EUGs), which share chemical similarities with eugenol, belong to a group of phenolic compounds primarily found in clove oil. They are highly valued by fish dealers due to their exceptional anesthetic properties, playing a crucial role in reducing disease incidence and mortality during the transportation of live fish. Despite their widespread use, the safety of EUGs remains a contentious topic, raising concerns about the safety of aquatic products. This underscores the need for efficient and sensitive analytical methods for detecting EUGs. RESULTS: Nanomaterial-based ratiometric fluorescence immunoassay has gained increasing attention due to its integration of the immunoassay's excellent specificity and compatibility for high-throughput analysis, coupled with the exceptional sensitivity and anti-interference capabilities of ratiometric fluorescence assays. In this study, we developed a sensitive ratiometric fluorescence immunoassay for screening five EUGs. This method employs a broad-specificity monoclonal antibody (mAb) as a recognition reagent, selective for five EUGs. It leverages the horseradish peroxidase (HRP)-triggered formation of fluorescent 2,3-diaminophenazine (DAP) and the quenching of fluorescent gold clusters (Au NCs) for detection. The assay's detection limits for eugenol, isoeugenol, eugenol methyl eugenol, methyl isoeugenol, and acetyl isoeugenol in tilapia fish and shrimp were found to be 9.8/19.5 µg/kg, 0.11/0.22 µg/kg, 19/36 Tilapia ng/kg, 8/16 ng/kg, and 3.0/6.1 µg/kg, respectively. Furthermore, when testing spiked Tilapia fish and shrimp samples, recoveries ranging from 84.1 to 111.9 %, with the coefficients of variation staying below 7.1 % was achieved. SIGNIFICANCE: This work introduces an easy-to-use, broad-specificity, and highly sensitive method for the screening of five EUGs at a pg/mL level, which not only provides a high-throughput strategy for screening eugenol-type fish anesthetics in aquatic products, but also can serve as a benchmark for developing immunoassays for other small molecular pollutants, rendering potent technological support for guarding food safety and human health.


Subject(s)
Eugenol , Gold , Metal Nanoparticles , Eugenol/analysis , Eugenol/analogs & derivatives , Eugenol/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Immunoassay/methods , Limit of Detection
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124359, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38704996

ABSTRACT

SERS (Surface Enhanced Raman Spectroscopy) is a new Raman spectroscopy which relies on Surface Plasmon Resonance (SPR) of metal nanoparticles. We have applied colloidal silver and gold nanoparticles as amplifier agents to enhance nucleotide Raman signals. It is observed that without these enhancing agents, it is impossible to investigate nucleotide spectrum due to weak Raman signals. Interaction mechanism of Melphalan, an anticancer drug with four nucleotides (Adenine, Cytosine, Guanine, Thymine) was investigated using SERS to detect and identify changes due to alkylating process in Raman spectra. After incubating Melphalan drug with nucleotides for 24 h at 37 °C, some changes occurred in SERS spectrum and interpretation of SERS spectra revealed the influence of the alkyl substitution on peaks and Raman shifts. After incubation of Melphalan with each nucleotide, intensity of relevant SERS signals assigned to Amid III group of Cytosine and Amid I of Thymine decreased significantly, confirming alkylating taking place. In this study, we also investigated the effect of nanoparticles type on nucleotide spectrum. We could not obtain useful information in the cases of guanine nucleotide. The SERS spectrum of Cytosine as an example of nucleotides in aqueous solution compared to solid state and results demonstrated that in solid state better signals were obtained than in liquid state.


Subject(s)
Melphalan , Metal Nanoparticles , Nucleotides , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Melphalan/chemistry , Nucleotides/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Alkylating Agents/chemistry , Silver/chemistry
4.
Sci Rep ; 14(1): 12125, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802360

ABSTRACT

Emergence of Coronavirus disease 2019 (COVID-19) pandemic has posed a huge threat to public health. Rapid and reliable test to diagnose infected subjects is crucial for disease spread control. We developed a colorimetric test for COVID-19 detection using a Colorimetric Assay based on thiol-linked RNA modified gold nanoparticles (AuNPs) and oligonucleotide probes. This method was conducted on RNA from 200 pharyngeal swab samples initially tested by Real-Time polymerase chain reaction (RT-PCR) as gold standard. A specific oligonucleotide probe designed based on ORF1ab of COVID-19 was functionalized with AuNPs-probe conjugate. The exposure of AuNP-probe to isolated RNA samples was tested using hybridization. In this comparative study, the colorimetric functionalized AuNPs assay exhibited a detection limit of 25 copies/µL. It was higher in comparison to the RT-PCR method, which could only detect 15 copies/µL. The results demonstrated 100% specificity and 96% sensitivity for the developed method. Herein, we developed an incredibly rapid, simple and cost-effective Colorimetric Assay lasting approximately 30 min which could process considerably higher number of COVID-19 samples compared to the RT-PCR. This AuNP-probe conjugate colorimetric method could be considered the optimum alternatives for conventional diagnostic tools especially in over-populated and/or low-income countries.


Subject(s)
COVID-19 , Colorimetry , Gold , Metal Nanoparticles , Nasopharynx , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity , Colorimetry/methods , Humans , COVID-19/diagnosis , COVID-19/virology , Metal Nanoparticles/chemistry , Gold/chemistry , Nasopharynx/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Viral/isolation & purification , Limit of Detection , Oligonucleotide Probes/genetics , COVID-19 Nucleic Acid Testing/methods , Real-Time Polymerase Chain Reaction/methods , COVID-19 Testing/methods
5.
Chem Commun (Camb) ; 60(45): 5848-5851, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38752318

ABSTRACT

A dual-localized DNAzyme walker (dlDW) was constructed by utilizing multiple split DNAzymes with probes, and their substrates are separately localized on streptavidin and AuNPs, serving as walking pedals and tracks, respectively. Based on dlDW, biosensing platform was successfully constructed and showed great potential application in clinical disease diagnosis.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Gold , Streptavidin , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Streptavidin/chemistry , Biosensing Techniques/methods , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Biomarkers/analysis
6.
PLoS One ; 19(5): e0304586, 2024.
Article in English | MEDLINE | ID: mdl-38820507

ABSTRACT

The integration of nanoparticles (NPs) holds promising potential to bring substantial advancements to plant cryopreservation, a crucial technique in biodiversity conservation. To date, little attention has been focused on using nanoparticles in cryobiology research. This study aimed to assess the effectiveness of NPs in enhancing the efficiency of plant cryopreservation. In-vitro-derived shoot tips of bleeding heart (Lamprocapnos spectabilis (L.) Fukuhara) 'Gold Heart' and 'Valentine' were used as the plant material. The encapsulation-vitrification cryopreservation protocol included preculture, encapsulation, dehydration, storage in liquid nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide (ZnONPs) nanoparticles were added at various concentrations either into the preculture medium or the protective bead matrix during encapsulation. The explant survival and further morphogenic and biochemical events were studied. Results showed that the impact of NPs on cryopreservation outcomes was cultivar-specific. In the 'Valentine' cultivar, incorporating 5 ppm AgNPs within the alginate bead matrix significantly improved cryopreservation efficiency by up to 12%. On the other hand, the 'Gold Heart' cultivar benefited from alginate supplementation with 5 ppm AgNPs and 5-15 ppm ZnONPs, leading to an over 28% increase in the survival rate of shoot tips. Interestingly, adding NPs to the preculture medium was less effective and sometimes counterproductive, despite promoting greater shoot proliferation and elongation in 'Valentine' explants compared to the control. Moreover, nanoparticles often induced oxidative stress (and enhanced the activity of APX, GPOX, and SOD enzymes), which in turn affected the biosynthesis of plant primary and secondary metabolites. It was found that supplementation of preculture medium with higher concentration (15 ppm) of gold, silver and zinc oxide nanoparticles stimulated the production of plant pigments, but in a cultivar-dependent matter. Our study confirmed the beneficial action of nanoparticles during cryopreservation of plant tissues.


Subject(s)
Cryopreservation , Gold , Metal Nanoparticles , Cryopreservation/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Gold/pharmacology , Silver/chemistry , Silver/pharmacology , Plant Shoots/drug effects , Plant Shoots/growth & development , Morphogenesis/drug effects , Vitrification
7.
Biosens Bioelectron ; 259: 116387, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754194

ABSTRACT

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Fumonisins , Limit of Detection , Fumonisins/analysis , Fumonisins/chemistry , Aptamers, Nucleotide/chemistry , Tungsten/chemistry , Electrodes , Oxides/chemistry , Gold/chemistry , Humans , Light , Zinc/chemistry
8.
Mikrochim Acta ; 191(6): 299, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709371

ABSTRACT

Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.


Subject(s)
Fluorescent Dyes , Gold , Metal Nanoparticles , Potassium , Serum Albumin, Bovine , Valinomycin , Gold/chemistry , Valinomycin/chemistry , Potassium/analysis , Potassium/chemistry , Metal Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Animals , Hydrophobic and Hydrophilic Interactions , Cattle
9.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709403

ABSTRACT

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Neoplastic Cells, Circulating , Palladium , Neoplastic Cells, Circulating/pathology , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Gold/chemistry , DNA/chemistry , Biosensing Techniques/methods , Palladium/chemistry
10.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731508

ABSTRACT

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Subject(s)
Citric Acid , Durapatite , Polyethylene Glycols , Citric Acid/chemistry , Durapatite/chemistry , Polyethylene Glycols/chemistry , Gold/chemistry , Biocompatible Materials/chemistry , Materials Testing , Chitosan/chemistry , Porosity , Metal Nanoparticles/chemistry , Chemical Phenomena , Compressive Strength , Surface Properties
11.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Article in English | MEDLINE | ID: mdl-38736655

ABSTRACT

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Subject(s)
Contrast Media , Gold , Ischemia , Muscle, Skeletal , Nanotubes , Ultrasonography , Animals , Gold/chemistry , Nanotubes/chemistry , Contrast Media/chemistry , Contrast Media/pharmacology , Mice , Ischemia/diagnostic imaging , Ischemia/therapy , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Hindlimb/blood supply , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Liposomes/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Muscular Diseases/diagnostic imaging , Muscular Diseases/therapy , Photothermal Therapy/methods , Disease Models, Animal , Humans , Pentanes
12.
Int J Nanomedicine ; 19: 4103-4120, 2024.
Article in English | MEDLINE | ID: mdl-38736658

ABSTRACT

Introduction: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.


Subject(s)
Gold , Kidney , Liver , Metal Nanoparticles , Serum Albumin, Bovine , Spleen , Animals , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Gold/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/administration & dosage , Spleen/drug effects , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacokinetics , Kidney/drug effects , Kidney/metabolism , Tissue Distribution , Liver/drug effects , Liver/metabolism , Mice , Male , Particle Size
13.
ACS Nano ; 18(20): 12781-12794, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38733343

ABSTRACT

Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.


Subject(s)
Circulating Tumor DNA , Electrodes , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Liquid Biopsy , Gene Amplification , Magnetite Nanoparticles/chemistry , Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Gold/chemistry , Surface Properties , Electrochemical Techniques/methods , Polymerase Chain Reaction , Female
14.
Mikrochim Acta ; 191(6): 335, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760484

ABSTRACT

The release of tire wear substances in the environment is raising concerns about potential impacts on aquatic ecosystems. The purpose of this study was to develop a quick and inexpensive screening test for the following tire wear substances: 6-phenylphenyldiamine quinone (6-PPD quinone), hexamethoxymethylmelamine (HMMM), 1-3-diphenylguanidine (1,3-DPG), and melamine. A dual strategy consisting of nanogold (nAu) signal intensity and the plasmonic ruler principle was used based on the spectral shift from the unaggregated free-form nAu from 525 nm to aggregated nAu at higher wavelengths. The shift in resonance corresponded to the relative sizes of the tire wear substances at the surface of nAu: 6-PPD (560 nm), HMMM (590 nm), 1,3-DPG (620 nm), and melamine (660 nm) in a concentration-dependent manner. When present in mixtures, a large indiscriminate band between 550 and 660 nm with a maximum corresponding to the mean intermolecular distance of 0.43 nm from the tested individual substances suggests that all compounds indiscriminately interacted at the surface of nAu. An internal calibration methodology was developed for mixtures and biological extracts from mussels and biofilms and revealed a proportional increase in absorbance at the corresponding resonance line for each test compound. Application of this simple and quick methodology revealed the increased presence of melamine and HMMM compounds in mussels and biofilms collected at urban sites (downstream city, road runoffs), respectively. The data also showed that treated municipal effluent decreased somewhat melamine levels in mussels.


Subject(s)
Gold , Metal Nanoparticles , Triazines , Gold/chemistry , Metal Nanoparticles/chemistry , Triazines/analysis , Triazines/chemistry , Surface Plasmon Resonance/methods , Water Pollutants, Chemical/analysis
15.
ACS Appl Mater Interfaces ; 16(20): 25710-25726, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739808

ABSTRACT

The present study investigated the concurrent delivery of antineoplastic drug, doxorubicin, and HER2 siRNA through a targeted theranostic metallic gold nanoparticle designed using polysaccharide, PSP001. The as-synthesized HsiRNA@PGD NPs were characterized in terms of structural, functional, physicochemical, and biological properties. HsiRNA@PGD NPs exposed adequate hydrodynamic size, considerable ζ potential, and excellent drug/siRNA loading and encapsulation efficiency. Meticulous exploration of the biocompatible dual-targeted nanoconjugate exhibited an appealing biocompatibility and pH-sensitive cargo release kinetics, indicating its safety for use in clinics. HsiRNA@PGD NPs deciphered competent cancer cell internalization, enhanced cytotoxicity mediated via the induction of apoptosis, and excellent downregulation of the overexpressing target HER2 gene. Further in vivo explorations in the SKBR3 xenograft breast tumor model revealed the appealing tumor reduction properties, selective accumulation in the tumor site followed by significant suppression of the HER2 gene which contributed to the exclusive abrogation of breast tumor mass by the HsiRNA@PGD NPs. Compared to free drugs or the monotherapy constructs, the dual delivery approach produced a synergistic suppression of breast tumors both in vitro and in vivo. Hence the drawings from these findings implicate that the as-synthesized HsiRNA@PGD NPs could offer a promising platform for chemo-RNAi combinational breast cancer therapy.


Subject(s)
Breast Neoplasms , Doxorubicin , Gene Silencing , RNA, Small Interfering , Receptor, ErbB-2 , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Animals , Mice , Gene Silencing/drug effects , Metal Nanoparticles/chemistry , Gold/chemistry , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Apoptosis/drug effects
16.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38744248

ABSTRACT

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Subject(s)
Boron Neutron Capture Therapy , Lithium , Particle Accelerators , Phantoms, Imaging , Quality Control , Lithium/chemistry , Boron Neutron Capture Therapy/methods , Humans , Particle Accelerators/instrumentation , Reproducibility of Results , Polymethyl Methacrylate/chemistry , Neutrons , Gold/chemistry , Aluminum/chemistry , Water/chemistry , Radiometry/methods , Radiometry/instrumentation , Radiotherapy Dosage
17.
Lasers Med Sci ; 39(1): 130, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750285

ABSTRACT

The aim of this study is to investigate how the introduction of Gold nanoparticles GNPs into a skin tumor affects the ability to absorb laser light during multicolor laser exposure. The Monte Carlo Geant4 technique was used to construct a cubic geometry simulating human skin, and a 5 mm tumor spheroid was implanted at an adjustable depth x. Our findings show that injecting a very low concentration of 0.01% GNPs into a tumor located 1 cm below the skin's surface causes significant laser absorption of up to 25%, particularly in the 900 nm to 1200 nm range, resulting in a temperature increase of approximately 20%. It is an effective way to raise a tumor's temperature and cause cell death while preserving healthy cells. The addition of GNPs to a tumor during polychromatic laser exposure with a wavelength ranging from 900 nm to 1200 nm increases laser absorption and thus temperature while preserving areas without GNPs.


Subject(s)
Gold , Metal Nanoparticles , Monte Carlo Method , Photothermal Therapy , Skin Neoplasms , Humans , Photothermal Therapy/methods , Skin Neoplasms/therapy , Skin Neoplasms/pathology , Skin/radiation effects
18.
J Agric Food Chem ; 72(19): 11241-11250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709728

ABSTRACT

The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.


Subject(s)
Colorimetry , Food Contamination , Fungicides, Industrial , Pesticide Residues , Fungicides, Industrial/analysis , Food Contamination/analysis , Colorimetry/methods , Pesticide Residues/analysis , Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Fluorescence , Triticum/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Limit of Detection , Flour/analysis
19.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735931

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Subject(s)
Gold , Graphite , Oxidative Stress , Quantum Dots , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Zinc Oxide , Triple Negative Breast Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Female , Cell Line, Tumor , Gold/chemistry , Graphite/chemistry , Zinc Oxide/chemistry , Animals , Quantum Dots/chemistry , Mice , Metal Nanoparticles/chemistry , Apoptosis/drug effects , Hyaluronic Acid/chemistry , Electrons
20.
Mikrochim Acta ; 191(6): 328, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38743383

ABSTRACT

The instant screening of patients with a tendency towards developing Alzheimer's disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.


Subject(s)
Alzheimer Disease , Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Aptamers, Nucleotide/chemistry , tau Proteins/blood , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Gold/chemistry , Metal Nanoparticles/chemistry , Phosphorylation , Biomarkers/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...