Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.834
Filter
1.
Gut Microbes ; 16(1): 2359665, 2024.
Article in English | MEDLINE | ID: mdl-38831611

ABSTRACT

The facultative anaerobic Gram-positive bacterium Enterococcus faecium is a ubiquitous member of the human gut microbiota. However, it has gradually evolved into a pathogenic and multidrug resistant lineage that causes nosocomial infections. The establishment of high-level intestinal colonization by enterococci represents a critical step of infection. The majority of current research on Enterococcus has been conducted under aerobic conditions, while limited attention has been given to its physiological characteristics in anaerobic environments, which reflects its natural colonization niche in the gut. In this study, a high-density transposon mutant library containing 26,620 distinct insertion sites was constructed. Tn-seq analysis identified six genes that significantly contribute to growth under anaerobic conditions. Under anaerobic conditions, deletion of sufB (encoding Fe-S cluster assembly protein B) results in more extensive and significant impairments on carbohydrate metabolism compared to aerobic conditions. Consistently, the pathways involved in this utilization-restricted carbohydrates were mostly expressed at significantly lower levels in mutant compared to wild-type under anaerobic conditions. Moreover, deletion of sufB or pflA (encoding pyruvate formate lyase-activating protein A) led to failure of gastrointestinal colonization in mice. These findings contribute to our understanding of the mechanisms by which E. faecium maintains proliferation under anaerobic conditions and establishes colonization in the gut.


Subject(s)
Bacterial Proteins , Enterococcus faecium , Iron-Sulfur Proteins , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Enterococcus faecium/growth & development , Animals , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anaerobiosis , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections/microbiology , Humans , DNA Transposable Elements , Carbohydrate Metabolism , Female , Acetyltransferases
2.
Euro Surveill ; 29(23)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847117

ABSTRACT

BackgroundVancomycin-resistant enterococci (VRE) are increasing in Denmark and Europe. Linezolid and vancomycin-resistant enterococci (LVRE) are of concern, as treatment options are limited. Vancomycin-variable enterococci (VVE) harbour the vanA gene complex but are phenotypically vancomycin-susceptible.AimThe aim was to describe clonal shifts for VRE and VVE in Denmark between 2015 and 2022 and to investigate genotypic linezolid resistance among the VRE and VVE.MethodsFrom 2015 to 2022, 4,090 Danish clinical VRE and VVE isolates were whole genome sequenced. We extracted vancomycin resistance genes and sequence types (STs) from the sequencing data and performed core genome multilocus sequence typing (cgMLST) analysis for Enterococcus faecium. All isolates were tested for the presence of mutations or genes encoding linezolid resistance.ResultsIn total 99% of the VRE and VVE isolates were E. faecium. From 2015 through 2019, 91.1% of the VRE and VVE were vanA E. faecium. During 2020, to the number of vanB E. faecium increased to 254 of 509 VRE and VVE isolates. Between 2015 and 2022, seven E. faecium clusters dominated: ST80-CT14 vanA, ST117-CT24 vanA, ST203-CT859 vanA, ST1421-CT1134 vanA (VVE cluster), ST80-CT1064 vanA/vanB, ST117-CT36 vanB and ST80-CT2406 vanB. We detected 35 linezolid vancomycin-resistant E. faecium and eight linezolid-resistant VVEfm.ConclusionFrom 2015 to 2022, the numbers of VRE and VVE increased. The spread of the VVE cluster ST1421-CT1134 vanA E. faecium in Denmark is a concern, especially since VVE diagnostics are challenging. The finding of LVRE, although in small numbers, ia also a concern, as treatment options are limited.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbon-Oxygen Ligases , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Multilocus Sequence Typing , Vancomycin Resistance , Vancomycin-Resistant Enterococci , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Humans , Denmark/epidemiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Linezolid/pharmacology , Vancomycin Resistance/genetics , Whole Genome Sequencing , Vancomycin/pharmacology , Vancomycin/therapeutic use , Genotype
4.
Ann Clin Microbiol Antimicrob ; 23(1): 41, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704577

ABSTRACT

BACKGROUND: Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS: Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS: The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS: Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Whole Genome Sequencing , Linezolid/pharmacology , China/epidemiology , Humans , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Enterococcus/drug effects , Enterococcus/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Molecular Epidemiology , Tertiary Care Centers , Genomics
5.
PLoS One ; 19(5): e0301292, 2024.
Article in English | MEDLINE | ID: mdl-38743671

ABSTRACT

Enterococcus faecalis, a Gram-positive bacterium, poses a significant clinical challenge owing to its intrinsic resistance to a broad spectrum of antibiotics, warranting urgent exploration of innovative therapeutic strategies. This study investigated the viability of phage therapy as an alternative intervention for antibiotic-resistant E. faecalis, with a specific emphasis on the comprehensive genomic analysis of bacteriophage SAM-E.f 12. The investigation involved whole-genome sequencing of SAM-E.f 12 using Illumina technology, resulting in a robust dataset for detailed genomic characterization. Bioinformatics analyses were employed to predict genes and assign functional annotations. The bacteriophage SAM-E.f 12, which belongs to the Siphoviridae family, exhibited substantial potential, with a burst size of 5.7 PFU/infected cells and a latent period of 20 min. Host range determination experiments demonstrated its effectiveness against clinical E. faecalis strains, positioning SAM-E.f 12 as a precise therapeutic agent. Stability assays underscore resilience across diverse environmental conditions. This study provides a comprehensive understanding of SAM-E.f 12 genomic composition, lytic lifecycle parameters, and practical applications, particularly its efficacy in murine wound models. These results emphasize the promising role of phage therapy, specifically its targeted approach against antibiotic-resistant E. faecalis strains. The nuanced insights derived from this research will contribute to the ongoing pursuit of efficacious phage therapies and offer valuable implications for addressing the clinical challenges associated with E. faecalis infections.


Subject(s)
Bacteriophages , Enterococcus faecalis , Genome, Viral , Enterococcus faecalis/virology , Enterococcus faecalis/genetics , Bacteriophages/genetics , Animals , Mice , Phage Therapy , Host Specificity/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/therapy , Whole Genome Sequencing , Genomics/methods , Siphoviridae/genetics
6.
Elife ; 132024 May 20.
Article in English | MEDLINE | ID: mdl-38767331

ABSTRACT

Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.


If wounds get infected, they heal much more slowly, sometimes leading to skin damage and other complications, including disseminated infections or even amputation. Infections can happen in many types of wounds, ranging from ulcers in patients with diabetes to severe burns. If infections are not cleared quickly, the wounds can become 'chronic' and are unable to heal without intervention. Enterococcus faecalis is a type of bacteria that normally lives in the gut. Within that environment, in healthy people, it is not harmful. However, if it comes into contact with wounds ­ particularly diabetic ulcers or the site of a surgery ­ it can cause persistent infections and prevent healing. Although researchers are beginning to understand how E. faecalis initially colonises wounds, the biological mechanisms that transform these infections into chronic wounds are still largely unknown. Celik et al. therefore set out to investigate exactly how E. faecalis interferes with wound healing. To do this, Celik et al. looked at E. faecalis-infected wounds in mice and compared them to uninfected ones. Using a genetic technique called single-cell RNA sequencing, Celik et al. were able to determine which genes were switched on in individual skin and immune cells at the site of the wounds. This in turn allowed the researchers to determine how those cells were behaving in both infected and uninfected conditions. The experiments revealed that when E. faecalis was present in wounds, several important cell types in the wounds did not behave normally. For example, although the infected skin cells still underwent a change in behaviour required for healing (called an epithelial-mesenchymal transition), the change was both premature and incomplete. In other words, the skin cells in infected wounds started changing too early and did not finish the healing process properly. E. faecalis also changed the way macrophages and neutrophils worked within the wounds. These are cells in our immune system that normally promote inflammation, a process involved in both uninfected wounds or during infections and is a key part of wound healing when properly controlled. In the E. faecalis-infected wounds, these cells' inflammatory properties were suppressed, making them less helpful for healing. These results shed new light on how E. faecalis interacts with skin cells and the immune system to disrupt wound healing. Celik et al. hope that this knowledge will allow us to find new ways to target E. faecalis infections, and ultimately develop treatments to help chronic wounds heal better and faster.


Subject(s)
Enterococcus faecalis , Gram-Positive Bacterial Infections , Keratinocytes , Wound Healing , Enterococcus faecalis/physiology , Enterococcus faecalis/genetics , Animals , Mice , Gram-Positive Bacterial Infections/microbiology , Keratinocytes/microbiology , Keratinocytes/metabolism , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal , Wound Infection/microbiology , Transcriptome , Mice, Inbred C57BL , Single-Cell Analysis , Epithelial-Mesenchymal Transition/genetics , Male , Fibroblasts/microbiology , Fibroblasts/metabolism
7.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38740525

ABSTRACT

Enterococcus raffinosus, named by Collins et al. in 1989, is a cocci-shaped bacterium that typically appears in pairs or short chains. As a Gram-positive and non-motile bacterium, it grows at 10°C-45°C, exhibiting negative peroxidase activity [1]. It is a normal flora in the oropharynx and gastrointestinal tract of domestic cats [2] and can also be isolated from human rectal swabs [3], it belongs to the same genus Enterococcus as Enterococcus faecalis and Enterococcus faecium. Enterococcus faecalis and Enterococcus faecium constitute 90% of clinically isolated strains. However, the incidence of other enterococci, excluding E. faecalis and E. faecium, is on the rise [4]. In this case report, a patient with pediatric urinary tract infections caused by E. raffinosus was presented, and a summary of relevant literature was provided.


Subject(s)
Anti-Bacterial Agents , Enterococcus , Gram-Positive Bacterial Infections , Urinary Tract Infections , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus/drug effects , Enterococcus/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Male , Remission, Spontaneous , Child
8.
Vet Microbiol ; 293: 110103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718528

ABSTRACT

Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecium , Milk , Oxazolidinones , Animals , Cattle , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Milk/microbiology , China/epidemiology , Oxazolidinones/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Linezolid/pharmacology , Whole Genome Sequencing , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/epidemiology , Genes, Bacterial/genetics
9.
Surg Infect (Larchmt) ; 25(4): 332-334, 2024 May.
Article in English | MEDLINE | ID: mdl-38696668

ABSTRACT

Background: Lactococcus species are used to ferment milk to yogurt, cheese, and other products. The gram-positive coccus causes diseases in amphibia and fish and is a rare human pathogen. Patients and Methods: A 51-year-old male underwent laparoscopic cholecystectomy for acute and chronic calculous cholecystitis. Lactococcus lactis was isolated from pus from his gallbladder empyema. Results: Our institutional database was searched for other cases of Lactococcus spp. infections and four patients (2 males, 2 females; aged 51, 64, 78, and 80 years) were identified during a four-year period. The three other patients had positive blood cultures associated with pneumonia, toxic megacolon, and severe gastroenteritis. All isolates were monocultures with Lactococcus lactis (2), Lactococcus garvieae (1) and Lactococcus raffinolactis (1). Two patients died related to their sepsis. We report the second case of cholecystitis involving Lactococcus. Conclusions: Lactococcus is a very rare pathogen mainly causing blood stream infections but needs to be considered to cause serious surgical infections in humans.


Subject(s)
Cholecystitis, Acute , Gram-Positive Bacterial Infections , Lactococcus lactis , Lactococcus , Humans , Male , Middle Aged , Lactococcus lactis/isolation & purification , Lactococcus/isolation & purification , Cholecystitis, Acute/microbiology , Cholecystitis, Acute/surgery , Female , Aged, 80 and over , Aged , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Cholecystectomy, Laparoscopic
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732016

ABSTRACT

Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.


Subject(s)
Anti-Bacterial Agents , Chickens , Enterococcus , Microbial Sensitivity Tests , Animals , Chickens/microbiology , Enterococcus/drug effects , Enterococcus/genetics , Enterococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Probiotics/pharmacology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy
11.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38755018

ABSTRACT

Our study aimed to identify markers of enterococci's virulence potential by evaluating the properties of strains of different sites of isolation. Enterococcal strains were isolated as commensals from faeces and as invasive strains from the urine and blood of patients from the University Clinical Centre, Gdansk, Poland. Changes in monocytes' susceptibility to the cytotoxic activity of isolates of different origins and their adherence to biofilm were evaluated using a flow cytometer. The bacterial protein profile was estimated by matrix assisted laser desorption ionization-time of flight mass spectrometer. The cytotoxicity of biofilm and monocytes' adherence to it were the most accurate factors in predicting the prevalence of the strain in the specific niche. Additionally, a bacterial protein with mass-to-charge ratio (m/z) 5000 was found to be responsible for the increased bacterial cytotoxicity, while monocytes' decreased adherence to biofilm was linked with the presence of proteins either with m/z 3330 or 2435. The results illustrate that monocytes' reaction when exposed to the bacterial biofilm can be used as an estimator of pathogens' virulence potential. The observed differences in monocytes' response are explainable by the bacterial proteins' profile. Additionally, the results indicate that the features of both bacteria and monocytes impact the outcome of the infection.


Subject(s)
Biofilms , Monocytes , Biofilms/growth & development , Monocytes/microbiology , Humans , Virulence , Bacterial Adhesion , Gram-Positive Bacterial Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Enterococcus/pathogenicity , Poland , Feces/microbiology
12.
Emerg Microbes Infect ; 13(1): 2361030, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38801248

ABSTRACT

BACKGROUND: Surveillance systems revealed that the prevalence of vancomycin-resistant Enterococcus faecium (VREfm) has increased. We aim to investigate the epidemiological and genomic characteristics of VREfm in China. METHODS: We collected 20,747 non-redundant E. faecium isolates from inpatients across 19 hospitals in six provinces between January 2018 and June 2023. VREfm was confirmed by antimicrobial susceptibility testing. The prevalence was analyzed using changepoint package in R. Genomic characteristics were explored by whole-genome sequencing. RESULTS: 5.59% (1159/20,747) of E. faecium isolates were resistant to vancomycin. The prevalence of VREfm increased in Guangdong province from 5% before 2021 to 20-50% in 2023 (p < 0.0001), but not in the other five provinces. Two predominant clones before 2021, ST17 and ST78, were substituted by an emerging clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from Guangdong formed a single lineage (SC11) and were genetically distant from the ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm in SC11 carried a new type of plasmid harbouring a vanA cassette, which was embedded in a Tn1546-like structure flanked by IS1678 and ISL3. However, no conjugation-related gene was detected and no transconjugant was obtained in conjugation experiment, indicating that the outbreak of ST80 VREfm could be attributed to clonal transmission. CONCLUSIONS: We revealed an ongoing outbreak of ST80 VREfm with a new vanA-harbouring plasmid in Guangdong, China. This clone has also been identified in other provinces and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is needed to inform public health interventions.


Subject(s)
Disease Outbreaks , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Whole Genome Sequencing , China/epidemiology , Humans , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Enterococcus faecium/classification , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Male , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Female , Middle Aged , Adult , Aged , Genome, Bacterial , Prevalence , Child , Young Adult , Phylogeny , Vancomycin/pharmacology , Adolescent
13.
Infection ; 52(3): 787-800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717734

ABSTRACT

PURPOSE: The principal objective of this project was to review and thoroughly examine the chemical characteristics, pharmacological activity, and quantification methods associated with contezolid. METHODS: The article was based on published and ongoing preclinical and clinical studies on the application of contezolid. These studies included experiments on the physicochemical properties of contezolid, in vitro antimicrobial research, in vivo antimicrobial research, and clinical trials in various phases. There were no date restrictions on these studies. RESULTS: In June 2021, contezolid was approved for treating complicated skin and soft tissue infections. The structural modification of contezolid has resulted in better efficacy compared to linezolid. It inhibits bacterial growth by preventing the production of the functional 70S initiation complex required to translate bacterial proteins. The current evidence has indicated a substantial decline in myelosuppression and monoamine oxidase inhibition without impairing its antibacterial properties. Contezolid was found to have a more significant safety profile and to be metabolised by flavin monooxygenase 5, reducing the risk of harmful effects due to drug-drug interactions. Adjusting doses is unnecessary for patients with mild to moderate renal or hepatic insufficiency. CONCLUSION: As an oral oxazolidinone antimicrobial agent, contezolid is effective against multi-drug resistant Gram-positive bacteria. The introduction of contezolid provided a new clinical option.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacterial Infections , Oxazolidinones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Humans , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Soft Tissue Infections/drug therapy , Soft Tissue Infections/microbiology , Animals , Pyridones
15.
Kyobu Geka ; 77(5): 330-334, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38720599

ABSTRACT

Hepatic abscesses are divided into bacterial and amoebic types. Although the prognosis of bacterial liver abscesses has improved owing to progress in drainage techniques and antimicrobial agents, poor outcomes remain common. While there have been some reports of amoebic liver abscesses complicated by thrombosis, bacterial liver abscesses and subsequent thrombus in the right atrium are very rare. We herein report the case of an 82-year-old man. He had suffered acute obstructive suppurative cholangitis 10 months previously, and bile culture yielded Enterococcus faecalis. In the present case, a right atrial thrombus caused by a bacterial liver abscess was observed and the causative organism was thought to be Enterococcus faecalis, for which was detected in a blood culture was positive. The patient was successfully treated with hepatic abscess drainage and surgical right atrial thrombectomy under cardiopulmonary bypass with a beating heart.


Subject(s)
Heart Atria , Heart Diseases , Liver Abscess, Pyogenic , Thrombosis , Humans , Male , Liver Abscess, Pyogenic/diagnostic imaging , Liver Abscess, Pyogenic/complications , Liver Abscess, Pyogenic/surgery , Aged, 80 and over , Heart Atria/surgery , Thrombosis/surgery , Thrombosis/diagnostic imaging , Thrombosis/complications , Heart Diseases/complications , Heart Diseases/surgery , Heart Diseases/diagnostic imaging , Enterococcus faecalis , Gram-Positive Bacterial Infections/complications
16.
World J Microbiol Biotechnol ; 40(6): 190, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702495

ABSTRACT

The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.


Subject(s)
Enterococcus faecalis , Probiotics , Humans , Animals , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Host-Pathogen Interactions , Gastrointestinal Tract/microbiology , Host Microbial Interactions
17.
J Pak Med Assoc ; 74(3): 469-475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38591280

ABSTRACT

Objectives: To investigate the isolation rates, antimicrobial resistance rates, minimum inhibitory concentration values of antimicrobial agents, and clonal relationships of Enterococcus faecalis and Enterococcus faeciumdue to the relocation of a hospital to a newly constructed building. METHODS: The comparative, prospective study was conducted at adult general intensive care units of the Mus State Hospital, Mus, Turkey, in two phases; before the relocation from January 25 to December 1, 2014, and after the relocation from February 10 to May 24, 2015. Rectal swab samples were collected 72 hours post-hospitalisation. Identification of Enterococcus faecalis and Enterococcus faeciumisolates was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial resistance with minimum inhibitory concentration values was detected with Vitek 2 system. The clonal relatedness among the strains was investigated by pulsed-field gel electrophoresis. Data was analysed using SPSS 23. RESULTS: Of the 69 patients, 37(53.62%) were related to pre-relocation phase; 20(54.1%) females and 17(45.9%) males with mean age 62.81±21.71 years. There were 32(46.37%) patients in the post-relocation phase; 13(40.6%) females and 19(59.4%) males with mean age 62.69±21.35 years (p>0.05). Of the 84 enterococci strains isolated, 51(60.7%) were Enterococcus faecium; 28(55%) before relocation and 23(45%) after relocation (p=0.77). The remaining 33(39.3%) isolates were Enterococcus faecalis; 16(48.5%) before relocation and 17(51.5%) after relocation (p=0.73). Multiple strains were located in 7(18.9%) patients before relocation and in 7(21.9%) after relocation. In 1(3.1%) patient after relocation, 2(8.7%) Enterococcus faecium isolates with different resistance and pulsed-field gel electrophoresis patterns were detected. There were no significant differences between the isolation and antibiotic resistance rates before and after relocation (p>0.05), and a clonal relation between the isolates was not detected (p>0.05). Decreased minimum inhibitory concentration values were noted for some antibiotics. CONCLUSIONS: Clonal relationship between the isolates and change in the rates of isolation and antimicrobial resistance of Enterococcus faecalis and Enterococcus faecium was not detected due to relocation. Minimum inhibitory concentration values could be used to reveal relocation-related changes in isolates obtained from patients hospitalised in intensive care units.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Enterococcus , Enterococcus faecalis , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Hospitals , Microbial Sensitivity Tests , Prospective Studies
18.
BMC Infect Dis ; 24(1): 425, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649870

ABSTRACT

BACKGROUND: Necrotising fasciitis (NF) is a life-threatening soft-tissue infection that rapidly destroys the epidermis, subcutaneous tissue, and fascia. Despite their low virulence, Lactobacillus spp. can cause NF, and because of its rare incidence, there is limited information about its molecular and clinicopathological characteristics. We report a rare case of NF in a patient with type 2 diabetes mellitus diagnosed on admission and severe obesity due to infection with two types of Lactobacillus spp. that manifested in extensive necrosis. CASE PRESENTATION: A 48-year-old woman was referred to our hospital with a complaint of difficulty walking due to severe bilateral thigh pain. She presented with mild erythema, swelling, and severe skin pain extending from the pubic region to the groin. The patient was morbidly obese, had renal dysfunction, and had diabetes mellitus diagnosed on admission.; her LRINEC (Laboratory Risk Indicator for Necrotising Fasciitis) score was 9, indicating a high risk of NF. An exploratory surgical incision was made, and NF was diagnosed based on fascial necrosis. Emergent surgical debridement was performed, and cultures of the tissue culture and aspirated fluid/pus revealed two types of Lactobacillus spp.: Lactobacillus salivarius and L. iners. The patient was admitted to the intensive care unit (ICU), where antibiotics were administered and respiratory and circulatory management was performed. Diabetic ketoacidosis was detected, which was treated by controlling the blood glucose level stringently via intravenous insulin infusion. The patient underwent a second debridement on day 11 and a skin suture and skin grafting on day 36. The patient progressed well, was transferred from the ICU to the general ward on day 41, and was discharged unassisted on day 73. CONCLUSIONS: Lactobacillus spp. are rarely pathogenic to healthy individuals and can scarcely trigger NF. However, these bacteria can cause rare infections such as NF in immunocompromised individuals, such as those with diabetes and obesity, and an early diagnosis of NF is imperative; surgical intervention may be required for the prevention of extensive necrosis. The LRINEC score may be useful for the early diagnosis of NF, even for less pathogenic bacteria such as Lactobacillus.


Subject(s)
Fasciitis, Necrotizing , Lactobacillus , Humans , Fasciitis, Necrotizing/microbiology , Fasciitis, Necrotizing/pathology , Female , Middle Aged , Lactobacillus/isolation & purification , Diabetes Mellitus, Type 2/complications , Anti-Bacterial Agents/therapeutic use , Debridement , Necrosis/microbiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/pathology
19.
Article in English | MEDLINE | ID: mdl-38683659

ABSTRACT

A strain belonging to the genus Psychrobacter, named PraFG1T, was isolated from the peritoneal effusion of a stray dog during necropsy procedures. The strain was characterized by the phylogenetic analyses based on the nucleotide sequences of 16S and 23S rRNA genes and of gyrB, which placed the strain in the genus Psychrobacter. The nucleotide sequence of the chromosome confirmed the placement, showing an average nucleotide identity of 72.1, 77.7, and 77.5 % with the closest related species, namely Psychrobacter sanguinis, Psychrobacter piechaudii, and Psychrobacter phenylpyruvicus, respectively, thus indicating a novel species. The polyphasic characterization by biochemical and fatty acid profiling as well as MALDI-TOF supported those findings. The strain was halotolerant, capable of growing within a temperature range between 4 and 37 °C, it was positive for catalase and oxidase, indole producing, nitrate reducing, and not able to use 5-keto-d-gluconic acid as a carbon source. Taken together, the data suggest that strain PraFG1T could be considered as representing a novel species, with the name Psychrobacter raelei sp. nov. (type strain PraFG1T=CIP 111873T=LMG 32233T).


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Fatty Acids , Peritonitis , Phylogeny , Psychrobacter , RNA, Ribosomal, 16S , RNA, Ribosomal, 23S , Sequence Analysis, DNA , Animals , Psychrobacter/genetics , Psychrobacter/isolation & purification , Psychrobacter/classification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Peritonitis/microbiology , Dogs , RNA, Ribosomal, 23S/genetics , Dog Diseases/microbiology , Gram-Positive Bacterial Infections/microbiology
20.
Antimicrob Agents Chemother ; 68(5): e0143923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38591854

ABSTRACT

Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.


Subject(s)
Bacteriophages , Enterococcus faecium , Host Specificity , Vancomycin-Resistant Enterococci , Enterococcus faecium/drug effects , Bacteriophages/genetics , Vancomycin-Resistant Enterococci/drug effects , Phage Therapy/methods , Gram-Positive Bacterial Infections/microbiology , Vancomycin Resistance , Vancomycin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...