Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 562
Filter
1.
BMC Oral Health ; 24(1): 662, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840232

ABSTRACT

OBJECTIVE: To provide an overview of the available scientific evidence from in vitro studies regarding the effect induced by the flavonoids contained in grape seed extracts (GSE) and cranberry on the microbiological activity of Streptococcus mutans (S. mutans). METHODS: This systematic review was performed following the parameters of the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Electronic and manual searches were conducted using PubMed, ScienceDirect, Web of Science, EBSCO, and Cochrane databases. Reference lists of selected articles were reviewed to identify relevant studies. The search was not limited by year and was conducted solely in English. Eligible studies comprised publications describing in vitro studies that evaluated the effect of flavonoids derived from GSE and cranberry extracts on the microbiological activity of S. mutans. Common variables were identified to consolidate the data. Authors of this review independently screened search results, extracted data, and assessed the risk of bias. RESULTS: Of the 420 studies identified from the different databases, 22 publications were finally selected for review. The risk of bias was low in 13 articles and moderate in 9. The studies analyzed in this review revealed that cranberry extract has an inhibitory effect on the bacterial growth of S. mutans in ranges from 0.5 mg/mL to 25 mg/mL, and GSE exerts a similar effect from 0.5 mg/mL to 250 mg/mL. Additionally, the extracts or their fractions showed reduced biofilm formation capacity, decreased polymicrobial biofilm biomass, deregulation of glycosyltransferases (Gtf) B and C expression, and buffering of pH drop. In addition to adequate antioxidant activity related to polyphenol content. CONCLUSIONS: The overall results showed that the extracts of cranberry and grape seed were effective in reducing the virulence factors of the oral pathogen. According to the data, proanthocyanidins are the active components in cranberry and grape seed that effectively resist S. mutans. They can inhibit the formation of insoluble polysaccharides in the extracellular matrix and prevent glycan-mediated adhesion, cohesion, and aggregation of the proteins in S. mutans. This suggests that these natural extracts could play an important role in the prevention of cariogenic bacterial colonization, as well as induce a decrease in their microbiological activity.


Subject(s)
Flavonoids , Grape Seed Extract , Plant Extracts , Streptococcus mutans , Vaccinium macrocarpon , Streptococcus mutans/drug effects , Vaccinium macrocarpon/chemistry , Plant Extracts/pharmacology , Flavonoids/pharmacology , Grape Seed Extract/pharmacology , Biofilms/drug effects , Humans , Vitis , Proanthocyanidins/pharmacology
2.
Microb Biotechnol ; 17(6): e14485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850270

ABSTRACT

Proanthocyanidin-rich grape seed extract (GSE) has been shown to have the potential to protect bones, although the underlying mechanism remains unknown. The current study aims to explore GSE's preventive and therapeutic impact on bone loss induced by oestrogen deficiency and the underlying mechanism through the gut microbiota (GM) and metabolomic responses. In oestrogen-deficient ovariectomized (OVX) mice, GSE ameliorated bone loss by inhibiting the expansion of bone marrow adipose tissue (BMAT), restoring BMAT lipolysis and promoting bone formation. GSE regulated OVX-induced GM dysbiosis by reducing the abundance of opportunistic pathogenic bacteria, such as Alistipes, Turicibacter and Romboutsia, while elevating the abundance of beneficial bacteria, such as Bifidobacterium. The modified GM primarily impacted lipid and amino acid metabolism. Furthermore, the serum metabolites of GSE exhibited a significant enrichment in lipid metabolism. In summary, GSE shows potential as a functional food for preventing oestrogen deficiency-induced bone loss by modulating GM and metabolite-mediated lipid metabolism.


Subject(s)
Estrogens , Gastrointestinal Microbiome , Grape Seed Extract , Gastrointestinal Microbiome/drug effects , Animals , Grape Seed Extract/pharmacology , Mice , Female , Estrogens/deficiency , Estrogens/metabolism , Lipid Metabolism/drug effects , Dysbiosis/prevention & control , Mice, Inbred C57BL , Bacteria/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Osteoporosis/prevention & control , Disease Models, Animal , Adipose Tissue/metabolism , Ovariectomy
3.
BMC Complement Med Ther ; 24(1): 192, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755622

ABSTRACT

BACKGROUND: Despite the high antioxidant potential of grape seed extract (GSE), very limited studies have investigated its effect on non-alcoholic fatty liver disease (NAFLD). Therefore, this study was conducted with the aim of investigating the effect of GSE on metabolic factors, blood pressure and steatosis severity in patients with NAFLD. METHODS: In this double-blind randomized clinical trial study, 50 NAFLD patients were divided into two groups of 25 participants who were treated with 520 mg/day of GSE or the placebo group for 2 months. The parameters of glycemic, lipid profile, blood pressure and steatohepatitis were measured before and after the intervention. RESULTS: The GSE group had an average age of 43.52 ± 8.12 years with 15 women and 10 men, while the placebo group had an average age of 44.88 ± 10.14 years with 11 women and 14 men. After 2 months of intervention with GSE, it was observed that insulin, HOMA-IR, TC, TG, LDL-c, ALT, AST, AST/ALT, SBP, DBP and MAP decreased and QUICKi and HDL-c increased significantly (p-value for all < 0.05). Also, before and after adjustment based on baseline, the average changes indicated that the levels of insulin, HOMA-IR, TC, TG, LDL-c, SBP, DBP, MAP in the GSE group decreased more than in the control group (p for all < 0.05). Furthermore, the changes in HDL-c were significantly higher in the GSE group (p < 0.05). The between-groups analysis showed a significant decrease in the HOMA-ß and AST before and after adjustment based on baseline levels (p < 0.05). Moreover, the changes in QUICKi after adjustment based on baseline levels were higher in the GSE group than in the control group. Also, between-groups analysis showed that the severity of hepatic steatosis was reduced in the intervention group compared to the placebo group (P = 0.002). CONCLUSIONS: It seems that GSE can be considered one of the appropriate strategies for controlling insulin resistance, hyperlipidemia, hypertension and hepatic steatosis in NAFLD patients. TRIAL REGISTRATION: The clinical trial was registered in the Iranian Clinical Trial Registration Center (IRCT20190731044392N1). https://irct.behdasht.gov.ir/trial/61413 . (The registration date: 30/03/2022).


Subject(s)
Grape Seed Extract , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Male , Female , Double-Blind Method , Grape Seed Extract/pharmacology , Adult , Middle Aged , Dietary Supplements , Heart Disease Risk Factors , Iran
4.
Mol Pain ; 20: 17448069241256466, 2024.
Article in English | MEDLINE | ID: mdl-38716504

ABSTRACT

Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.


Subject(s)
Myeloid Differentiation Factor 88 , Nerve Regeneration , Neuralgia , Proanthocyanidins , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Animals , Proanthocyanidins/pharmacology , Toll-Like Receptor 4/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Myeloid Differentiation Factor 88/metabolism , Nerve Regeneration/drug effects , Signal Transduction/drug effects , Male , Grape Seed Extract/pharmacology , Rats , Microglia/drug effects , Microglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Spinal Nerves/drug effects
5.
J Food Sci ; 89(6): 3788-3801, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38638069

ABSTRACT

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.


Subject(s)
Butyric Acid , Gastrointestinal Microbiome , Grape Seed Extract , Mice, Inbred BALB C , Proanthocyanidins , Animals , Proanthocyanidins/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Grape Seed Extract/pharmacology , Mice , Butyric Acid/metabolism , Butyric Acid/pharmacology , Cecum/microbiology , Cecum/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/drug effects , Bacteria/drug effects , Bacteria/classification
6.
Molecules ; 29(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675592

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Subject(s)
Cell Survival , Dopamine , Grape Seed Extract , Nanoparticles , Parkinson Disease , Rotenone , alpha-Synuclein , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopamine/chemistry , Dopamine/metabolism , Nanoparticles/chemistry , Grape Seed Extract/chemistry , Grape Seed Extract/pharmacology , Rotenone/pharmacology , Cell Line, Tumor , alpha-Synuclein/metabolism , Cell Survival/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Oxidative Stress/drug effects , Cell Differentiation/drug effects , Particle Size , Liposomes/chemistry , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Neurons/drug effects , Neurons/metabolism
7.
Anim Biotechnol ; 35(1): 2331640, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38526422

ABSTRACT

The present study was carried out to evaluate the effects of dietary vitamin E (VE) or grape seed extract (GSE) on the growth performance and antioxidant function of broilers. Two hundred sixteen broiler chicks were randomly assigned to 3 diets: diet supplemented with oxidized rice bran oil (CN group), CN group with 25 mg/kg VE or 100 mg/kg GSE. Dietary VE or GSE improved the growth performance, reverted the disturbed levels of liver antioxidant enzymes, and reduced liver damage of broilers fed oxidized rice bran oil. The mRNA data showed that supplementation of VE or GSE enhanced the antioxidant capacity of the broiler liver through activation of the Keap1-Nrf2/ARE signaling pathway. The results suggested that VE and GSE can increase weight gain, improve the oxidative status, and alleviate liver injury in broiler chicken fed oxidized rice bran oil.


Subject(s)
Antioxidants , Grape Seed Extract , Animals , Antioxidants/pharmacology , Vitamin E/pharmacology , Grape Seed Extract/pharmacology , Chickens , Kelch-Like ECH-Associated Protein 1 , Rice Bran Oil , NF-E2-Related Factor 2 , Dietary Supplements
8.
Meat Sci ; 213: 109504, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555738

ABSTRACT

This study investigated how lipid metabolism in the longissimus thoracis is influenced by the diet supplemented with grape seed procyanidins (GSPs) in growing-finishing pigs. Forty-eight crossbred pigs were randomly assigned to four groups, each receiving a basal diet, or basal diet added with 150, 200, and 250 mg/kg GSPs. Transcriptomics and metabolomics were employed to explore differential gene and metabolite regulation. The expression of key lipid metabolism-related genes was tested via qRT-PCR, and the lipid and fatty acid composition of the longissimus thoracis were determined. Dietary GSPs at different concentrations upregulated lipoprotein lipase (LPL), which is involved in lipolysis, and significantly increased the mRNA expression levels of carnitine palmitoyltransferase-1B (CPT1B) and cluster of differentiation 36 (CD36), implicated in transmembrane transport of fatty acids. Dietary supplementation of GSPs at 200 or 250 mg/kg markedly reduced total cholesterol and triglyceride content in longissimus thoracis. Dietary GSPs significantly decreased the contents of low-density lipoprotein cholesterol and saturated fatty acids, while increasing unsaturated fatty acids. In conclusion, GSPs may regulate lipid metabolism, reducing cholesterol level, and improving fatty acid composition in the longissimus thoracis of growing-finishing pigs. Our findings provide evidence for the beneficial effects of GSPs as pig feed additives for improving lipid composition.


Subject(s)
Animal Feed , Fatty Acids , Grape Seed Extract , Lipid Metabolism , Metabolomics , Muscle, Skeletal , Proanthocyanidins , Animals , Proanthocyanidins/pharmacology , Lipid Metabolism/drug effects , Grape Seed Extract/pharmacology , Animal Feed/analysis , Muscle, Skeletal/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , Metabolomics/methods , Diet/veterinary , Sus scrofa , Male , Biflavonoids/pharmacology , Dietary Supplements , Transcriptome , Swine , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Triglycerides
9.
Environ Sci Pollut Res Int ; 31(12): 18566-18578, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349500

ABSTRACT

Chlorpyrifos (CPF) poisoning is a public health problem for which there is not currently any effective prophylaxis. In this study, we investigated the protective effect of grape seed extract (GSE) against CPF-induced hepatotoxicity. Rats were daily treated either with CPF (2 mg/kg) or CPF and GSE (20 mg/kg) for 1 week, sacrificed, and their livers dissected for biochemical, molecular, and histopathological analyses. CPF generated liver dysfunction by altering carbohydrate, lipid, amino acid, ammonia and urea metabolism, and provoked mitochondrial impairment through disturbing tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and mitochondrial viability. CPF also induced cholinergic excitotoxicity along with oxidative stress and histopathological alterations. Interestingly, treatment with GSE prevented all the detrimental effects of CPF through the regulation of cytochrome P450 (CYP450) gene expression. Molecular docking analysis indicated that GSE-containing polyphenols acted as epigenetic modulators through inhibiting DNA (cytosine-5)-methyltransferase 1 (DNMT1), thus favoring the CYP2C6 detoxification pathway. Thereby, GSE might be a promising strategy in the protection of the liver against CPF toxicity.


Subject(s)
Chlorpyrifos , Grape Seed Extract , Rats , Animals , Chlorpyrifos/pharmacology , Grape Seed Extract/pharmacology , Grape Seed Extract/metabolism , Metabolic Detoxication, Phase I , Molecular Docking Simulation , Oxidative Stress , Antioxidants/metabolism , Liver
10.
Meat Sci ; 210: 109436, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266434

ABSTRACT

Plant extracts are commonly used as feed additives to improve pork quality. However, due to their high cost, shortening the duration of supplement use can help reduce production costs. In this study, we aimed to investigate the effects of grape seed proanthocyanidin extract (GSPE) on meat quality and muscle fiber characteristics of finishing pigs during the late stage of fattening, which was 30 days in our experimental design. The results indicated that short-term dietary supplementation of GSPE significantly reduced backfat thickness, but increased loin eye area and improved meat color and tenderness. Moreover, GSPE increased slow myosin heavy chain (MyHC) expression and malate dehydrogenase (MDH) activity, while decreasing fast MyHC expression and lactate dehydrogenase (LDH) activity in the Longissimus thoracis (LT) muscle. Additionally, GSPE increased the expression of Sirt1 and PGC-1α proteins in the LT muscle of finishing pigs and upregulated AMP-activated protein kinase α 1 (AMPKα1), AMPKα2, nuclear respiratory factor 1 (NRF1), and calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) mRNA expression levels. These findings suggest that even during the late stage of fattening, GSPE treatment can regulate skeletal muscle fiber type transformation through the AMPK signaling pathway, thereby affecting the muscle quality of finishing pigs. Therefore, by incorporating GSPE into the diet of pigs during the late stage of fattening, producers can enhance pork quality while reducing production costs.


Subject(s)
Grape Seed Extract , Pork Meat , Proanthocyanidins , Red Meat , Swine , Animals , Muscle Fibers, Skeletal/metabolism , Grape Seed Extract/pharmacology , Dietary Supplements , Muscle, Skeletal/metabolism
11.
Lasers Med Sci ; 39(1): 47, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277009

ABSTRACT

Living organisms, particularly humans, frequently encounter microorganisms such as bacteria, fungi, and viruses in their surroundings. Silver nanoparticles are widely used in biomedical devices because of their antibacterial and antiviral properties. The study evaluates the efficacy of red laser and silver nanoparticles from grape seed extract (AgNPs-GSE) in reducing Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, which cause infections. The sample comprised three groups: a control group without laser irradiation (T0), Escherichia coli samples (A1 and A2) irradiated with a 405-nm diode laser at different times and concentrations of silver nanoparticles, and Staphylococcus aureus samples (A3 and A4) illuminated with a 405-nm diode laser at different times and concentrations. Bacteria in groups A2 and A4 were treated with a photosensitizer (PS) made from grape seed extracts, incubated for 10 min, and then irradiated for 90, 120, 150, and 180 s. The samples were cultured on TSA media, set at 37 °C, counted using a Quebec colony counter, and analyzed using ANOVA and Tukey tests with a significance level of p < 0.05. The study illustrated that the combination of 10 µl of AgNPs-GSE, exposure to a red laser at 405 nm, and an energy density of 3.44 J/cm2 effectively photoinactivated both Escherichia coli and Staphylococcus aureus bacteria. For Escherichia coli bacteria irradiated for 180 s with concentrations of 1 mM, 1.5 mM, and 2 mM AgNPs-GSE, bacterial viability decreased by 64.50%, 70.74%, and 79.53%, respectively. Similarly, Staphylococcus aureus bacteria, subjected to irradiation for 180 s with concentrations of 1 mM, 1.5 mM, and 2 mM AgNPs-GSE, demonstrated reductions in bacterial viability by 70.23%, 73.47%, and 85.04%, respectively. The findings from the present study indicate that at an energy density of 3.44 J/cm2, it was possible to inactivate Escherichia coli by 79.53% and Staphylococcus aureus by 85.04%.


Subject(s)
Grape Seed Extract , Metal Nanoparticles , Humans , Silver/pharmacology , Staphylococcus aureus , Grape Seed Extract/pharmacology , Escherichia coli , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Lasers , Microbial Sensitivity Tests
12.
Photodiagnosis Photodyn Ther ; 45: 103943, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145770

ABSTRACT

AIMS: Bleached enamel reversal using antioxidants sodium ascorbate (SA), Green tea extract (GTE), grape seed extract (GSE), Curcumin photosensitizer (CP) and Er: YAG laser on the adhesive strength and marginal leakage of composite material bonded to the bleached enamel surface. MATERIALS AND METHODS: Enamel surface of hundred and twenty sound human first premolar teeth was cleansed using pumice and bleached with 35 % hydrogen peroxide. The samples were randomly divided into 5 groups based on the antioxidants used. n = 20 Group 1 (Control): No antioxidant agent, Group 2: 10 % SA solution, Group 3: 6.5 % GSE, Group 4: 5 % GTE, Group 5: Er: YAG laser and Group 6: CP. Following reversal, the composite was built and cured for 40 s. All the specimens were stored in distilled water at room temperature for 1 day. Microleakage, SBS, and failure mode were analyzed. Kolmogorov-Smirnov test, one-way analysis of variance, and Tukey's multiple post hoc test were used to analyze the data statistically. RESULTS: Group 2 (SA) (20.11 ± 5.79 nm) exhibited minimum value of microleakage and highest SBS (10.22 ± 1.62 MPa). Whereas, Group 1 (No antioxidant agent) displayed maximum scores of marginal leakage (28.11±8.89 nm) and lowest SBS (7.02 ± 1.22 MPa). CONCLUSION: CP, GTE and GSE can be used as a potential alternative to the commonly used SA solution to reverse the negative impact of bleaching on the enamel surface. The use of reversal agents CP, GTE and GSE improves bond values with a decrease in microleakage scores However, future studies are still warranted to conclude the outcomes of the existing study.


Subject(s)
Curcumin , Grape Seed Extract , Photochemotherapy , Tooth Bleaching , Humans , Grape Seed Extract/pharmacology , Curcumin/pharmacology , Tea , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Antioxidants/pharmacology , Ascorbic Acid , Hypochlorous Acid , Dental Enamel
13.
Molecules ; 28(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067437

ABSTRACT

(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-ß-cyclodextrin (Me-ß-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-ß-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-ß-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-ß-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.


Subject(s)
Grape Seed Extract , Nanoparticles , Humans , Grape Seed Extract/pharmacology , Dopamine , Powders , Nanoparticles/chemistry , Cryoprotective Agents , Freeze Drying/methods , Sucrose/chemistry , Particle Size
14.
Int J Mol Sci ; 24(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38069379

ABSTRACT

Disruptions of the light/dark cycle and unhealthy diets can promote misalignment of biological rhythms and metabolic alterations, ultimately leading to an oxidative stress condition. Grape seed proanthocyanidin extract (GSPE), which possesses antioxidant properties, has demonstrated its beneficial effects in metabolic-associated diseases and its potential role in modulating circadian disruptions. Therefore, this study aimed to assess the impact of GSPE administration on the liver oxidant system of healthy and diet-induced obese rats undergoing a sudden photoperiod shift. To this end, forty-eight photoperiod-sensitive Fischer 344/IcoCrl rats were fed either a standard (STD) or a cafeteria diet (CAF) for 6 weeks. A week before euthanizing, rats were abruptly transferred from a standard photoperiod of 12 h of light/day (L12) to either a short (6 h light/day, L6) or a long photoperiod (18 h light/day, L18) while receiving a daily oral dose of vehicle (VH) or GSPE (25 mg/kg). Alterations in body weight gain, serum and liver biochemical parameters, antioxidant gene and protein expression, and antioxidant metabolites were observed. Interestingly, GSPE partially ameliorated these effects by reducing the oxidative stress status in L6 through an increase in GPx1 expression and in hepatic antioxidant metabolites and in L18 by increasing the NRF2/KEAP1/ARE pathway, thereby showing potential in the treatment of circadian-related disorders by increasing the hepatic antioxidant response in a photoperiod-dependent manner.


Subject(s)
Grape Seed Extract , Proanthocyanidins , Rats , Animals , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Photoperiod , Rats, Wistar , NF-E2-Related Factor 2/metabolism , Grape Seed Extract/pharmacology , Grape Seed Extract/therapeutic use , Proanthocyanidins/metabolism , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Liver/metabolism
15.
J Microorg Control ; 28(3): 83-92, 2023.
Article in English | MEDLINE | ID: mdl-37866900

ABSTRACT

Norovirus (NoV)is a major causative virus of viral gastroenteritis and requires a general disinfection method because it is resistant to common disinfectants such as ethanol and chlorhexidine. This study aimed to find natural extracts as candidates for versatile disinfectant ingredients. The antiviral effect of natural extracts against NoV can be evaluated using the feline calicivirus (FCV)-inactivation test and NoV virus-like particle (NoV-VLP)-binding inhibition test. In this study, screening of natural extracts with anti- NoV effects was performed using these two methods. Of the 63 natural extracts examined, 14 were found to have high FCV-inactivation and NoV-VLP-binding inhibitory effects. In addition, we evaluated the NoV-VLPbinding inhibitory effect of grape seed extract(GSE)containing proanthocyanidins under multiple concentration conditions and treatment times and determined that the binding inhibitory effect of GSE was concentration- and time-dependent. Electron microscopy showed that GSE-treated NoV-VLPs aggregated, distorted, and swelled, suggesting that GSE directly interacts with NoV particles. The results suggest that some natural extracts containing GSE can be used as components of disinfectants against NoV.


Subject(s)
Disinfectants , Grape Seed Extract , Norovirus , Proanthocyanidins , Animals , Cats , Grape Seed Extract/pharmacology , Disinfectants/pharmacology , Disinfection , Proanthocyanidins/pharmacology
16.
Anim Biotechnol ; 34(9): 5067-5074, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878368

ABSTRACT

The present study aimed to assess the impact of grape seed extract (GSE), onion peel extract (OPE), and rosemary extract (ROE) on Diquat-induced growth restriction and oxidative stress in Lohmann chicks. A total of 200 chicks were randomly assigned to 5 diets: the positive control (PC) group, the negative control (NC) group, GSE group, OPE group, and ROE group. During the first 7 d of trial, compared with NC and PC groups, the GSE group enhanced average daily feed intake (ADFI). From day 8-21, diquat injection resulted in reduced growth performance, increased platelet volume distribution width (PWD), malondialdehyde (MDA) concentration, and activities of alanine aminotransferase (ALT) in chick serum; it also decreased total protein (TP), albumin (ALB), globulin (GLB) concentration, activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) in chick serum; furthermore, it increased MDA concentration while decreasing GST activities in liver. The NC group exhibited lower average daily gain (ADG) than other groups. Compared with NC group, GSE group reduced ALT activities, MDA levels, and red cell distribution width (RDW), and PDW concentration; it also increased SOD, GST activities. The ROE group lowered ALT activities and MDA concentration. The OPE group decreased ALT activities, and MDA levels, RDW, and PDW concentration, and increased SOD activities of chicks. These results suggest that supplementing antioxidants in diets alleviated oxidative stress in chicks challenged by improving antioxidant capacity and liver function.


Subject(s)
Grape Seed Extract , Rosmarinus , Animals , Grape Seed Extract/pharmacology , Grape Seed Extract/metabolism , Diquat/toxicity , Diquat/metabolism , Onions/metabolism , Rosmarinus/metabolism , Antioxidants/pharmacology , Diet/veterinary , Oxidative Stress , Liver/metabolism , Dietary Supplements , Superoxide Dismutase/metabolism
17.
Complement Ther Clin Pract ; 53: 101804, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832335

ABSTRACT

BACKGROUND AND PURPOSE: Iron overload in the body is associated with serious and irreversible tissue damage. This study aimed to investigate the iron-chelating, antioxidant, anti-inflammatory, and hepatoprotective activities of grape seed extract (GSE) supplement as well as its safety in ß-thalassemia major (ß-TM) pediatric patients receiving deferasirox as a standard iron-chelation therapy. MATERIALS AND METHODS: The children were randomly allocated to either GSE group (n = 30) or control group (n = 30) to receive GSE (100 mg/day) or placebo capsules, respectively, for 4 weeks. The serum levels of iron, ferritin, total iron-binding capacity (TIBC), alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and glutathione (GSH) as well as superoxide dismutase (SOD) activity and hemoglobin (Hb) concentration were measured pre-and post-intervention. RESULTS: GSE supplement significantly attenuated the serum levels of iron (p = 0.030), ferritin (p = 0.017), ALT (p = 0.000), AST (p = 0.000), TNF-α (p = 0.000), and hs-CRP (p = 0.001). The TIBC level (p = 0.020) significantly enhanced in the GSE group compared with the placebo group. Moreover, GSE supplement remarkably improved the oxidative stress markers, MDA (p = 0.000) and GSH (p = 0.001). The changes in the SOD activity (p = 0.590) and Hb concentration (p = 0.670) were not statistically different between the groups. CONCLUSION: GSE supplement possesses several health beneficial influences on children with ß-TM by alleviating iron burden, oxidative stress, inflammation, and liver dysfunction.


Subject(s)
Grape Seed Extract , Iron Overload , Liver Diseases , beta-Thalassemia , Child , Humans , beta-Thalassemia/drug therapy , beta-Thalassemia/complications , C-Reactive Protein , Deferasirox/therapeutic use , Ferritins/metabolism , Grape Seed Extract/pharmacology , Grape Seed Extract/therapeutic use , Inflammation/drug therapy , Inflammation/complications , Iron/metabolism , Iron Overload/drug therapy , Iron Overload/complications , Iron Overload/metabolism , Liver Diseases/complications , Oxidative Stress , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha
18.
Int J Food Microbiol ; 406: 110395, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-37734280

ABSTRACT

The demand for products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics have increased over the last years. Novel non-thermal technologies such as cold atmospheric plasma (CAP) and natural antimicrobials such as grape seed extract (GSE) are attractive alternatives to conventional food decontamination methods as they can meet the above demands. The aim of this study was to investigate the microbial inactivation potential of GSE, CAP (in this case, a remote air plasma with an ozone-dominated RONS output) and their combination against L. monocytogenes on five different 3D in vitro models of varying rheological, structural, and biochemical composition. More specifically, we studied the microbial dynamics, as affected by 1 % (w/v) GSE, CAP or their combination, in three monophasic Xanthan Gum (XG) based 3D models of relatively low viscosity (1.5 %, 2.5 % and 5 % w/v XG) and in a biphasic XG/Whey Protein (WPI) and a triphasic XG/WPI/fat model. A significant microbial inactivation (comparable to liquid broth) was achieved in presence of GSE on the surface of all monophasic models regardless of their viscosity. In contrast, the GSE antimicrobial effect was diminished in the multiphasic systems, resulting to only a slight disturbance of the microbial growth. In contrast, CAP showed better antimicrobial potential on the surface of the complex multiphasic models as compared to the monophasic models. When combined, in a hurdle approach, GSE/CAP showed promising microbial inactivation potential in all our 3D models, but less microbial inactivation in the structurally and biochemically complex multiphasic models, with respect to the monophasic models. The level of inactivation also depended on the duration of the exposure to GSE. Our results contribute towards understanding the antimicrobial efficacy of GSE, CAP and their combination as affected by robustly controlled changes of rheological and structural properties and of the biochemical composition of the environment in which bacteria grow. Therefore, our results contribute to the development of sustainable food safety strategies.


Subject(s)
Grape Seed Extract , Listeria monocytogenes , Plasma Gases , Grape Seed Extract/pharmacology , Food Preservation/methods , Food Microbiology , Plasma Gases/pharmacology , Colony Count, Microbial , Anti-Bacterial Agents/pharmacology
19.
Vet Q ; 43(1): 1-7, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37749897

ABSTRACT

Grape by-products represent outstanding alternatives to replace conventional and unsustainable feed sources, given the substantial quantities generated annually by the winery industry. Regrettably, the majority of these by-products are wasted, resulting in significant environmental and economic repercussions. This study was conducted to assess the growth performance, feed efficiency, egg production and quality, lipid peroxidation, fertility and hatchability of reproductive laying hens during their early production stage. A total of 720 golden laying hens, all approximately 25 weeks old and with similar body weights, were randomly assigned to four experimental treatments (six replicates) as follows: control group receiving only the standard diet, (2) a group receiving the standard diet supplemented with grape seed extract at a rate of 250 g/kg (GSE1), (3) a group receiving the standarddiet supplemented with grape seed extract at a rate of 500 g/kg (GSE2), and (4) a group receiving the standarddiet supplemented with grape seed extract at a rate of 750 g/kg (GSE3). There were no significant change (p > 0.05) in feed intak, body weight gain and feed conversion ratio between the control and the experimental groups. Egg weight, egg shell thickness and egg shell weight were significantly (p < 0.05) higher in GSE250 GSE500 and GSE750 compared to the control. The results showed that hen day egg production was also significantly higher (p < 0.05) in GSE500 and GSE 750 compared to the control. Fertility level of GSE 500 and GSE750 was significantly (p < 0.5) higher compared to the control. The MDA level decreased significantly (p < 0.05) in the GSE supplemented birds compared to the control. From these findings, we concluded that GSE 750 had positive impact on egg production, reducing lipid peroxidation and improving fertility in golden laying hens.


Subject(s)
Grape Seed Extract , Vitis , Animals , Female , Diet/veterinary , Chickens , Grape Seed Extract/pharmacology , Lipid Peroxidation , Ovum , Dietary Supplements , Fertility , Animal Feed/analysis
20.
Biomarkers ; 28(6): 544-554, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37555371

ABSTRACT

OBJECTIVE: The aim of the present study was to investigate the effects of Grape seed extract (GSE) and exercise training on Doxorubicin (Doxo)-induced cardio, hepato and myo toxicities in healthy rats. METHODS: Thirty male Wistar rats were randomly divided into five groups and daily treated by intraperitoneal route during two months either with ethanol 10% (Control); Doxo (1.5 mg/kg); Doxo + exercise (1.5 mg/kg + swimming exercise for 30 min twice a week); Doxo + GSE (1.5 mg/kg + GSE 2.5 g/kg); Doxo + GSE + exercise (1.5 mg/kg + GSE 2.5 g/kg + swimming exercise for 30 min twice a week). At the end of the treatment, tissues were collected and processed for the determination of oxidative stress (OS), intracellular mediators, energy fuelling biomarkers, carbohydrate metabolism parameters and muscle histopathology. RESULTS: Doxo provoked OS characterised by an increased lipoperoxidation (LPO) and protein carbonylation and decreased antioxidant enzyme activities. Doxo also affected intracellular mediators, disturbed carbohydrate metabolism and energy fuelling in skeletal muscle as assessed by down-regulated Electron Transport Chain (ETC) complex activities leading in fine to altered skeletal muscle structure and function. CONCLUSION: Almost all Doxo-induced disturbances were partially corrected with GSE and exercise on their own and more efficiently with the combined treatment (GSE + exercise).


Subject(s)
Grape Seed Extract , Rats , Male , Animals , Grape Seed Extract/pharmacology , Rats, Wistar , Antioxidants/pharmacology , Oxidative Stress , Doxorubicin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...