Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.462
Filter
1.
Acta Vet Scand ; 66(1): 26, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956712

ABSTRACT

Capnocytophaga canimorsus and Capnocytophaga cynodegmi are commensal bacteria in the oral cavities of dogs. Both are zoonotic pathogens that could infect humans via dog bites. C. canimorsus may cause life-threatening infections in humans, whereas C. cynodegmi infections tend to be milder and more localized. Capsular serovars A-C of C. canimorsus seem to be virulence-associated. Some of the C. canimorsus serovars described to date can also be detected in other Capnocytophaga species, including C. cynodegmi. The objective of this pilot study was to investigate the emergence of C. canimorsus and C. cynodegmi after birth in oral cavities of puppies and to evaluate the impact of the dam's Capnocytophaga spp. carrier status on the emergence. Ten litters, altogether 59 puppies, were included in the study. The puppies and their dams were sampled at five time points over seven weeks after whelping. Oral swab samples taken were investigated for the presence of C. canimorsus and C. cynodegmi by species-specific polymerase chain reaction (PCR), the specificity of which was verified by sequencing a selection of the PCR products. Samples that were positive in Capnocytophaga PCR reactions were also capsular-typed by PCR to gain more knowledge about the Capnocytophaga spp. present in the samples. Altogether 10.2% and 11.9% of puppies, or 20.0% and 30.0% of litters tested PCR-positive for C. canimorsus and C. cynodegmi, respectively. Capnocytophaga PCR-positive puppy samples were always positive for only C. cynodegmi or C. canimorsus, not both. Most Capnocytophaga PCR-positive puppies became positive at the age of 5 to 7 weeks. Only a minority (5/16) of the C. cynodegmi PCR-positive dog samples were positive in capsular typing PCR, whereas all C. canimorsus PCR-positive dog samples were negative in capsular typing PCR. For all Capnocytophaga PCR-positive puppies, their dam was positive for the same Capnocytophaga species. These results suggest that puppies become colonized by C. cynodegmi or C. canimorsus from their dams at the time of deciduous teeth eruption.


Subject(s)
Animals, Newborn , Capnocytophaga , Dog Diseases , Gram-Negative Bacterial Infections , Mouth , Animals , Capnocytophaga/isolation & purification , Capnocytophaga/genetics , Dogs , Pilot Projects , Mouth/microbiology , Animals, Newborn/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Dog Diseases/microbiology , Dog Diseases/diagnosis , Female , Male
2.
Schweiz Arch Tierheilkd ; 166(7): 368-378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975649

ABSTRACT

INTRODUCTION: Ovine foot rot is a highly contagious and multifactorial claw disease, caused by Dichelobacter nodosus (D. nodosus) and is the main cause of lameness in sheep. The aim of this cross-sectional study was to determine the prevalence of D. nodosus in western Austria both at animal and farm levels. Real-time PCR was evaluated in comparison with clinical and bacteriological investigations from interdigital foot swabs to detect D. nodosus-infected animals. In addition, the use of pooled four-foot swabs to detect foot rot was determined. In course of the study a total of 3156 sheep from 124 farms were examined for lameness and clinical signs of foot rot. The found flock prevalence of D. nodosus was 30,65 % with bacterial culture showing a sensitivity of 75,0 % and a specificity of 100,0 % (p < 0,001) respectively, compared with PCR. Furthermore, clinical foot rot scores (Ckorr = 0,87; p < 0,001) and lameness scores (Ckorr = 0,71; p < 0,001) highly correlated with the detection of D. nodosus by PCR. The result showed that the clinical examination can be used to identify animals infected with D. nodosus in flocks, but PCR must be used to confirm the diagnosis. D. nodosus could be detected equally well with risk-based pools-of-five samples as with undiluted samples (p < 0,001), suggesting that a pool-of-five samples might be a suitable and cost-effective method for detecting D. nodosus in sheep flocks. This study provides an overview of foot rot in Tyrolean sheep flocks and outlines the possibilities and limitations of the various diagnostic tools for D. nodosus. Further studies to investigate possible influencing factors, including alpine pasturing, management factors and biosecurity predisposing to foot rot are necessary for the design of effective future control programs in alpine regions.


INTRODUCTION: Le piétin ovin est une maladie des onglons hautement contagieuse et multifactorielle, causée par Dichelobacter nodosus (D. nodosus) qui constitue la principale cause de boiterie chez les ovins. L'objectif de cette étude transversale était de déterminer la prévalence de D. nodosus dans l'ouest de l'Autriche, tant au niveau de l'animal que de l'exploitation. La PCR en temps réel a été évaluée en comparaison avec les examens cliniques et bactériologiques effectués à partir d'écouvillons des espaces interdigités pour détecter les animaux infectés par D. nodosus. En outre, l'utilisation d'un pool d'écouvillons des quatre membres pour détecter le piétin a été déterminée. Au cours de l'étude, un total de 3156 moutons provenant de 124 fermes ont été examinés pour détecter des boiteries et des signes cliniques de piétin. La prévalence de D. nodosus dans les troupeaux était de 30,65 %, la culture bactérienne montrant une sensibilité de 75 % et une spécificité de 100 % (p < 0,001), respectivement, par rapport à la PCR. En outre, les scores cliniques de piétin (Ckorr = 0,87; p < 0,001) et les scores de boiterie (Ckorr = 0,71; p < 0,001) étaient fortement corrélés avec la détection de D. nodosus par PCR. Les résultats montrent que l'examen clinique peut être utilisé pour identifier les animaux infectés par D. nodosus dans les troupeaux mais que la PCR doit être utilisée pour confirmer le diagnostic. D. nodosus a pu être détecté aussi bien avec des pools de cinq échantillons basés sur le risque qu'avec des échantillons non dilués (p < 0,001), ce qui suggère qu'un pool de cinq échantillons pourrait être une méthode appropriée et rentable pour détecter D. nodosus dans les troupeaux de moutons. Cette étude donne un aperçu du piétin dans les troupeaux de moutons tyroliens et souligne les possibilités et les limites des différents outils de diagnostic pour D. nodosus. D'autres études visant à examiner les facteurs d'influence possibles, y compris les pâturages alpins, les facteurs de gestion et la biosécurité prédisposant au piétin, sont nécessaires pour la conception de futurs programmes de contrôle efficaces dans les régions alpines.


Subject(s)
Dichelobacter nodosus , Foot Rot , Gram-Negative Bacterial Infections , Lameness, Animal , Sheep Diseases , Animals , Dichelobacter nodosus/genetics , Dichelobacter nodosus/isolation & purification , Foot Rot/microbiology , Foot Rot/epidemiology , Foot Rot/diagnosis , Sheep Diseases/epidemiology , Sheep Diseases/microbiology , Sheep Diseases/diagnosis , Sheep , Lameness, Animal/epidemiology , Lameness, Animal/microbiology , Lameness, Animal/diagnosis , Austria/epidemiology , Cross-Sectional Studies , Prevalence , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/methods , Sensitivity and Specificity
3.
BMC Vet Res ; 20(1): 324, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026304

ABSTRACT

Environmental stressors (such as ammonia) in aquaculture could increase the risk of pathogenicity, posing a more severe threat to farmed fish. The aim of this study was to investigate the effects of ammonia stress on the pathogenicity of Shewanella spp. in Oreochromis niloticus. First, a 96-hour static test was used to determine the median lethal concentration (LC50) of unionized ammonia to Nile tilapia. After 96 h of exposure, the Un-ionized ammonia (UIA) LC50 was estimated to be 4.26 mg/L. Second, an experiment was conducted to test the effect of unionized ammonia stress on the pathogenicity of Shewanella spp. in O. niloticus for 30 days. A study involved 180 fish divided into six groups, with the first group serving as a control. The second group (AMN1/10) and the third group (AMN1/20) were not challenged and were exposed to 1/10 (0.42 mg/L) and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. Then 0.2 mL (0.14 × 105) of Shewanella spp. was intraperitoneally injected into the fourth (SH), fifth (SH + AMN1/10), and sixth (SH + AMN1/20) groups, which were subjected to 0, 1/10 (0.42 mg/L), and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. The survival rate, hematological indices, immunological parameters, and antioxidant activity of the fish significantly decreased when they were exposed to ammonia and Shewanella infection separately or together. Histopathological changes were also observed in the kidney and liver. Furthermore, both individual and combined exposures significantly altered renal and hepatic function, with notable increases in glucose and cortisol levels, as well as in the expression of proinflammatory cytokine genes (TNF-α and IL-1ß). However, the detrimental effects of co-exposure to ammonia stress and Shewanella infection were greater than those of separate exposures. As a result, we may say that increased ammonia concentrations enhance the infection of Shewanella spp. These findings could contribute to a better understanding of Shewanella infection in Nile tilapia.


Subject(s)
Ammonia , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Shewanella , Animals , Shewanella/pathogenicity , Shewanella/drug effects , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Stress, Physiological/drug effects , Lethal Dose 50
4.
Acta Vet Hung ; 72(2): 66-70, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38896488

ABSTRACT

Nowadays, the three strongly beta-haemolytic spirochaetes, Brachyspira hyodysenteriae, Brachyspira suanatina and Brachyspira hampsonii are thought to be causative agents of swine dysentery, an economically devastating disease of grow-finish pigs characterised by severe mucohaemorrhagic diarrhoea. B. hyodysenteriae has been reported in most leading swine-producing regions. B. suanatina and B. hampsonii have been successfully recovered from faecal samples collected in a few countries only. The present study was performed in March 2023 on faecal samples originating from nine Polish finisher farms with 6,000 to 18,000 animals in a location. Samples were obtained from 40 diarrhoeic finishers. Nucleic acid extracted from the samples was analysed using multiplex PCR for Brachyspira spp. From a total of nine sample populations examined in our study, the genetic material of B. hampsonii was identified in two. To the best of our knowledge, this is the first report on molecular detection of B. hampsonii on pig farms outside North America, Belgium and Germany. Our research highlights the need for increased focus directed on laboratory testing strategies, the lack of which may perplex swine practitioners and severely hinder a definite diagnosis.


Subject(s)
Brachyspira , Gram-Negative Bacterial Infections , Swine Diseases , Animals , Poland/epidemiology , Swine Diseases/microbiology , Swine Diseases/epidemiology , Swine , Brachyspira/isolation & purification , Brachyspira/genetics , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Feces/microbiology
5.
Dev Comp Immunol ; 158: 105210, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38844187

ABSTRACT

Interleukin (IL) 20 is a multifunctional cytokine and plays a vital role in regulating autoimmune diseases, inflammation, and immune responses. IL-20 homologs have been described in fish. However, due to the lack of antibodies, cellular sources and immunological functions of fish IL-20 in response to infections have not been fully characterized. In this study, a monoclonal antibody (mAb) was generated against the recombinant grass carp (Ctenopharyngodon idella) IL-20 protein and characterized by immunoblotting, immunofluorescent microscopy and flow cytometry. It was shown that the IL-20 mAb specifically recognized recombinant IL-20 proteins expressed in the E. coli cells and HEK293 cells. Using confocal microscopy, the IL-20+ cells were identified in the head kidney, gills and intestine of grass carp, and induced after infection with Aeromonas hydrophila. Moreover, the IL-20 protein was found to be secreted mainly by CD3γδ T cells which were located predominantly in the gill filaments and intestinal mucosa. Taken together, our results suggest that IL-20 producing T cells are required for the mucosal immunity against bacterial infection in fish.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Mucosal , Interleukins , Animals , Carps/immunology , Carps/microbiology , Aeromonas hydrophila/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/immunology , Fish Proteins/metabolism , Fish Proteins/genetics , Humans , Interleukins/metabolism , Interleukins/immunology , HEK293 Cells , Gills/immunology , Gills/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , Antibodies, Monoclonal/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , T-Lymphocytes/immunology , Mucous Membrane/immunology
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928143

ABSTRACT

Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA-mRNA-protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases.


Subject(s)
Aeromonas hydrophila , Carps , MicroRNAs , RNA, Messenger , Reoviridae , Transcriptome , Animals , Carps/genetics , Carps/microbiology , Carps/virology , Carps/immunology , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reoviridae/physiology , Proteomics/methods , Fish Diseases/microbiology , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Gene Expression Profiling , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/genetics , Cell Line , Reoviridae Infections/veterinary , Reoviridae Infections/immunology , Reoviridae Infections/genetics , Gene Regulatory Networks
7.
Aquat Toxicol ; 272: 106981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843740

ABSTRACT

The increasing release of engineered nanoparticles (ENPs) in aquatic ecosystems stresses the need for stringent investigations of nanoparticle mixture toxicity towards aquatic organisms. Here, the individual and combined immunotoxicity of two of the most consumed ENPs, the ZnO and the TiO2 ones, was investigated on rainbow trout juveniles (Oncorhynchus mykiss). Fish were exposed to environmentally realistic concentrations (21 and 210 µg L-1 for the ZnO and 210 µg L-1 for the TiO2) for 28 days, and then challenged with the pathogenic bacterium, Aeromonas salmonicida achromogenes. Antioxidant and innate immune markers were assessed before and after the bacterial infection. None of the experimental conditions affected the basal activity of the studied innate immune markers and the redox balance. However, following the bacterial infection, the expression of genes coding for pro and anti-inflammatory cytokines (il1ß and il10), as well as innate immune compounds (mpo) were significantly reduced in fish exposed to the mixture. Conversely, exposure to ZnO NPs alone seemed to stimulate the immune response by enhancing the expression of the IgM and c3 genes for instance. Overall, our results suggest that even though the tested ENPs at their environmental concentration do not strongly affect basal immune functions, their mixture may alter the development of the immune response when the organism is exposed to a pathogen by interfering with the inflammatory response.


Subject(s)
Aeromonas salmonicida , Gram-Negative Bacterial Infections , Oncorhynchus mykiss , Titanium , Water Pollutants, Chemical , Zinc Oxide , Animals , Aeromonas salmonicida/drug effects , Zinc Oxide/toxicity , Oncorhynchus mykiss/immunology , Oncorhynchus mykiss/microbiology , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Immunity, Innate/drug effects , Nanoparticles/toxicity , Fish Diseases/immunology , Fish Diseases/microbiology , Metal Nanoparticles/toxicity , Cytokines/genetics , Cytokines/metabolism
8.
Int J Biol Macromol ; 273(Pt 2): 133135, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876231

ABSTRACT

Largemouth bass (Micropterus salmoides) has emerged as a significant economic fish species, with a rise in Aeromonas veronii infections in farming. However, research on adjuvants for vaccines against A. veronii in largemouth bass remains scarce. In present study, recombinant largemouth bass IL-1ß (LbIL-1ß) was expressed to explore its adjuvant effect on the A. veronii inactivated vaccine. Following vaccination with recombinant LbIL-1ß (rLbIL-1ß) and the inactivated A. veronii, higher serum SOD levels and lysozyme activities were observed in largemouth bass from inactivated A. veronii + rLbIL-1ß vaccinated group. Furthermore, it was discovered that rLbIL-1ß was able to boost the serum-specific antibody levels induced by the inactivated A. veronii. The qRT-PCR analysis revealed that rLbIL-1ß also enhanced the expression of IgM, CD4, and MHC II in largemouth bass triggered by the inactivated A. veronii. After challenged with live A. veronii, the outcomes demonstrated that the relative percentage survival (RPS) for largemouth bass resulting from the inactivated A. veronii in combination with rLbIL-1ß was 76.67 %, surpassing the RPS of 60 % in the inactivated A. veronii group. Collectively, these findings indicate that rLbIL-1ß enhances the protective effect of the A. veronii inactivated vaccine on largemouth bass, showcasing potential as an adjuvant for further development.


Subject(s)
Adjuvants, Immunologic , Aeromonas veronii , Bacterial Vaccines , Bass , Fish Diseases , Interleukin-1beta , Vaccines, Inactivated , Animals , Aeromonas veronii/immunology , Bacterial Vaccines/immunology , Bass/immunology , Bass/microbiology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Vaccination , Vaccines, Inactivated/immunology
9.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910219

ABSTRACT

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Subject(s)
Aeromonas hydrophila , Bacterial Outer Membrane Proteins , Bacterial Vaccines , Fish Diseases , Gram-Negative Bacterial Infections , Nanoparticles , Recombinant Proteins , Zebrafish , Animals , Zebrafish/immunology , Aeromonas hydrophila/immunology , Aeromonas hydrophila/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Administration, Oral , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Vaccination , Nanovaccines
10.
J Water Health ; 22(6): 1033-1043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935454

ABSTRACT

The misuse of antibiotics and the emergence of antimicrobial resistance (AMR) is a concern in the aquaculture industry because it contributes to global health risks and impacts the environment. This study analyzed the AMR of sentinel bacteria associated with striped catfish (Pangasisanodon hypophthalmus) and giant snakehead (Channa micropeltes), the two main fish species reared in the pond culture in Cambodia. Phenotypic and genotypic characterization of the recovered isolates from fish, water, and sediment samples revealed the presence of bacteria, such as 22 species belonging to families Aeromonadaceae, Enterobacteriaceae, and Pseudomonadaceae. Among 48 isolates, Aeromonas caviae (n = 2), Aeromonas hydrophila (n = 2), Aeromonas ichthiosmia (n = 1), Aeromonas salmonicida (n = 4) were detected. A. salmonicida and A. hydrophilla are known as fish pathogens that occur worldwide in both fresh and marine water aquaculture. Antibiotic susceptibility testing revealed antibiotic resistance patterns of 24 (50 %) isolates among 48 isolates with higher multiple antibiotic resistance index (> 0.2). All the isolates of Enterobacteriaceae were susceptible to ciprofloxacin. Ciprofloxacin is a frontline antibiotic that is not recommended to use in aquaculture. Therefore, its use has to be strictly controlled. This study expands our knowledge of the AMR status in aquaculture farms which is very limited in Cambodia.


Subject(s)
Aquaculture , Drug Resistance, Bacterial , Water Microbiology , Cambodia , Catfishes/microbiology , Sentinel Species , Phenotype , Genotype , Aeromonadaceae/classification , Aeromonadaceae/isolation & purification , Aeromonadaceae/physiology , Enterobacteriaceae/classification , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/physiology , Pseudomonadaceae/classification , Pseudomonadaceae/isolation & purification , Pseudomonadaceae/physiology , Aeromonas caviae/isolation & purification , Aeromonas caviae/physiology , Aeromonas hydrophila/isolation & purification , Aeromonas hydrophila/physiology , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fish Diseases/drug therapy , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary , Environmental Monitoring
11.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719546

ABSTRACT

Aeromonas dhakensis is reported as an emerging pathogenic species within the genus Aeromonas and is widely distributed in tropical coastal areas. This study provided a detailed description and characterization of a strain of A. dhakensis (202108B1) isolated from diseased Ancherythroculter nigrocauda in an inland region of China. Biochemical tests identified the isolate at the genus level, and the further molecular analysis of concatenated housekeeping gene sequences revealed that the strain belonged to the species A. dhakensis. The isolated A. dhakensis strain was resistant to five antibiotics, namely, penicillin, ampicillin, clindamycin, cephalexin, and imipenem, while it was susceptible to or showed intermediate resistance to most of the other 15 tested antibiotics. The isolated strain of A. dhakensis caused acute hemorrhagic septicemia and tissue damage in artificially infected A. nigrocauda, with a median lethal dose of 7.76 × 104 CFU/fish. The genome size of strain 202108B1 was 5 043 286 bp, including 1 chromosome and 4 plasmids. This is the first detailed report of the occurrence of infection caused by an A. dhakensis strain causing infection in an aquaculture system in inland China, providing important epidemiological data on this potential pathogenic species.


Subject(s)
Aeromonas , Anti-Bacterial Agents , Fish Diseases , Gram-Negative Bacterial Infections , China , Aeromonas/genetics , Aeromonas/isolation & purification , Aeromonas/classification , Aeromonas/drug effects , Aeromonas/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Fishes/microbiology , Phylogeny , Microbial Sensitivity Tests , Aquaculture , Genome, Bacterial , RNA, Ribosomal, 16S/genetics , Plasmids/genetics
12.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739115

ABSTRACT

Aeromonas spp. are commonly found in the aquatic environment and have been responsible for motile Aeromonas septicemia (MAS) in striped catfish, resulting in significant economic loss. These organisms also cause a range of opportunistic infections in humans with compromised immune systems. Here, we conducted a genomic investigation of 87 Aeromonas isolates derived from diseased catfish, healthy catfish and environmental water in catfish farms affected by MAS outbreaks in eight provinces in Mekong Delta (years: 2012-2022), together with 25 isolates from humans with bloodstream infections (years: 2010-2020). Genomics-based typing method precisely delineated Aeromonas species while traditional methods such as aerA PCR and MALDI-TOF were unable identify A. dhakensis. A. dhakensis was found to be more prevalent than A. hydrophila in both diseased catfish and human infections. A. dhakensis sequence type (ST) 656 followed by A. hydrophila ST251 were the predominant virulent species-lineages in diseased catfish (43.7 and 20.7 %, respectively), while diverse STs were found in humans with bloodstream infections. There was evidence of widespread transmission of ST656 and ST251 on striped catfish in the Mekong Delta region. ST656 and ST251 isolates carried a significantly higher number of acquired antimicrobial resistance (AMR) genes and virulence factors in comparison to other STs. They, however, exhibited several distinctions in key virulence factors (i.e. lack of type IV pili and enterotoxin ast in A. dhakensis), AMR genes (i.e. presence of imiH carbapenemase in A. dhakensis), and accessory gene content. To uncover potential conserved proteins of Aeromonas spp. for vaccine development, pangenome analysis has unveiled 2202 core genes between ST656 and ST251, of which 78 proteins were in either outer membrane or extracellular proteins. Our study represents one of the first genomic investigations of the species distribution, genetic landscape, and epidemiology of Aeromonas in diseased catfish and human infections in Vietnam. The emergence of antimicrobial resistant and virulent A. dhakensis strains underscores the needs of enhanced genomic surveillance and strengthening vaccine research and development in preventing Aeromonas diseases in catfish and humans, and the search for potential vaccine candidates could focus on Aeromonas core genes encoded for membrane and secreted proteins.


Subject(s)
Aeromonas , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Sepsis , Animals , Catfishes/microbiology , Vietnam/epidemiology , Aeromonas/genetics , Aeromonas/isolation & purification , Aeromonas/classification , Aeromonas/pathogenicity , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/epidemiology , Humans , Sepsis/microbiology , Sepsis/veterinary , Sepsis/epidemiology , Fish Diseases/microbiology , Phylogeny , Genomics , Genome, Bacterial , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology
13.
Fish Shellfish Immunol ; 150: 109628, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750706

ABSTRACT

The efficacy of phoxim in treating bacterial sepsis in silver carp is significant, yet its underlying mechanism remains elusive. This study aimed to establish a model of Aeromonas veronii infection in silver carp and subsequently treat the infected fish with 10 µg/L phoxim. Kidney and intestine samples from silver carp were collected for transcriptome analysis and assessment of intestinal microbial composition, with the aim of elucidating the mechanism underlying the efficacy of phoxim in treating bacterial sepsis in silver carp. The results of transcriptome and intestinal microbial composition analysis of silver carp kidney indicated that A. veronii infection could up-regulate the expression of il1ß, il6, nos2, ctsl, casp3 et al., which means, signifying that the kidney of silver carp would undergo inflammation, induce apoptosis, and alter the composition of intestinal microorganisms. Phoxim immersion might enhance the energy metabolism of silver carp and change its intestinal microbial composition, potentially elevating the antibacterial infection resistance of silver carp. These findings may contribute to an understanding of how phoxim can effectively treat bacterial sepsis in silver carp.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Organothiophosphorus Compounds , Animals , Carps/immunology , Fish Diseases/immunology , Organothiophosphorus Compounds/pharmacology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/drug therapy , Aeromonas veronii/physiology , Gastrointestinal Microbiome/drug effects
14.
Fish Shellfish Immunol ; 150: 109627, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754649

ABSTRACT

The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.


Subject(s)
Aeromonas hydrophila , Catfishes , Edwardsiella tarda , Enterobacteriaceae Infections , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Phylogeny , Toll-Like Receptor 2 , Toll-Like Receptor 5 , Animals , Catfishes/immunology , Catfishes/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Immunity, Innate/genetics , Aeromonas hydrophila/physiology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Edwardsiella tarda/physiology , Gene Expression Profiling/veterinary , Gene Expression Regulation/immunology , Transcriptome
15.
Article in English | MEDLINE | ID: mdl-38797004

ABSTRACT

Circular RNA (circRNA) represents a type of newly discovered non-coding RNA, distinguished by its closed loop structure formed through covalent bonds. Recent studies have revealed that circRNAs have crucial influences on host anti-pathogen responses. Yellow catfish (Pelteobagrus fulvidraco), an important aquaculture fish with great economic value, is susceptible to Aeromonas veronii, a common aquatic pathogen that can cause acute death. Here, we reported the first systematic investigation of circRNAs in yellow catfish, especially those associated with A. veronii infection at different time points. A total of 1205 circRNAs were identified, which were generated from 875 parental genes. After infection, 47 circRNAs exhibited differential expression patterns (named DEcirs). The parental genes of these DEcirs were functionally engaged in immune-related processes. Accordingly, seven DEcirs (novel_circ_000226, 278, 401, 522, 736, 843, and 975) and six corresponding parental genes (ADAMTS13, HAMP1, ANG3, APOA1, FGB, and RALGPS1) associated with immunity were obtained, and their expression was confirmed by RT-qPCR. Moreover, we found that these DEcir-gene pairs likely acted through pathways, such as platelet activation, antimicrobial humoral response, and regulation of Ral protein signal transduction, to influence host immune defenses. Additionally, integrated analysis showed that, of the 7 immune-related DEcirs, three targeted 16 miRNAs, which intertwined into circRNA-miRNA networks. These findings revealed that circRNAs, by targeting genes or miRNAs are highly involved in anti-bacterial responses in yellow catfish. Our study comprehensively illustrates the roles of circRNAs in yellow catfish immune defenses. The identified DEcirs and the circRNA-miRNA network will contribute to the further investigations on the molecular mechanisms underlying yellow catfish immune responses.


Subject(s)
Aeromonas veronii , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , RNA, Circular , RNA, Circular/genetics , Animals , Catfishes/genetics , Catfishes/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/genetics
16.
J Vet Intern Med ; 38(4): 2358-2361, 2024.
Article in English | MEDLINE | ID: mdl-38738486

ABSTRACT

To describe the diagnosis and successful treatment of systemic francisellosis in a dog. An 11-year-old female spayed Labrador retriever presented for progressive lethargy, hyporexia, and cough. The dog was febrile with a neutrophilia, nonregenerative anemia, thrombocytopenia, and had increased activity in serum of liver-derived enzymes. Francisella philomiragia was isolated from aerobic blood culture. The dog was treated for 6 weeks with enrofloxacin orally. Repeated aerobic blood cultures after 2 and 6 weeks of antibiotic therapy were negative. The dog was clinically normal 7 months after diagnosis with no evidence of relapse.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Dog Diseases , Enrofloxacin , Francisella , Gram-Negative Bacterial Infections , Animals , Dogs , Female , Dog Diseases/drug therapy , Dog Diseases/microbiology , Enrofloxacin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Bacteremia/veterinary , Bacteremia/drug therapy , Bacteremia/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology
17.
Front Immunol ; 15: 1376860, 2024.
Article in English | MEDLINE | ID: mdl-38799475

ABSTRACT

Introduction: Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods: Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results: The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1ß, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion: The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Liver , Metabolome , Metabolomics , Signal Transduction , Transcriptome , Turtles , Animals , Turtles/microbiology , Turtles/immunology , Turtles/genetics , Aeromonas hydrophila/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Liver/metabolism , Gene Expression Profiling
18.
BMC Vet Res ; 20(1): 231, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802892

ABSTRACT

BACKGROUND: Moringa oleifera, a well-known medicinal plant, has been used in aquafeed as a dietary supplement. Based on previous studies, insufficient research is available on the dietary supplementation of Nile tilapia with M. oleifera leaf and seed mixtures, specifically the fermented form. Therefore, this study aimed to investigate the efficacy of fermented (FMO) versus non-fermented M. oleifera (MO) leaf and seed mixtures on immunological parameters, antioxidant activity, growth performance, and resistance to A. hydrophila infection after a 30-day feeding trial on Nile tilapia. METHODS: A total of 180 fingerlings were randomly divided into four groups in addition to the control group (36 fish each, in triplicate). Fish in the tested groups were fed on basal diet supplemented with MO5%, MO10%, FMO5%, and FMO10%, while those in control were fed on basal diet only. After the feeding trial, fish were challenged with A. hydrophila. The immunomodulatory activity of M. oleifera was evaluated in terms of phagocytic and lysozyme activities, immune-related cytokines and IgM gene expression. Antioxidants, and growth-promoting activities were also assessed. RESULTS: The results revealed that fish supplemented FMO markedly in FMO10% group followed by FMO5%, exhibited significant (P < 0.05) improvement in the tested immunological, hepatic antioxidants, and growth performance parameters. Furthermore, the highest survival rate post-challenge with mild clinical symptoms, and the lowest A. hydrophila bacterial count were reported in these groups. Meanwhile, MO10%-supplementation exhibited the opposite trend. CONCLUSIONS: The study' conclusion suggests that fermented M. oleifera leaf and seed mixture is a promising growth-promoting and immunostimulatory feed-additive candidate for Nile tilapia and could reduce the losses caused by A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Cichlids , Diet , Dietary Supplements , Fish Diseases , Gram-Negative Bacterial Infections , Moringa oleifera , Animals , Moringa oleifera/chemistry , Cichlids/growth & development , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Antioxidants/metabolism , Animal Feed/analysis , Fish Diseases/prevention & control , Fish Diseases/immunology , Fish Diseases/microbiology , Diet/veterinary , Plant Leaves/chemistry , Fermentation , Seeds/chemistry
19.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1164-1175, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613484

ABSTRACT

The effects of dietary Lagnaria breviflora leaves extract (LBLE) on the growth performance, feed utilisation and haematological parameters of juveniles African catfish, Clarias gariepinus (mean = 8.45 ± 0.6 g) raised in a flow water (mean temperature 26.7°C, mean pH 7.52, mean dissolved oxygen 6.05 mg/L) were assessed in this study. Diets (400 g/kg crude protein; 4631.5 kcal/kg gross energy) supplemented with LBLE at levels of 0 (control), 0.5, 1.0, 1.5 or 2.0 g/kg diet were served to fish in triplicates (each replicate has 20 fish) until they appeared satiated for 12 weeks. Then, they were challenged with Aeromonas hydrophila infection for further 2 weeks. Fish served dietary LBLE had considerable higher weight gain (64.76 g) and specific growth rate (765.5% g/day) than the fish group fed with the control diet with a reduced feed conversion ratio (1.45) (p < 0.05). Compared to fish fed with the control diet, the villi height (146.30 µm) and width (284.35 µm) of the intestines increased greatly in a dose (LBLE in diets) dependent order. Similarly, dietary LBLE increased (p < 0.05) the packed cell volume (46.11%) and haemoglobin (17.03 g/dL), whereas 1.5 g of LBLE increased the counts of white blood cells. Glutathione S-transferase (769.43 U/mg protein), glutathione peroxidase (84.14 U/mg protein) and superoxide dismutase (433.15 U/mg protein) activities were significantly higher (p < 0.05) in fish fed with diets supplemented with LBLE compared to the control one. Additionally, dietary LBLE increased phagocytic and lysozyme activities and protected C. gariepinus against bacterial infections where the lowest death was observed in the fish fed on the diet containing 1.5 g LBLE/kg feed. These findings showed that the fish fed with LBLE/kg diet improved their immune system, antioxidant and growth performance in addition to providing protection from A. hydrophila infection with the optimum dose of 1.80 g/kg diet.


Subject(s)
Animal Feed , Antioxidants , Catfishes , Diet , Fish Diseases , Plant Extracts , Plant Leaves , Animals , Animal Feed/analysis , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Diet/veterinary , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Animal Nutritional Physiological Phenomena , Dietary Supplements , Gram-Negative Bacterial Infections/veterinary , Aeromonas hydrophila/physiology
20.
Fish Shellfish Immunol ; 149: 109588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677630

ABSTRACT

In aquaculture, fluctuating water temperatures can act as a potent stressor, influencing the virulence and transmission dynamics of pathogenic bacteria, potentially triggering outbreaks and impacting fish health. The purpose of this work was to examine the impact of Shewanella spp. infection on hematological, biochemical, and antioxidant-immune parameters of Nile tilapia (Oreochromis niloticus) under different water temperatures. For this purpose, 180 fish were divided into 6 groups in triplicate (30 fish per group; 10 fish per replicate). Group 1 (G1), G2, and G3 were reared at varying water temperatures (22 °C, 28 °C, and 31 °C, respectively) without infection. While G4, G5, and G6 were IP-injected with 0.2 mL of Shewanella spp. (0.14 × 105) and reared at 22 °C, 28 °C, and 31 °C, respectively. Shewanella spp. infection induced significant lowering (p < 0.05) in hematological parameters (red and white blood cells, hemoglobin, and packed cell volume%) and immune-antioxidant responses (phagocytic activity%, phagocytic index, lysozyme, nitric oxide), total antioxidant capacity, catalase, and reduced glutathione, especially at 22 °C. Moreover, a significant increase (p < 0.05) in the hepato-renal function indicators (alanine aminotransferase, aspartate aminotransferase, urea, and creatinine), stress biomarkers (glucose and cortisol), malondialdehyde, and pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor-α) were the consequences of the Shewanella spp. infection, especially at 22 °C. The Shewanella spp. infection exhibited marked histopathological changes in the hepatic and renal tissues. Worthily, Shewanella spp. can cause detrimental alterations in Nile tilapia's hematological, biochemical, and antioxidant-immune parameters at various water temperatures, but the major detrimental changes were observed at a water temperature of 22 °C. Consequently, we can conclude that the infection dynamics of Shewanella spp. are exaggerated at 22 °C. These outcomes could help in understanding the nature of such an infection in Nile tilapia.


Subject(s)
Antioxidants , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Shewanella , Temperature , Animals , Shewanella/physiology , Cichlids/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Antioxidants/metabolism , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...