Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 967
Filter
2.
Atten Percept Psychophys ; 86(2): 579-586, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37258891

ABSTRACT

The ability to readily detect and recognize biological motion (BM) is fundamental to survival and interpersonal communication. However, perception of BM is strongly disrupted when it is shown upside down. This well-known inversion effect is proposed to be caused by a life motion detection mechanism highly tuned to gravity-compatible motion cues. In the current study, we assessed the inversion effect in BM perception using a no-report pupillometry. We found that the pupil size was significantly enlarged when observers viewed upright BMs (gravity-compatible) compared with the inverted counterparts (gravity-incompatible). Importantly, such an effect critically depended on the dynamic biological characteristics, and could be extended to local feet motion signals. These findings demonstrate that the eye pupil can signal gravity-dependent life motion perception. More importantly, with the convenience, objectivity, and noninvasiveness of pupillometry, the current study paves the way for the potential application of pupillary responses in detecting the deficiency of life motion perception in individuals with socio-cognitive disorders.


Subject(s)
Motion Perception , Humans , Motion Perception/physiology , Pupil/physiology , Cues , Communication , Gravity Sensing
3.
Curr Biol ; 33(23): R1224-R1226, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38052169

ABSTRACT

Plant gravitropism has fascinated scientists for centuries. A new study provides a major mechanistic update of the so-called starch/statolith hypothesis, revealing how gravity perception is converted into a physiological response.


Subject(s)
Arabidopsis , Gravitropism , Gravitropism/physiology , Arabidopsis/physiology , Gravity Sensing/physiology , Plants , Starch , Plastids/physiology
6.
Cell ; 186(22): 4788-4802.e15, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37741279

ABSTRACT

Gravity controls directional growth of plants, and the classical starch-statolith hypothesis proposed more than a century ago postulates that amyloplast sedimentation in specialized cells initiates gravity sensing, but the molecular mechanism remains uncharacterized. The LAZY proteins are known as key regulators of gravitropism, and lazy mutants show striking gravitropic defects. Here, we report that gravistimulation by reorientation triggers mitogen-activated protein kinase (MAPK) signaling-mediated phosphorylation of Arabidopsis LAZY proteins basally polarized in root columella cells. Phosphorylation of LAZY increases its interaction with several translocons at the outer envelope membrane of chloroplasts (TOC) proteins on the surface of amyloplasts, facilitating enrichment of LAZY proteins on amyloplasts. Amyloplast sedimentation subsequently guides LAZY to relocate to the new lower side of the plasma membrane in columella cells, where LAZY induces asymmetrical auxin distribution and root differential growth. Together, this study provides a molecular interpretation for the starch-statolith hypothesis: the organelle-movement-triggered molecular polarity formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plastids , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Gravity Sensing , Plant Roots/metabolism , Plastids/metabolism , Starch/metabolism , Membrane Proteins/metabolism
7.
Science ; 381(6661): 1006-1010, 2023 09.
Article in English | MEDLINE | ID: mdl-37561884

ABSTRACT

Organisms have evolved under gravitational force, and many sense the direction of gravity by means of statoliths in specialized cells. In flowering plants, starch-accumulating plastids, known as amyloplasts, act as statoliths to facilitate downstream gravitropism. The gravity-sensing mechanism has long been considered a mechanosensing process by which amyloplasts transmit forces to intracellular structures, but the molecular mechanism underlying this has not been elucidated. We show here that LAZY1-LIKE (LZY) family proteins involved in statocyte gravity signaling associate with amyloplasts and the proximal plasma membrane. This results in polar localization according to the direction of gravity. We propose a gravity-sensing mechanism by which LZY translocation to the plasma membrane signals the direction of gravity by transmitting information on the position of amyloplasts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Membrane , Cell Polarity , Gravitropism , Gravity Sensing , Plastids , Humans , Cell Membrane/metabolism , Gravitation , Plastids/physiology , Protein Transport , Arabidopsis Proteins/metabolism , Arabidopsis/physiology
8.
PLoS One ; 18(7): e0288353, 2023.
Article in English | MEDLINE | ID: mdl-37432927

ABSTRACT

Borehole gravity sensing can be used in a number of applications to measure features around a well, including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors, based on atom interferometry, have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60 ± 0.1) mm at its widest point and a length of (890 ± 5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate how in-borehole gravity surveys are performed. During the survey, the system generated, on average, clouds of (3.0 ± 0.1) × 105 87Rb atoms with the standard deviation in atom number across the survey observed to be as low as 8.9 × 104.


Subject(s)
Gravitation , Optical Tweezers , Calibration , Gravity Sensing , Interferometry
9.
Sensors (Basel) ; 23(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447879

ABSTRACT

Onboard electrostatic suspension inertial sensors are important applications for gravity satellites and space gravitational-wave detection missions, and it is important to suppress noise in the measurement signal. Due to the complex coupling between the working space environment and the satellite platform, the process of noise generation is extremely complex, and traditional noise modeling and subtraction methods have certain limitations. With the development of deep learning, applying it to high-precision inertial sensors to improve the signal-to-noise ratio is a practically meaningful task. Since there is a single noise sample and unknown true value in the measured data in orbit, odd-even sub-samplers and periodic sub-samplers are designed to process general signals and periodic signals, and adds reconstruction layers consisting of fully connected layers to the model. Experimental analysis and comparison are conducted based on simulation data, GRACE-FO acceleration data, and Taiji-1 acceleration data. The results show that the deep learning method is superior to traditional data smoothing processing solutions.


Subject(s)
Accelerometry , Environmental Monitoring , Gravitation , Models, Theoretical , Noise , Acceleration , Accelerometry/instrumentation , Accelerometry/methods , Computer Simulation , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Deep Learning , Gravity Sensing , Spacecraft/instrumentation
10.
Plant Biotechnol J ; 21(6): 1217-1228, 2023 06.
Article in English | MEDLINE | ID: mdl-36789453

ABSTRACT

Starch biosynthesis in gravity-sensing tissues of rice shoot determines the magnitude of rice shoot gravitropism and thus tiller angle. However, the molecular mechanism underlying starch biosynthesis in rice gravity-sensing tissues is still unclear. We characterized a novel tiller angle gene LAZY3 (LA3) in rice through map-based cloning. Biochemical, molecular and genetic studies further demonstrated the essential roles of LA3 in gravity perception of rice shoot and tiller angle control. The shoot gravitropism and lateral auxin transport were defective in la3 mutant upon gravistimulation. We showed that LA3 encodes a chloroplast-localized tryptophan-rich protein associated with starch granules via Tryptophan-rich region (TRR) domain. Moreover, LA3 could interact with the starch biosynthesis regulator LA2, determining starch granule formation in shoot gravity-sensing tissues. LA3 and LA2 negatively regulate tiller angle in the same pathway acting upstream of LA1 to mediate asymmetric distribution of auxin. Our study defined LA3 as an indispensable factor of starch biosynthesis in rice gravity-sensing tissues that greatly broadens current understanding in the molecular mechanisms underlying the starch granule formation in gravity-sensing tissues, and provides new insights into the regulatory mechanism of shoot gravitropism and rice tiller angle.


Subject(s)
Oryza , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Gravity Sensing/genetics , Tryptophan/metabolism , Indoleacetic Acids/metabolism , Gravitropism/genetics , Starch/metabolism
11.
J Plant Res ; 136(2): 265-276, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680680

ABSTRACT

Plants' ability to sense and respond to gravity is a unique and fundamental process. When a plant organ is tilted, it adjusts its growth orientation relative to gravity direction, which is achieved by a curvature of the organ. In higher, multicellular plants, it is thought that the relative directional change of gravity is detected by starch-filled organelles that occur inside specialized cells called statocytes, and this is followed by signal conversion from physical information to physiological information within the statocytes. The classic starch statolith hypothesis, i.e., the starch accumulating amyloplasts movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Acharya Jagadish Chandra Bose through his pioneering research had investigated whether the fundamental reaction of geocurvature is contractile or expansive and whether the geo-sensing cells are diffusedly distributed in the organ or are present in the form of a definite layer. In this backdrop, a microscopy based experimental study was undertaken to understand the distribution pattern of the gravisensing layer, along the length (node-node) of the model plant Alternanthera philoxeroides and to study the microrheological property of the mobile starch-filled statocytes following inclination-induced graviception in the stem of the model plant. The study indicated a prominent difference in the pattern of distribution of the gravisensing layer along the length of the model plant. The study also indicated that upon changing the orientation of the plant from vertical position to horizontal position there was a characteristic change in orientation of the mobile starch granules within the statocytes. In the present study for the analysis of the microscopic images of the stem tissue cross sections, a specialized and modified microscopic illumination setup was developed in the laboratory in order to enhance the resolution and contrast of the starch granules.


Subject(s)
Microscopy , Starch , Gravity Sensing/physiology , Gravitation , Plastids/ultrastructure , Gravitropism/physiology
12.
New Phytol ; 236(5): 1637-1654, 2022 12.
Article in English | MEDLINE | ID: mdl-36089891

ABSTRACT

Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.


Subject(s)
Gravitropism , Gravity Sensing , Gravitropism/physiology , Indoleacetic Acids , Plant Development , Plant Roots/physiology
13.
Nat Commun ; 13(1): 5060, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030280

ABSTRACT

Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.


Subject(s)
Vestibule, Labyrinth , Zebrafish , Animals , Eye Movements , Gravity Sensing , Larva
14.
Development ; 149(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35708640

ABSTRACT

During root development, the cells in the root cap transition from having a gravity-sensing function to becoming secretory cells and finally being shed. A new paper in Development describes the spatiotemporal dynamics of this process at both the cellular and subcellular levels, and identifies a key role for autophagy in organelle rearrangement and cell shedding. To find out more about the research, we caught up with first author Kaoru Sakamoto, first and corresponding author Tatsuaki Goh, Assistant Professor at Nara Institute of Science and Technology (NAIST), and corresponding author Keiji Nakajima, Professor at NAIST.


Subject(s)
Gravity Sensing , Humans
15.
J Vis Exp ; (183)2022 05 31.
Article in English | MEDLINE | ID: mdl-35723485

ABSTRACT

Gravity sensation is an important and relatively understudied process. Sensing gravity enables animals to navigate their surroundings and facilitates movement. Additionally, gravity sensation, which occurs in the mammalian inner ear, is closely related to hearing - thus, understanding this process has implications for auditory and vestibular research. Gravitaxis assays exist for some model organisms, including Drosophila. Single worms have previously been assayed for their orientation preference as they settle in solution. However, a reliable and robust assay for Caenorhabditis gravitaxis has not been described. The present protocol outlines a procedure for performing gravitaxis assays that can be used to test hundreds of Caenorhabditis dauers at a time. This large-scale, long-distance assay allows for detailed data collection, revealing phenotypes that may be missed on a standard plate-based assay. Dauer movement along the vertical axis is compared with horizontal controls to ensure that directional bias is due to gravity. Gravitactic preference can then be compared between strains or experimental conditions. This method can determine molecular, cellular, and environmental requirements for gravitaxis in worms.


Subject(s)
Caenorhabditis , Taxis Response , Animals , Gravitation , Gravity Sensing , Larva , Mammals
16.
Plant Signal Behav ; 17(1): 2025325, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35023420

ABSTRACT

Gravitropism is an important strategy for the adaptation of plants to the changing environment. Previous reports indicated that Ca2+ participated in plant gravity response. However, present information on the functions of Ca2+ in plant gravitropism was obtained mainly on coleoptiles, hypocotyls, and petioles, little is known about the dynamic changes of Ca2+ during root gravitropism. In the present study, the transgenic Arabidopsis thaliana R-GECO1 was placed horizontally and subsequently vertically on a refitted Leica SP8 laser scanning confocal microscopy with a vertical stage. Real-time observations indicated that gravistimulation induced not only an increase in the Ca2+ concentration, but also an accelerated occurrence of Ca2+ sparks in the root cap, especially in the lower side of the lateral root cap, indicating a strong tie between Ca2+ dynamics and gravistimulation during the early stage of root gravity response.


Subject(s)
Arabidopsis , Gravitropism , Arabidopsis/genetics , Gravitation , Gravitropism/physiology , Gravity Sensing , Hypocotyl , Plant Roots/physiology
17.
J Neurophysiol ; 127(2): 434-443, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34986019

ABSTRACT

Skilled movements result from a mixture of feedforward and feedback mechanisms conceptualized by internal models. These mechanisms subserve both motor execution and motor imagery. Current research suggests that imagery allows updating feedforward mechanisms, leading to better performance in familiar contexts. Does this still hold in radically new contexts? Here, we test this ability by asking participants to imagine swinging arm movements around shoulder in normal gravity condition and in microgravity in which studies showed that movements slow down. We timed several cycles of actual and imagined arm pendular movements in three groups of subjects during parabolic flight campaign. The first, control, group remained on the ground. The second group was exposed to microgravity but did not imagine movements inflight. The third group was exposed to microgravity and imagined movements inflight. All groups performed and imagined the movements before and after the flight. We predicted that a mere exposure to microgravity would induce changes in imagined movement duration. We found this held true for the group who imagined the movements, suggesting an update of internal representations of gravity. However, we did not find a similar effect in the group exposed to microgravity despite the fact that the participants lived the same gravitational variations as the first group. Overall, these results suggest that motor imagery contributes to update internal representations of the considered movement in unfamiliar environments, while a mere exposure proved to be insufficient.NEW & NOTEWORTHY Gravity strongly affects the way movements are performed. How internal models process this information to adapt behavior to novel contexts is still unknown. The microgravity environment itself does not provide enough information to optimally adjust the period of natural arm swinging movements to microgravity. However, motor imagery of the task while immersed in microgravity was sufficient to update internal models. These results show that actually executing a task is not necessary to update graviception.


Subject(s)
Gravity Sensing/physiology , Hypogravity , Imagination/physiology , Motor Activity/physiology , Adult , Female , Humans , Male , Young Adult
18.
Sci Rep ; 12(1): 1430, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082357

ABSTRACT

The effect of varying sinusoidal linear acceleration on perception of human motion was examined using 4 motion paradigms: off-vertical axis rotation, variable radius centrifugation, linear lateral translation, and rotation about an earth-horizontal axis. The motion profiles for each paradigm included 6 frequencies (0.01-0.6 Hz) and 5 tilt amplitudes (5°-20°). Subjects verbally reported the perceived angle of their whole-body tilt and the peak-to-peak translation of their head in space and used a joystick capable of recording 2-axis motion in the sagittal and transversal planes to indicate the phase between the perceived and actual motions. The amplitudes of perceived tilt and translation were expressed in terms of gain, i.e., the ratio of perceived tilt to equivalent tilt angle, and the ratio of perceived translation to equivalent linear displacement. Tilt perception gain decreased, whereas translation perception gain increased, with increasing frequency. During off-vertical axis rotation, the phase of tilt perception and of translation perception did not vary across stimulus frequencies. These motion paradigms elicited similar responses in roll tilt and interaural perception of translation, with differences likely due to the influence of naso-occipital linear accelerations and input to the semicircular canals that varied across motion paradigms.


Subject(s)
Gravity Sensing/physiology , Head Movements/physiology , Head-Down Tilt/physiology , Motion Perception/physiology , Orientation, Spatial/physiology , Acceleration , Adult , Eye Movements/physiology , Female , Humans , Male , Middle Aged , Reflex, Vestibulo-Ocular/physiology , Rotation , Semicircular Canals/physiology
19.
Plant Sci ; 314: 111105, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34895542

ABSTRACT

Plant signaling components are often involved in numerous processes. Calcium, reactive oxygen species, and other signaling molecules are essential to normal biotic and abiotic responses. Yet, the summation of these components is integrated to produce a specific response despite their involvement in a myriad of response cascades. In the response to gravity, the role of many of these individual components has been studied, but a specific sequence of signals has not yet been assembled into a cohesive schematic of gravity response signaling. Herein, we provide a review of existing knowledge of gravity response and differential protein and gene regulation induced by the absence of gravity stimulus aboard the International Space Station and propose an integrated theoretical schematic of gravity response incorporating that information. Recent developments in the role of nitric oxide in gravity signaling provided some of the final contextual pillars for the assembly of the model, where nitric oxide and the role of cysteine S-nitrosation may be central to the gravity response. The proposed schematic accounts for the known responses to reorientation with respect to gravity in roots-the most well studied gravitropic plant tissue-and is supported by the extensive evolutionary conservation of regulatory amino acids within protein components of the signaling schematic. The identification of a role of nitric oxide in regulating the TIR1 auxin receptor is indicative of the broader relevance of the schematic in studying a multitude of environmental and stress responses. Finally, there are several experimental approaches that are highlighted as essential to the further study and validation of this schematic.


Subject(s)
Gravitropism/drug effects , Gravity Sensing/drug effects , Nitric Oxide/metabolism , Plant Development/drug effects , Plant Roots/metabolism , Signal Transduction/drug effects
20.
Methods Mol Biol ; 2368: 53-60, 2022.
Article in English | MEDLINE | ID: mdl-34647247

ABSTRACT

Early studies revealed a highly predictable pattern of gravity-directed growth and development in Ceratopteris richardii spores. This makes the spore a valuable model system for the study of how a single-cell senses and responds to the force of gravity. Gravity regulates both the direction and magnitude of a trans-cell calcium current in germinating spores, and the orientation of this current predicts the polarization of spore development. In order to make Ceratopteris richardii cells easier to transform and image during this developmental process, a procedure for isolating protoplasts from Ceratopteris richardii gametophytes has been developed and optimized. These protoplasts follow the same developmental pattern as Ceratopteris richardii spores and can be used to monitor the molecular and developmental processes during single-cell polarization. Here, we describe this optimized procedure, along with protocols for sterilizing the spores, sowing them in solid or liquid growth media, and evaluating germination and polarization.


Subject(s)
Gravity Sensing , Pteridaceae , Cell Polarity , Protoplasts , Spores
SELECTION OF CITATIONS
SEARCH DETAIL
...