Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.449
Filter
1.
Aquat Toxicol ; 272: 106981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843740

ABSTRACT

The increasing release of engineered nanoparticles (ENPs) in aquatic ecosystems stresses the need for stringent investigations of nanoparticle mixture toxicity towards aquatic organisms. Here, the individual and combined immunotoxicity of two of the most consumed ENPs, the ZnO and the TiO2 ones, was investigated on rainbow trout juveniles (Oncorhynchus mykiss). Fish were exposed to environmentally realistic concentrations (21 and 210 µg L-1 for the ZnO and 210 µg L-1 for the TiO2) for 28 days, and then challenged with the pathogenic bacterium, Aeromonas salmonicida achromogenes. Antioxidant and innate immune markers were assessed before and after the bacterial infection. None of the experimental conditions affected the basal activity of the studied innate immune markers and the redox balance. However, following the bacterial infection, the expression of genes coding for pro and anti-inflammatory cytokines (il1ß and il10), as well as innate immune compounds (mpo) were significantly reduced in fish exposed to the mixture. Conversely, exposure to ZnO NPs alone seemed to stimulate the immune response by enhancing the expression of the IgM and c3 genes for instance. Overall, our results suggest that even though the tested ENPs at their environmental concentration do not strongly affect basal immune functions, their mixture may alter the development of the immune response when the organism is exposed to a pathogen by interfering with the inflammatory response.


Subject(s)
Aeromonas salmonicida , Gram-Negative Bacterial Infections , Oncorhynchus mykiss , Titanium , Water Pollutants, Chemical , Zinc Oxide , Animals , Aeromonas salmonicida/drug effects , Zinc Oxide/toxicity , Oncorhynchus mykiss/immunology , Oncorhynchus mykiss/microbiology , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Immunity, Innate/drug effects , Nanoparticles/toxicity , Fish Diseases/immunology , Fish Diseases/microbiology , Metal Nanoparticles/toxicity , Cytokines/genetics , Cytokines/metabolism
2.
BMC Vet Res ; 20(1): 231, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802892

ABSTRACT

BACKGROUND: Moringa oleifera, a well-known medicinal plant, has been used in aquafeed as a dietary supplement. Based on previous studies, insufficient research is available on the dietary supplementation of Nile tilapia with M. oleifera leaf and seed mixtures, specifically the fermented form. Therefore, this study aimed to investigate the efficacy of fermented (FMO) versus non-fermented M. oleifera (MO) leaf and seed mixtures on immunological parameters, antioxidant activity, growth performance, and resistance to A. hydrophila infection after a 30-day feeding trial on Nile tilapia. METHODS: A total of 180 fingerlings were randomly divided into four groups in addition to the control group (36 fish each, in triplicate). Fish in the tested groups were fed on basal diet supplemented with MO5%, MO10%, FMO5%, and FMO10%, while those in control were fed on basal diet only. After the feeding trial, fish were challenged with A. hydrophila. The immunomodulatory activity of M. oleifera was evaluated in terms of phagocytic and lysozyme activities, immune-related cytokines and IgM gene expression. Antioxidants, and growth-promoting activities were also assessed. RESULTS: The results revealed that fish supplemented FMO markedly in FMO10% group followed by FMO5%, exhibited significant (P < 0.05) improvement in the tested immunological, hepatic antioxidants, and growth performance parameters. Furthermore, the highest survival rate post-challenge with mild clinical symptoms, and the lowest A. hydrophila bacterial count were reported in these groups. Meanwhile, MO10%-supplementation exhibited the opposite trend. CONCLUSIONS: The study' conclusion suggests that fermented M. oleifera leaf and seed mixture is a promising growth-promoting and immunostimulatory feed-additive candidate for Nile tilapia and could reduce the losses caused by A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Cichlids , Diet , Dietary Supplements , Fish Diseases , Gram-Negative Bacterial Infections , Moringa oleifera , Animals , Moringa oleifera/chemistry , Cichlids/growth & development , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Antioxidants/metabolism , Animal Feed/analysis , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology , Diet/veterinary , Plant Leaves/chemistry , Fermentation , Seeds/chemistry
3.
Article in English | MEDLINE | ID: mdl-38797004

ABSTRACT

Circular RNA (circRNA) represents a type of newly discovered non-coding RNA, distinguished by its closed loop structure formed through covalent bonds. Recent studies have revealed that circRNAs have crucial influences on host anti-pathogen responses. Yellow catfish (Pelteobagrus fulvidraco), an important aquaculture fish with great economic value, is susceptible to Aeromonas veronii, a common aquatic pathogen that can cause acute death. Here, we reported the first systematic investigation of circRNAs in yellow catfish, especially those associated with A. veronii infection at different time points. A total of 1205 circRNAs were identified, which were generated from 875 parental genes. After infection, 47 circRNAs exhibited differential expression patterns (named DEcirs). The parental genes of these DEcirs were functionally engaged in immune-related processes. Accordingly, seven DEcirs (novel_circ_000226, 278, 401, 522, 736, 843, and 975) and six corresponding parental genes (ADAMTS13, HAMP1, ANG3, APOA1, FGB, and RALGPS1) associated with immunity were obtained, and their expression was confirmed by RT-qPCR. Moreover, we found that these DEcir-gene pairs likely acted through pathways, such as platelet activation, antimicrobial humoral response, and regulation of Ral protein signal transduction, to influence host immune defenses. Additionally, integrated analysis showed that, of the 7 immune-related DEcirs, three targeted 16 miRNAs, which intertwined into circRNA-miRNA networks. These findings revealed that circRNAs, by targeting genes or miRNAs are highly involved in anti-bacterial responses in yellow catfish. Our study comprehensively illustrates the roles of circRNAs in yellow catfish immune defenses. The identified DEcirs and the circRNA-miRNA network will contribute to the further investigations on the molecular mechanisms underlying yellow catfish immune responses.


Subject(s)
Aeromonas veronii , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , RNA, Circular , RNA, Circular/genetics , Animals , Catfishes/genetics , Catfishes/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/genetics
4.
Fish Shellfish Immunol ; 150: 109628, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750706

ABSTRACT

The efficacy of phoxim in treating bacterial sepsis in silver carp is significant, yet its underlying mechanism remains elusive. This study aimed to establish a model of Aeromonas veronii infection in silver carp and subsequently treat the infected fish with 10 µg/L phoxim. Kidney and intestine samples from silver carp were collected for transcriptome analysis and assessment of intestinal microbial composition, with the aim of elucidating the mechanism underlying the efficacy of phoxim in treating bacterial sepsis in silver carp. The results of transcriptome and intestinal microbial composition analysis of silver carp kidney indicated that A. veronii infection could up-regulate the expression of il1ß, il6, nos2, ctsl, casp3 et al., which means, signifying that the kidney of silver carp would undergo inflammation, induce apoptosis, and alter the composition of intestinal microorganisms. Phoxim immersion might enhance the energy metabolism of silver carp and change its intestinal microbial composition, potentially elevating the antibacterial infection resistance of silver carp. These findings may contribute to an understanding of how phoxim can effectively treat bacterial sepsis in silver carp.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Organothiophosphorus Compounds , Animals , Carps/immunology , Fish Diseases/immunology , Organothiophosphorus Compounds/pharmacology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/drug therapy , Aeromonas veronii/physiology , Gastrointestinal Microbiome/drug effects
5.
Fish Shellfish Immunol ; 150: 109627, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754649

ABSTRACT

The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.


Subject(s)
Aeromonas hydrophila , Catfishes , Edwardsiella tarda , Enterobacteriaceae Infections , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Phylogeny , Toll-Like Receptor 2 , Toll-Like Receptor 5 , Animals , Catfishes/immunology , Catfishes/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Immunity, Innate/genetics , Aeromonas hydrophila/physiology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Edwardsiella tarda/physiology , Gene Expression Profiling/veterinary , Gene Expression Regulation/immunology , Transcriptome
6.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739115

ABSTRACT

Aeromonas spp. are commonly found in the aquatic environment and have been responsible for motile Aeromonas septicemia (MAS) in striped catfish, resulting in significant economic loss. These organisms also cause a range of opportunistic infections in humans with compromised immune systems. Here, we conducted a genomic investigation of 87 Aeromonas isolates derived from diseased catfish, healthy catfish and environmental water in catfish farms affected by MAS outbreaks in eight provinces in Mekong Delta (years: 2012-2022), together with 25 isolates from humans with bloodstream infections (years: 2010-2020). Genomics-based typing method precisely delineated Aeromonas species while traditional methods such as aerA PCR and MALDI-TOF were unable identify A. dhakensis. A. dhakensis was found to be more prevalent than A. hydrophila in both diseased catfish and human infections. A. dhakensis sequence type (ST) 656 followed by A. hydrophila ST251 were the predominant virulent species-lineages in diseased catfish (43.7 and 20.7 %, respectively), while diverse STs were found in humans with bloodstream infections. There was evidence of widespread transmission of ST656 and ST251 on striped catfish in the Mekong Delta region. ST656 and ST251 isolates carried a significantly higher number of acquired antimicrobial resistance (AMR) genes and virulence factors in comparison to other STs. They, however, exhibited several distinctions in key virulence factors (i.e. lack of type IV pili and enterotoxin ast in A. dhakensis), AMR genes (i.e. presence of imiH carbapenemase in A. dhakensis), and accessory gene content. To uncover potential conserved proteins of Aeromonas spp. for vaccine development, pangenome analysis has unveiled 2202 core genes between ST656 and ST251, of which 78 proteins were in either outer membrane or extracellular proteins. Our study represents one of the first genomic investigations of the species distribution, genetic landscape, and epidemiology of Aeromonas in diseased catfish and human infections in Vietnam. The emergence of antimicrobial resistant and virulent A. dhakensis strains underscores the needs of enhanced genomic surveillance and strengthening vaccine research and development in preventing Aeromonas diseases in catfish and humans, and the search for potential vaccine candidates could focus on Aeromonas core genes encoded for membrane and secreted proteins.


Subject(s)
Aeromonas , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Sepsis , Animals , Catfishes/microbiology , Vietnam/epidemiology , Aeromonas/genetics , Aeromonas/isolation & purification , Aeromonas/classification , Aeromonas/pathogenicity , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/epidemiology , Humans , Sepsis/microbiology , Sepsis/veterinary , Sepsis/epidemiology , Fish Diseases/microbiology , Phylogeny , Genomics , Genome, Bacterial , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology
7.
Front Immunol ; 15: 1376860, 2024.
Article in English | MEDLINE | ID: mdl-38799475

ABSTRACT

Introduction: Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods: Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results: The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1ß, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion: The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Liver , Metabolome , Metabolomics , Signal Transduction , Transcriptome , Turtles , Animals , Turtles/microbiology , Turtles/immunology , Turtles/genetics , Aeromonas hydrophila/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Liver/metabolism , Gene Expression Profiling
8.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633150

ABSTRACT

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Subject(s)
Cichlids , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/metabolism , Cichlids/metabolism , Disease Resistance , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Dietary Supplements , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress , Gene Expression
9.
Comp Immunol Microbiol Infect Dis ; 108: 102169, 2024 May.
Article in English | MEDLINE | ID: mdl-38579648

ABSTRACT

The role of small animal veterinary hospitals in the onset and dissemination of antimicrobial-resistant organisms (AMROs) is still not clear, and the implementation of an internal surveillance systems is a cost-effective tool to better understand their impact. The aim of this study was to describe a pilot program of active surveillance in a Spanish Veterinary Teaching Hospital, developed to estimate the detection frequency of AMROs in the commensal flora of patients and in the environment. Surveillance was focused on Methicillin-resistant Staphylococci (MRS), third generation cephalosporins resistant gram-negative bacteria (3GCR-GNB), and carbapenems-resistant gram-negative bacteria (CR-GNB). Oral and perirectal swabs were collected in the same dogs and cats hospitalized > 48 h, at their admission and before their discharge. Out of 50 patients sampled, 24% (12/50) were carriers at admission of at least one of the three investigated AMROs. Twenty-eight percent of patients (14/50) acquired at least one AMRO during the hospital stay. MRS detection frequency at admission was 12% (6/50), while acquisition was 6% (3/50). 3GCR-GNB detection frequency was 14% at admission (7/50) and acquisition 22% (11/50), while CR-GNB detection frequency was 2% at admission (1/50) and acquisition 2% (1/50). Environmental surveillance (98 samples) showed a total detection frequency of 22.4% for MRS (22/98), 2% for 3GCR-GNB and CR-GNB (2/98). Clinical staff' shoe soles showed high detection frequency for MRS (50%). 3GCR Escherichia coli was the most isolated species in patients (n = 17). The results show how active surveillance can be used as a tool to assess the impact of AMROs in veterinary hospitals to subsequently build up tailored control plans based on specific issues.


Subject(s)
Cat Diseases , Dog Diseases , Gram-Negative Bacterial Infections , Humans , Animals , Cats , Dogs , Anti-Bacterial Agents/pharmacology , Hospitals, Animal , Pilot Projects , Cat Diseases/microbiology , Watchful Waiting , Drug Resistance, Bacterial , Hospitals, Teaching , Dog Diseases/microbiology , Carbapenems , Gram-Negative Bacteria , Staphylococcus , Escherichia coli , Gram-Negative Bacterial Infections/veterinary
10.
Arch Microbiol ; 206(5): 219, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627275

ABSTRACT

Aeromonas hydrophila is one of the major freshwater fish pathogens. In the current study, a cocktail of D6 and CF7 phages was given orally to Labeo rohita to assess phage survival in fish organs as well as to determine the therapeutic efficacy of phage treatment against fish mortality caused by A. hydrophila. In the phage-coated feed, prepared by simple spraying method, phage counts were quite stable for up to 2 months with a decline of ≤ 0.23 log10 and ≤ 1.66 log10 PFU/g feed during 4 oC and room temperature storage. Throughout the experimental period of 7 days, both phages could be detected in the gut of fish fed with phage-coated feed. Besides, both CF7 and D6 phages were also detected in fish kidneys indicating the ability of both the phage to cross the intestinal barrier. During challenge studies with LD50 dose of A. hydrophila, phage cocktail doses of 1 × 106 - 1 × 108 PFU/g feed prevented the mortality in L. rohita with relative percentage survival (RPS) of 8.7-65.2. When challenged with LD90 dose of A. hydrophila, an RPS value of 28.6 was obtained at a phage cocktail dose of 1 × 108 PFU/g feed. The RPS data showed that orally-fed phage cocktail protected the fish against the mortality caused by A. hydrophila in a dose-dependent manner. Simple practical approaches for phage cocktail development, medicated feed preparation and oral administration along with phage survival and protection data make the current study useful for farmer-level application.


Subject(s)
Bacteriophages , Cyprinidae , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary
11.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636736

ABSTRACT

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Subject(s)
Aeromonas hydrophila , Arginase , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Mitochondria , Nitric Oxide , Animals , Aeromonas hydrophila/physiology , Arginase/genetics , Arginase/metabolism , Fish Diseases/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Nitric Oxide/metabolism , Carps/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Arginine
12.
Fish Shellfish Immunol ; 149: 109588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677630

ABSTRACT

In aquaculture, fluctuating water temperatures can act as a potent stressor, influencing the virulence and transmission dynamics of pathogenic bacteria, potentially triggering outbreaks and impacting fish health. The purpose of this work was to examine the impact of Shewanella spp. infection on hematological, biochemical, and antioxidant-immune parameters of Nile tilapia (Oreochromis niloticus) under different water temperatures. For this purpose, 180 fish were divided into 6 groups in triplicate (30 fish per group; 10 fish per replicate). Group 1 (G1), G2, and G3 were reared at varying water temperatures (22 °C, 28 °C, and 31 °C, respectively) without infection. While G4, G5, and G6 were IP-injected with 0.2 mL of Shewanella spp. (0.14 × 105) and reared at 22 °C, 28 °C, and 31 °C, respectively. Shewanella spp. infection induced significant lowering (p < 0.05) in hematological parameters (red and white blood cells, hemoglobin, and packed cell volume%) and immune-antioxidant responses (phagocytic activity%, phagocytic index, lysozyme, nitric oxide), total antioxidant capacity, catalase, and reduced glutathione, especially at 22 °C. Moreover, a significant increase (p < 0.05) in the hepato-renal function indicators (alanine aminotransferase, aspartate aminotransferase, urea, and creatinine), stress biomarkers (glucose and cortisol), malondialdehyde, and pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor-α) were the consequences of the Shewanella spp. infection, especially at 22 °C. The Shewanella spp. infection exhibited marked histopathological changes in the hepatic and renal tissues. Worthily, Shewanella spp. can cause detrimental alterations in Nile tilapia's hematological, biochemical, and antioxidant-immune parameters at various water temperatures, but the major detrimental changes were observed at a water temperature of 22 °C. Consequently, we can conclude that the infection dynamics of Shewanella spp. are exaggerated at 22 °C. These outcomes could help in understanding the nature of such an infection in Nile tilapia.


Subject(s)
Antioxidants , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Shewanella , Temperature , Animals , Shewanella/physiology , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Antioxidants/metabolism , Immunity, Innate
13.
Fish Shellfish Immunol ; 149: 109547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593522

ABSTRACT

Heat-killed probiotics offer an alternative approach to enhance growth and disease resistance in farmed fish. In this study, we isolated Lactiplantibacillus plantarum VSG3 from the gut of Labeo rohita to investigate the effects of heat-killed L. plantarum (HK-LP) on the health and growth performance of Cyprinus carpio fingerlings. Different concentrations of HK-LP (0, 50, 100, 200, 300, and 400 mg/kg) were administered to the fish, followed by a challenge with Aeromonas hydrophila after 8 weeks of feeding. Notably, the LP200 group exhibited significantly improved percentage weight gain and specific growth rate, accompanied by the lowest feed conversion ratio. Post-challenge survival rates were considerably enhanced in the LP200 group, reaching 60.65%. Moreover, serum analysis indicated significantly higher levels of total protein and albumin in the LP200 group than in the control group. Although HK-LP had no substantial impact on certain serum parameters (glucose, total cholesterol, cortisol, and alanine aminotransferase), aspartate aminotransferase levels were considerably low in the LP200 group. Intestinal protease and trypsin activities significantly increased in the LP200 group, while no significant changes were observed in lipase and amylase activities post-pathogen challenge. Serum immunological indices, including lysozyme, alternative complement pathway, and phagocytic activity, improved considerably in the LP200 group. Additionally, serum antioxidant enzyme activities (superoxide dismutase [SOD], glutathione peroxidase [GPx], catalase [CAT], and myeloperoxidase) were significantly elevated in the LP200 group, while malondialdehyde level was reduced. Gene expression analysis in liver tissue indicated strong upregulation of antioxidant-related genes (SOD, CAT, nuclear factor erythroid 2 [NFE2]-related factor 2 [Nrf2], Kelch-like ECH-associated protein 1[Keap1]) in the LP100 and LP200 groups. Pro-inflammatory cytokines (IL-1ß and TNF-α) were considerably downregulated in the kidneys of the LP200 post-challenged fish, although the anti-inflammatory cytokine IL-10 showed an increased expression. Quadratic regression analysis identified the optimal dietary HK-LP level for maximizing growth and immune performance (200.381-270.003 mg/kg). In summary, our findings underscore the potential of HK-LP as a valuable dietary supplement for enhancing carp aquaculture, particularly at the appropriate concentration.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Carps , Diet , Fish Diseases , Gram-Negative Bacterial Infections , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Carps/immunology , Carps/growth & development , Animal Feed/analysis , Fish Diseases/immunology , Diet/veterinary , Aeromonas hydrophila/physiology , Antioxidants/metabolism , Immunity, Innate , Lactobacillus plantarum/chemistry , Hot Temperature , Gene Expression , Dietary Supplements/analysis , Random Allocation , Disease Resistance
14.
J Invertebr Pathol ; 204: 108120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679366

ABSTRACT

Shewanella putrefaciens is a vital bacterial pathogen implicated in serious diseases in Chinese mitten crab Eriocheir sinensis. Yet the use of probiotics to improve the defense ability of E. sinensis against S. putrefaciens infection remains poorly understood. In the present study, the protective effect of dietary R. sphaeroides against S. putrefaciens infection in E. sinensis was evaluated through antioxidant capability, immune response, and survival under bacterial challenge assays, and its protective mechanism was further explored using a combination of intestinal flora and metabolome assays. Our results indicated that dietary R. sphaeroides could significantly improve immunity and antioxidant ability of Chinese mitten crabs, thereby strengthening their disease resistance with the relative percentage survival of 81.09% against S. putrefaciens. In addition, dietary R. sphaeroides could significantly alter the intestinal microbial composition and intestinal metabolism of crabs, causing not only the reduction of potential threatening pathogen load but also the increase of differential metabolites in tryptophan metabolism, pyrimidine metabolism, and glycerophospholipid metabolism. Furthermore, the regulation of differential metabolites such as N-Acetylserotonin positively correlated with beneficial Rhodobacter could be a potential protection strategy for Shewanella infection. To the best of our knowledge, this is the first study to illustrate the protective effect and mechanism of R. sphaeroides supplementation to protect E. sinensis against S. putrefaciens infection.


Subject(s)
Brachyura , Gastrointestinal Microbiome , Rhodobacter sphaeroides , Shewanella putrefaciens , Animals , Brachyura/microbiology , Brachyura/immunology , Gastrointestinal Microbiome/physiology , Rhodobacter sphaeroides/metabolism , Probiotics/pharmacology , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Dietary Supplements
15.
An Acad Bras Cienc ; 96(1): e20230188, 2024.
Article in English | MEDLINE | ID: mdl-38597489

ABSTRACT

The growing increase in the fish farming sector has favored the establishment of bacterial outbreaks caused by Aeromonas hydrophila in several species. The hexane extract of Hesperozygis ringens (HEHR) (Lamiaceae) leaves increased the survival rate of silver catfish (Rhamdia quelen) experimentally infected by A. hydrophila. However, it is noteworthy that no reports have been found on the possible mechanisms of action of this extract in infected fish. This study aimed to evaluate the effect of the HEHR, administered through single immersion bath, on lipid peroxidation and antioxidant defenses in muscle and liver tissue of silver catfish challenged with A. hydrophila. The results showed that the oxidative status of silver catfish was altered, although oxidative stress was not triggered during the experiment. HEHR at 30 mg/L (HEHR30) was not characterized as a pro-oxidant agent in the presence of infection, unlike florfenicol and HEHR at 15 mg/L treatments in some cases. In short, HEHR30 provided an important increase in hepatic catalase activity, characterizing one of the possible mechanisms involved in the greater survival of fish experimentally infected by A. hydrophila. Additionally, HEHR30 did not induce lipid peroxidation, nor reduced antioxidant defenses of silver catfish infected or not by A. hydrophila.


Subject(s)
Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Lamiaceae , Animals , Aeromonas hydrophila , Antioxidants/pharmacology , Hexanes , Immersion , Oxidation-Reduction , Fish Diseases/drug therapy , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology
16.
Fish Shellfish Immunol ; 148: 109521, 2024 May.
Article in English | MEDLINE | ID: mdl-38552889

ABSTRACT

In mammals, ß-catenin participates in innate immune process through interaction with NF-κB signaling pathway. However, its role in teleost immune processes remains largely unknown. We aimed to clarify the function of ß-catenin in the natural defense mechanism of Qi river crucian carp (Carassius auratus). ß-catenin exhibited a ubiquitous expression pattern in adult fish, as indicated by real-time PCR analysis. Following lipopolysaccharide (LPS), Polyinosinic-polycytidylic acid (polyI: C) and Aeromonas hydrophila (A. hydrophila) challenges, ß-catenin increased in gill, intestine, liver and kidney, indicating that ß-catenin likely plays a pivotal role in the immune response against pathogen infiltration. Inhibition of the ß-catenin pathway using FH535, an inhibitor of Wnt/ß-catenin pathway, resulting in pathological damage of the gill, intestine, liver and kidney, significant decrease of innate immune factors (C3, defb3, LYZ-C, INF-γ), upregulation of inflammatory factors (NF-κB, TNF-α, IL-1, IL-8), and downregulation of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities, increase of Malondialdehyde (MDA) content. Following A. hydrophila invasion, the mortality rate in the FH535 treatment group exceeded that of the control group. In addition, the diversity of intestinal microflora decreased and the community structure was uneven after FH535 treatment. In summary, our findings strongly suggest that ß-catenin plays a vital role in combating pathogen invasion and regulating intestinal flora in Qi river crucian carp.


Subject(s)
Carps , Fish Diseases , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Sulfonamides , Animals , Goldfish/genetics , Goldfish/metabolism , Carps/genetics , Carps/metabolism , NF-kappa B , Rivers , beta Catenin/genetics , Qi , Immunity, Innate/genetics , Antioxidants , Aeromonas hydrophila/physiology , Fish Proteins , Gram-Negative Bacterial Infections/veterinary , Mammals/metabolism
17.
Microb Pathog ; 190: 106614, 2024 May.
Article in English | MEDLINE | ID: mdl-38492825

ABSTRACT

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Eleutherococcus , Fermentation , Fish Diseases , Lacticaseibacillus rhamnosus , Probiotics , Animals , Lacticaseibacillus rhamnosus/metabolism , Carps/microbiology , Probiotics/pharmacology , Probiotics/administration & dosage , Antioxidants/metabolism , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Animal Feed , Inflammation/prevention & control , Cytokines/metabolism , Aquaculture
18.
J Fish Dis ; 47(7): e13943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38481095

ABSTRACT

Streptococcosis and aeromoniasis are the main obstacles to sustainable tilapia production. Vaccination offered an effective method to control microbial infections. Previously, a feed-based bivalent vaccine (FBBV) containing killed whole organisms of Streptococcus agalactiae and Aeromonas hydrophila mixed with 10% palm oil was successfully developed, which provided good protection against streptococcosis and aeromoniasis in Oreochromis sp. However, the mechanisms of immunities in vaccinated fish still need clarification. Here, the hindgut transcriptome of vaccinated and control fish was determined, as the gut displays higher affinity towards antigen uptake and nutrient absorption. The efficacy of FBBV to improve fish immunity was evaluated according to the expression of immune-related genes in the vaccinated fish hindgut throughout the 8-week experimental period using RT-qPCR. The vaccinated fish hindgut at week 6 was further subjected to transcriptomic analysis due to the high expression of immune-related genes and contained killed whole organisms. Results demonstrated the expression of immune-related genes was in correlation with the presence of killed whole organisms in the vaccinated fish hindgut. Transcriptomic analysis has allowed the prediction of robust immune-related pathways, including innate and adaptive immunological responses in vaccinated fish hindgut than control fish. Pathways related to the regulation of lipid metabolism and modulation of the immune system were also significantly enriched (p ≤ .05). Overall, results offer a fundamental study on understanding the immunological response in Oreochromis sp. following vaccination with the FBBV pellet and support further application to prevent bacterial diseases in aquaculture.


Subject(s)
Aeromonas hydrophila , Bacterial Vaccines , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Streptococcus agalactiae , Transcriptome , Vaccination , Animals , Fish Diseases/prevention & control , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Vaccination/veterinary , Aeromonas hydrophila/immunology , Cichlids/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Streptococcus agalactiae/immunology , Animal Feed/analysis , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Gene Expression Profiling/veterinary
19.
J Fish Dis ; 47(7): e13942, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38492216

ABSTRACT

Ulcerative dermatitis (UD) is common in ornamental fish collections and is typically associated with a wide range of bacterial aetiologies. Clinical reports describing Shewanella xiamenensis-associated UD are limited, however, despite growing attention to pathogenic Shewanella species in fish. Two out of 95 koi carp with UD were presented for clinical assessment by a commercial collection (n = 3000 fish) and subsequently killed on welfare grounds for necropsy. Both specimens exhibited extensive cutaneous ulcers and coelomic fat necrosis with petechial haemorrhages on post-mortem examination. Shewanella xiamenensis was cultured from ulcerated skin tissues taken from both fish, with consistent intralesional gram-negative rod-like bacteria seen on skin scrape cytology. Histology also confirmed intralesional gram-negative rod-like bacteria within multiple ulcerative and erosive dermatitis lesions, plus myofibre necrosis and necrotising coelomic steatitis, in both specimens. Features associated with impaired generalised osmoregulation secondary to UD were detected within the striated muscle underlying the ulcers, the gills, and the caudal aspects of the kidneys. Additional histological features suggestive of sepsis were also seen in one of the fish. In the interim period, morbidity had increased from 3.2% to around 30% of the entire stock. Following culture results, increased pond water changes were implemented (q.2-3d) and the remaining stock was treated with florfenicol, resulting in complete resolution of UD in the collection (as per client). This article highlights the first description of S. xiamenensis-associated UD in koi carp/diseased ornamental fish in the United Kingdom.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Shewanella , Animals , Shewanella/isolation & purification , Fish Diseases/microbiology , Fish Diseases/pathology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , Skin Ulcer/veterinary , Skin Ulcer/microbiology , Skin Ulcer/pathology , Dermatitis/veterinary , Dermatitis/microbiology , Dermatitis/pathology
20.
J Fish Dis ; 47(7): e13944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523320

ABSTRACT

Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.


Subject(s)
Adaptive Immunity , Aeromonas salmonicida , Bacterial Vaccines , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas salmonicida/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/prevention & control , Bacterial Vaccines/immunology , Furunculosis/immunology , Furunculosis/prevention & control , Furunculosis/microbiology , Perciformes/immunology , Antigens, Bacterial/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...