Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.738
Filter
1.
Arch Microbiol ; 206(6): 250, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722362

ABSTRACT

The widespread evolution of phenotypic resistance in clinical isolates over the years, coupled with the COVID-19 pandemic onset, has exacerbated the global challenge of antimicrobial resistance. This study aimed to explore changes in bacterial infection patterns and antimicrobial resistance during the COVID-19 pandemic. This study involved the periods before and during COVID-19: the pre-pandemic and pandemic eras. The surveillance results of bacterial isolates causing infections in cancer patients at an Egyptian tertiary oncology hospital were retrieved. The Vitek®2 or Phoenix systems were utilized for species identification and susceptibility testing. Statistical analyses were performed comparing microbiological trends before and during the pandemic. Out of 2856 bacterial isolates, Gram-negative bacteria (GNB) predominated (69.7%), and Gram-positive bacteria (GPB) comprised 30.3% of isolates. No significant change was found in GNB prevalence during the pandemic (P = 0.159). Elevated rates of Klebsiella and Pseudomonas species were demonstrated during the pandemic, as was a decrease in E. coli and Acinetobacter species (P < 0.001, 0.018, < 0.001, and 0.046, respectively) in hematological patients. In surgical patients, Enterobacteriaceae significantly increased (P = 0.012), while non-fermenters significantly decreased (P = 0.007). GPB species from either hematological or surgical wards exhibited no notable changes during the pandemic. GNB resistance increased in hematological patients to carbapenems, amikacin, and tigecycline and decreased in surgical patients to amikacin and cefoxitin (P < 0.001, 0.010, < 0.001, < 0.001, and 0.016, respectively). The study highlights notable shifts in the microbial landscape during the COVID-19 pandemic, particularly in the prevalence and resistance patterns of GNB in hematological and surgical wards.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Drug Resistance, Bacterial , SARS-CoV-2 , Tertiary Care Centers , Humans , COVID-19/epidemiology , Tertiary Care Centers/statistics & numerical data , Egypt/epidemiology , Anti-Bacterial Agents/pharmacology , SARS-CoV-2/drug effects , Neoplasms , Microbial Sensitivity Tests , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Cancer Care Facilities , Pandemics
2.
ACS Infect Dis ; 10(5): 1839-1855, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725407

ABSTRACT

Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , tat Gene Products, Human Immunodeficiency Virus/chemistry , Gram-Negative Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , Hydrophobic and Hydrophilic Interactions , Hydrocarbons/chemistry , Hydrocarbons/pharmacology , Hemolysis/drug effects , Protein Conformation, alpha-Helical
3.
Libyan J Med ; 19(1): 2348235, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38718270

ABSTRACT

Among hospitalized patients worldwide, infections caused by multidrug-resistant (MDR) bacteria are a major cause of morbidity and mortality. This study aimed to isolate MDR bacteria from five intensive care units (ICUs) at Tripoli University Hospital (TUH). A prospective cross-sectional study was conducted over a seven-month period (September 2022 to March 2023) across five ICUs at TUH. A total of 197 swabs were collected from Patients', healthcare workers' and ICUs equipment. Samples collected from patients were nasal swabs, oral cavity swabs, hand swabs, sputum specimens, skin swabs, umbilical venous catheter swabs, and around cannula. Swabs collected from health care workers were nasal swabs, whereas ICUs equipment's samples were from endotracheal tubes, oxygen masks, and neonatal incubators. Identification and antimicrobial susceptibility test was confirmed by using MicroScan auto SCAN 4 (Beckman Coulter). The most frequent strains were Gram negative bacilli 113 (57.4%) with the predominance of Acinetobacter baumannii 50/113 (44%) followed by Klebsiella pneumoniae 44/113 (40%) and Pseudomonas aeruginosa 6/113 (5.3%). The total Gram positive bacterial strains isolated were 84 (42.6%), coagulase negative Staphylococci 55 (66%) with MDRs (89%) were the most common isolates followed by Staphylococcus aureus 15 (17.8%). Different antibiotics were used against these isolates; Gram- negative isolates showed high resistance rates to ceftazidime, gentamicin, amikacin and ertapenem. A. baumannii were the most frequent MDROs (94%), and the highest resistance rates in Gram-positive strains were observed toward ampicillin, oxacillin, ampicillin/sulbactam and Cefoxitin, representing 90% of total MDR Gram-positive isolates. ESBL and MRS were identified in most of strains. The prevalence of antibiotic resistance was high for both Gram negative and Gram positive isolates. This prevalence requires strict infection prevention and control intervention, continuous monitoring, implementation of effective antibiotic stewardship, immediate, concerted and collaborative action to monitor its prevalence and spread in the hospital.


Subject(s)
Drug Resistance, Multiple, Bacterial , Hospitals, University , Intensive Care Units , Humans , Libya/epidemiology , Cross-Sectional Studies , Prevalence , Prospective Studies , Male , Female , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Adult , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Cross Infection/epidemiology , Cross Infection/microbiology , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/drug effects , Middle Aged
4.
Andes Pediatr ; 95(2): 143-150, 2024 Apr.
Article in Spanish | MEDLINE | ID: mdl-38801361

ABSTRACT

Bacteremia is a major cause of morbidity and mortality in patients with cancer and episodes of high-risk febrile neutropenia (HRFN). OBJECTIVE: To identify the frequency of microorganisms isolated from blood cultures (BC) and their antimicrobial resistance (R) profile in children with HRFN, compared with the same data from previous studies of the same group. METHOD: Prospective, multicenter, epidemiological surveillance study of microorganisms isolated from BC in patients under 18 years of age, from 7 PINDA network hospitals, between 2016 and 2021. RESULTS: 284 episodes of HRFN with positive BC were analyzed out of 1091 enrolled episodes (26%). Median age 7.2 years [3.0-12.3]. The main isolates were gram-negative bacilli (GNB) 49.2%, gram-positive cocci (GPC) 43.8%, and fungi 3.6%. The most frequently isolated microorganisms were viridans group Streptococci (VGS) (25.8%), Escherichia coli (19.8%), Pseudomonas spp. (11.2%), Klebsiella spp. (10.9%), and coagulase negative Staphylococci (CoNS) (10.9%). There was an increase in R to third-generation cephalosporins (p = 0.011) in GNB and to oxacillin in CoNS (p = 0.00), as well as a decrease in R to amikacin in non-fermenting GNB (p = 0.02) and to penicillin in VGS (p = 0.04). CONCLUSION: VGS is the main agent isolated in BC from pediatric patients with cancer and episodes of HRFN, followed by E. coli, Pseudomonas spp., and Klebsiella spp. Having epidemiological surveillance of microorganisms isolated from BC and their antimicrobial R profile is essential to favor the rational use of antimicrobials.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Blood Culture , Febrile Neutropenia , Neoplasms , Humans , Child , Neoplasms/microbiology , Prospective Studies , Child, Preschool , Febrile Neutropenia/microbiology , Febrile Neutropenia/drug therapy , Chile/epidemiology , Bacteremia/microbiology , Bacteremia/epidemiology , Bacteremia/diagnosis , Female , Male , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Adolescent , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects
5.
Front Cell Infect Microbiol ; 14: 1404404, 2024.
Article in English | MEDLINE | ID: mdl-38779560

ABSTRACT

Background: Ceftazidime-avibactam is a treatment option for carbapenem-resistant gram-negative bacilli (CR-GNB) infections. However, the risk factors associated with ceftazidime-avibactam (CAZ-AVI) treatment failure in kidney transplant (KT) recipients and the need for CAZ-AVI-based combination therapy remain unclear. Methods: From June 2019 to December 2023, a retrospective observational study of KT recipients with CR-GNB infection treated with CAZ-AVI was conducted, with the primary outcome being 30-day mortality and secondary outcomes being clinical cure, microbiological cure, and safety. Risk factors for 30-day mortality and clinical failure were also investigated. Results: A total of 81 KT recipients treated with CAZ-AVI were included in this study. Forty recipients (49.4%) received CAZ-AVI monotherapy, with a 30-day mortality of 22.2%. The clinical cure and microbiological cure rates of CAZ/AVI therapy were 72.8% and 66.7%, respectively. CAZ-AVI alone or in combination with other medications had no effect on clinical cure or 30-day mortality. Multivariate logistic regression analysis revealed that a higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (odds ratio [OR]: 4.517; 95% confidence interval [CI]: 1.397-14.607; P = 0.012) was an independent risk factor for 30-day mortality. Clinical cure was positively associated with the administration of CAZ-AVI within 48 hours of infection onset (OR: 11.009; 95% CI: 1.344-90.197; P=0.025) and negatively associated with higher APACHE II scores (OR: 0.700; 95% CI: 0.555-0.882; P=0.002). Four (4.9%) recipients experienced recurrence within 90 days after the initial infection, 3 (3.7%) recipients experienced CAZ-AVI-related adverse events, and no CAZ-AVI resistance was identified. Conclusion: CAZ-AVI is an effective medication for treating CR-GNB infections following kidney transplantation, even as monotherapy. Optimization of CAZ/AVI therapy (used within 48 hours of infection onset) is positively associated with potential clinical benefit. Further larger-scale studies are needed to validate these findings.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Drug Combinations , Gram-Negative Bacterial Infections , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Retrospective Studies , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Male , Female , Middle Aged , Risk Factors , Azabicyclo Compounds/therapeutic use , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/mortality , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Adult , Gram-Negative Bacteria/drug effects , Treatment Outcome , Aged , Transplant Recipients
6.
Carbohydr Polym ; 338: 122218, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763705

ABSTRACT

Here, biogenic and multifunctional active food coatings and packaging with UV shielding and antimicrobial properties were structured from the aqueous dispersion of an industrial byproduct, suberin, which was stabilized with amphiphilic cellulose nanofibers (CNF). The dual-functioning CNF, synthesized in a deep eutectic solvent, functioned as an efficient suberin dispersant and reinforcing agent in the packaging design. The nanofibrillar percolation network of CNF provided a steric hindrance against the coalescence of the suberin particles. The low CNF dosage of 0.5 wt% resulted in dispersion with optimal viscosity (208.70 Pa.s), enhanced stability (instability index of <0.001), and reduced particle size (9.37 ± 2.43 µm). The dispersion of suberin and CNF was further converted into self-standing films with superior UV-blocking capability, good thermal stability, improved hydrophobicity (increase in water contact angle from 61° ± 0.15 to 83° ± 5.11), and antimicrobial properties against gram-negative bacteria. Finally, the synergistic bicomponent dispersions were demonstrated as fruit coatings for bananas and packaging for strawberries to promote their self-life. The coatings and packaging considerably mitigated fruit deterioration and improved their freshness by preventing moisture loss and microbial attack. This sustainable approach is expected to pave the way toward advanced, biogenic, and active food packaging based on widely available bioresources.


Subject(s)
Cellulose , Food Packaging , Lipids , Nanofibers , Wood , Nanofibers/chemistry , Cellulose/chemistry , Food Packaging/methods , Wood/chemistry , Lipids/chemistry , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Viscosity , Musa/chemistry , Water/chemistry , Gram-Negative Bacteria/drug effects , Fruit/chemistry
7.
BMC Genomics ; 25(1): 508, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778284

ABSTRACT

BACKGROUND: Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.


Subject(s)
Gram-Negative Bacteria , Phylogeny , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/genetics , beta-Lactamases/chemistry , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , beta-Lactams/pharmacology , beta-Lactams/metabolism , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , beta-Lactam Resistance/genetics , beta Lactam Antibiotics
8.
Soft Matter ; 20(20): 4088-4101, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38712559

ABSTRACT

This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt ß-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.


Subject(s)
Antimicrobial Peptides , Humans , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects
9.
New Microbiol ; 47(1): 107-110, 2024 May.
Article in English | MEDLINE | ID: mdl-38700891

ABSTRACT

We evaluated the performance of a new rapid phenotypic antimicrobial susceptibility test (ASTar; Q-linea AB) on Gram-negative bacilli, directly from positive blood cultures bottles. MIC values obtained by the routine reference method (Microscan, Beckman Coulter) were compared to the ones provided by the tested method (ASTar). ASTar demonstrated an overall essential agreement of 98% and a category agreement of 96.1%. The overall rate of major errors and very major errors was 2.5% and 3.3%, respectively. ASTar can represent a rapid, simple, and reliable method to speed up information about antimicrobial susceptibility of Gram-negative pathogens from positive blood culture bottles.


Subject(s)
Anti-Bacterial Agents , Blood Culture , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Humans , Blood Culture/methods , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/microbiology , Bacteremia/microbiology , Phenotype
10.
J Pak Med Assoc ; 74(4): 661-665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751258

ABSTRACT

Objectives: To identify various species of non-lactose fermenting gram-negative bacilli involved in urinary tract infections, and to determine their antimicrobial resistance pattern. METHODS: The retrospective, descriptive, cross-sectional study was conducted from January 1 to April 1, 2022, at the Dow University of Health Sciences, Karachi, and comprised data from the institutional diagnostic laboratory that was related to urine samples regardless of age and gender from January 1, 2020, to December 31, 2021. Data was analysed using SPSS version 25. RESULTS: Of the 103,887 urine samples, 41,280(39.7%) were positive, 51,146(49.2%) showed no bacterial growth, 11,000(10.6%) had non-significant bacterial growth and 461(0.4%) had mixed bacterial growth. Of the positive samples, 18359(44.5%) were positive in 2020, and 22,921(55.5%) in 2021. Gram-negative lactose fermenting bacteria included escherichia coli 23,123(22.3%) and klebsiella pneumoniae 2,993(2.9%), gram-negative non-lactose fermenting bacteria included pseudomonas aeruginosa 1,110(1.07%), and gram-positive bacteria included enterococcus 8,008(7.7%). Pseudomonas aeruginosa was most resistant against tobramycin 880(79.3%) and least resistant against piperacillin-tazobactam 146(13%). CONCLUSIONS: Piperacillin-tazobactam was highly sensitive drug against non-lactose fermenting uro-pathogens.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Urinary Tract Infections , Humans , Gram-Negative Bacteria/drug effects , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Cross-Sectional Studies , Retrospective Studies , Male , Female , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Pseudomonas aeruginosa/drug effects , Microbial Sensitivity Tests , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Adult , Pakistan , Enterococcus/drug effects , Middle Aged
11.
BMC Med Inform Decis Mak ; 24(1): 123, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745177

ABSTRACT

BACKGROUND: Predicting whether Carbapenem-Resistant Gram-Negative Bacterial (CRGNB) cause bloodstream infection when giving advice may guide the use of antibiotics because it takes 2-5 days conventionally to return the results from doctor's order. METHODS: It is a regional multi-center retrospective study in which patients with suspected bloodstream infections were divided into a positive and negative culture group. According to the positive results, patients were divided into the CRGNB group and other groups. We used the machine learning algorithm to predict whether the blood culture was positive and whether the pathogen was CRGNB once giving the order of blood culture. RESULTS: There were 952 patients with positive blood cultures, 418 patients in the CRGNB group, 534 in the non-CRGNB group, and 1422 with negative blood cultures. Mechanical ventilation, invasive catheterization, and carbapenem use history were the main high-risk factors for CRGNB bloodstream infection. The random forest model has the best prediction ability, with AUROC being 0.86, followed by the XGBoost prediction model in bloodstream infection prediction. In the CRGNB prediction model analysis, the SVM and random forest model have higher area under the receiver operating characteristic curves, which are 0.88 and 0.87, respectively. CONCLUSIONS: The machine learning algorithm can accurately predict the occurrence of ICU-acquired bloodstream infection and identify whether CRGNB causes it once giving the order of blood culture.


Subject(s)
Bacteremia , Carbapenems , Gram-Negative Bacterial Infections , Intensive Care Units , Machine Learning , Humans , Carbapenems/pharmacology , Male , Middle Aged , Female , Retrospective Studies , Aged , Gram-Negative Bacterial Infections/drug therapy , Bacteremia/microbiology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Adult , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial
12.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755524

ABSTRACT

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Defensins , Diptera , Larva , Animals , Defensins/pharmacology , Defensins/genetics , Defensins/chemistry , Defensins/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diptera/genetics , Larva/drug effects , Larva/genetics , Microbial Sensitivity Tests , Amino Acid Sequence , Insect Proteins/genetics , Insect Proteins/pharmacology , Insect Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Gram-Negative Bacteria/drug effects
13.
Medicine (Baltimore) ; 103(19): e38101, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728506

ABSTRACT

To understand the distribution and antimicrobial resistance (AMR) of pathogens in respiratory samples in Changle District People's Hospital in Fujian Province in recent years, and provide empirical guidance for infection control and clinical treatment in the region. A retrospective analysis was conducted on 5137 isolates of pathogens from respiratory samples collected from 2019 to 2022. The AMR patterns were systematically analyzed. For research purposes, the data was accessed on October 12, 2023. A total of 3517 isolates were included in the study, including 811 (23.06%) gram-positive bacteria and 2706 (76.94%) gram-negative bacteria. The top 3 gram-positive bacteria were Staphylococcus aureus with 455 isolates (12.94%), Streptococcus pneumoniae with 99 isolates (2.81%), and Staphylococcus hemolytic with 99 isolates (2.81%). The top 3 gram-negative bacteria were Klebsiella pneumoniae with 815 isolates (23.17%), Pseudomonas aeruginosa with 589 isolates (16.75%), and Acinetobacter baumannii with 328 isolates (9.33%). The proportion of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and K pneumoniae fluctuated between 41.9% and 70.5%, and 18.6% and 20.9%, respectively. The resistance rates of E coli, K pneumoniae, P aeruginosa, and A baumannii to carbapenems were 2.36%, 8.9%, 18.5%, and 19.6%, respectively. The prevalence of methicillin-resistant S aureus (MRSA) was 48.55%, but it decreased to 38.4% by 2022. The resistance rate of Staphylococcus haemolyticus to methicillin was 100%, and 1 case of vancomycin-resistant strain was detected. K pneumoniae, P aeruginosa, A baumannii, and S aureus are the main pathogens in respiratory samples. Although the resistance rates of some multidrug-resistant strains have decreased, ESBL-producing Enterobacteriaceae, carbapenem-resistant bacteria have still increased. Therefore, it is necessary to strengthen the monitoring of pathogen resistance, promote rational use of antibiotics, and promptly report findings.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Respiratory Tract Infections , Humans , Retrospective Studies , China/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/drug therapy , COVID-19/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Microbial Sensitivity Tests , SARS-CoV-2 , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
14.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
15.
Nat Commun ; 15(1): 3947, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729951

ABSTRACT

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Neonatal Sepsis , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Neonatal Sepsis/microbiology , Neonatal Sepsis/drug therapy , Infant, Newborn , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Amikacin/pharmacology , Amikacin/therapeutic use , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Developing Countries , Drug Resistance, Multiple, Bacterial/genetics , Drug Therapy, Combination , Serratia marcescens/drug effects , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
16.
BMC Infect Dis ; 24(1): 501, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760687

ABSTRACT

BACKGROUND: The study aims were to evaluate the species distribution and antimicrobial resistance profile of Gram-negative pathogens isolated from specimens of intra-abdominal infections (IAI), urinary tract infections (UTI), respiratory tract infections (RTI), and blood stream infections (BSI) in emergency departments (EDs) in China. METHODS: From 2016 to 2019, 656 isolates were collected from 18 hospitals across China. Minimum inhibitory concentrations were determined by CLSI broth microdilution and interpreted according to CLSI M100 (2021) guidelines. In addition, organ-specific weighted incidence antibiograms (OSWIAs) were constructed. RESULTS: Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) were the most common pathogens isolated from BSI, IAI and UTI, accounting for 80% of the Gram-negative clinical isolates, while Pseudomonas aeruginosa (P. aeruginosa) was mainly isolated from RTI. E. coli showed < 10% resistance rates to amikacin, colistin, ertapenem, imipenem, meropenem and piperacillin/tazobactam. K. pneumoniae exhibited low resistance rates only to colistin (6.4%) and amikacin (17.5%) with resistance rates of 25-29% to carbapenems. P. aeruginosa exhibited low resistance rates only to amikacin (13.4%), colistin (11.6%), and tobramycin (10.8%) with over 30% resistance to all traditional antipseudomonal antimicrobials including ceftazidime, cefepime, carbapenems and levofloxacin. OSWIAs were different at different infection sites. Among them, the susceptibility of RTI to conventional antibiotics was lower than for IAI, UTI or BSI. CONCLUSIONS: Gram-negative bacteria collected from Chinese EDs exhibited high resistance to commonly used antibiotics. Susceptibilities were organ specific for different infection sites, knowledge which will be useful for guiding empirical therapies in the clinic.


Subject(s)
Anti-Bacterial Agents , Emergency Service, Hospital , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Microbial Sensitivity Tests , Humans , China/epidemiology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Emergency Service, Hospital/statistics & numerical data , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/epidemiology , Intraabdominal Infections/microbiology , Intraabdominal Infections/epidemiology , Drug Resistance, Bacterial , Female , Male
17.
Article in English | MEDLINE | ID: mdl-38791788

ABSTRACT

Public restrooms are often a hub of microbial contamination and the examination of bacterial contamination in these facilities can serve as an important indicator of the transmission of infectious diseases. This study was conducted to determine the prevalence of bacterial contamination in public restrooms based on the economic class of the building. Samples were collected from various spots in 32 restrooms found in 10 shopping malls, classifying them into two categories: upper-end restrooms and lower-end restrooms. The findings showed that the level of contamination was higher in the lower-end restrooms, with the seat being the most contaminated area. The most dominant Gram-positive bacteria were of the coagulase-negative staphylococci species, making up 86% of the identified Gram-positive isolates. The most dominant Gram-negative bacteria identified were Klebsiella pneumoniae (K. pneumoniae) and Pseudomonas aeruginosa (P. aeruginosa). The antibiotic sensitivity test results revealed the presence of multidrug-resistant bacteria among the Gram-positive and negative isolates, including Staphylococcus haemolyticus (S. haemolyticus), Staphylococcus kloosii (S. kloosii), Acinetobacter baumanii (A. baumanii), and P. aeruginosa. In conclusion, the study underscores the significance of monitoring bacterial contamination in public restrooms and the need for measures to reduce the spread of infectious diseases. Further research is crucial to gain a complete understanding of the bacterial contamination in public restrooms and their resistance patterns, to ensure the safety and health of the public. The implementation of improved cleaning practices and hands-free designs in addition to the installation of antimicrobial surfaces in restrooms can help reduce the risk of cross-contamination and prevent the spread of diseases.


Subject(s)
Drug Resistance, Multiple, Bacterial , Bacterial Load , Toilet Facilities , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Humans , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , Equipment Contamination
18.
BMC Infect Dis ; 24(1): 522, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783175

ABSTRACT

BACKGROUND: Carbapenem-resistant Gram-negative bacteria (CR-GNB) are a critical public health threat globally; however, there are inadequate surveillance data, especially in intensive care units (ICU), to inform infection prevention and control in many resource-constrained settings. Here, we assessed the prevalence of CR-GNB infections and risk factors for acquisition in a Kenyan ICU. METHODS: A hospital-based cross-sectional study design was adopted, recruiting 162 patients clinically presenting with bacterial infection after 48 h of ICU admission, from January to October 2022 at the Nairobi West Hospital, Kenya. Demographics and clinical data were collected by case report form. The type of sample collected, including blood, tracheal aspirate, ascitic tap, urine, stool, and sputum depended on the patient's clinical presentation and were transported to the hospital Microbiology laboratory in a cool box for processing within 2 h. The samples were analyzed by cultured and BD Phoenix system used for isolates' identity and antimicrobial susceptibility. RESULTS: CR-GNB infections prevalence was 25.9% (42/162), with Klebsiella pneumoniae (35.7%, 15/42) and Pseudomonas aeruginosa (26.2%, 11/42) predominating. All isolates were multidrug-resistant (MDR). P. aeruginosa and A. baumannii were 100% colistin-resistant, while K. pneumoniae (33.3%) was tigecycline-resistant. History of antibiotics (aOR = 3.40, p = 0.005) and nasogastric tube (NGT) use (aOR = 5.84, p = < 0.001) were the risk factors for infection. CONCLUSION: Our study highlights high MDR- and CR-GNB infections in ICU, with prior antibiotic exposure and NGT use as risk factors, and diminishing clinical value of colistin and tigecycline. In this study setting and beyond, strict implementation of antimicrobial stewardship programs and adherence to infection prevention and control through monitoring, evaluation and feedback are warranted to curb CR-GNB infections, especially among the risk groups.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Intensive Care Units , Humans , Kenya/epidemiology , Male , Risk Factors , Female , Intensive Care Units/statistics & numerical data , Cross-Sectional Studies , Middle Aged , Carbapenems/pharmacology , Carbapenems/therapeutic use , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Adult , Prevalence , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Aged , Cross Infection/epidemiology , Cross Infection/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Young Adult
19.
Diagn Microbiol Infect Dis ; 109(3): 116324, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733752

ABSTRACT

We aimed to determine the epidemiology and resistance patterns of Gram-negative bacteria, the risk factors and outcome of bloodstream infection (BSI). In all, 412 episodes in children who were hospitalized with the diagnosis of bacteremia were analyzed. The most common microorganisms were Klebsiella spp. (43.9%), Escherichia coli (13.5 %) and Acinetobacter spp. (10.6 %). Among isolates, 41.2 % were multidrug-resistant, 13.5 % were extensively drug-resistant and 0.4 % were pan-drug-resistant. Carbapenem resistance was revealed in 27.6 % of isolates. Carbapenem and colistin resistance increased over the years. The most common risk factors were the presence of a central-venous catheter and pediatric intensive care unit admission. Clinical response and infection-related mortality were significantly different in cases infected with carbapenem-resistant gram-negative (CRGN) vs carbapenem-susceptible gram-negative bacteria. The increase in multi-resistant Klebsiella spp. seems to be the biggest obstacles in fight against nosocomial infections. The increasing number of CRGN infections over the years affects both the clinical response and mortality rate of BSI.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Humans , Bacteremia/microbiology , Bacteremia/epidemiology , Bacteremia/mortality , Bacteremia/drug therapy , Risk Factors , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/mortality , Child , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/classification , Male , Child, Preschool , Female , Infant , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Adolescent , Infant, Newborn , Treatment Outcome , Cross Infection/microbiology , Cross Infection/epidemiology , Cross Infection/mortality , Cross Infection/drug therapy , Microbial Sensitivity Tests , Retrospective Studies , Carbapenems/pharmacology , Carbapenems/therapeutic use
20.
Bioorg Med Chem Lett ; 107: 129794, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735344

ABSTRACT

Chem-KVL is a tandem repeating peptide, with 14 amino acids that was modified based on a short peptide from a fragment of the human host defense protein chemerin. Chem-KVL increases cationicity and hydrophobicity and shows broad-spectrum antibacterial activity. To determine the molecular determinants of Chem-KVL and whether staple-modified Chem-KVL would improve antibacterial activity and protease stability or decrease cytotoxicity, we combined alanine and stapling scanning, and designed a series of alanine and staple-derived Chem-KVL peptides, termed Chem-A1 to Chem-A14 and SCL-1 to SCL-7. We next examined their antibacterial activity against several gram-positive and gram-negative bacteria, their proteolytic stability, and their cytotoxicity. Ala scanning of Chem-KVL suggested that both the positively charged residues (Lys and Arg) and the hydrophobic residues (Lue and Val) were critical for the antibacterial activities of Chem-KVL peptide. Of note, Chem-A4 was able to remarkably inhibit the growth of gram-positive and gram-negative bacteria when compared to the original peptide. And the antibacterial activities of stapled SCL-4 and SCL-7 were several times higher than those of the linear peptide against gram-positive and gram-negative bacteria. Stapling modification of peptides resulted in increased helicity and protein stability when compared with the linear peptide. These stapled peptides, especially SCL-4 and SCL-7, may serve as the leading compounds for further optimization and antimicrobial therapy.


Subject(s)
Alanine , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects , Alanine/chemistry , Alanine/pharmacology , Humans , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/chemical synthesis , Structure-Activity Relationship , Mutation , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL
...