Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.152
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776372

ABSTRACT

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Subject(s)
Magnetic Resonance Imaging , Saimiri , Spinal Cord , White Matter , Animals , White Matter/diagnostic imaging , White Matter/physiology , Spinal Cord/physiology , Spinal Cord/diagnostic imaging , Magnetic Resonance Imaging/methods , Rest/physiology , Oxygen/blood , Oxygen/metabolism , Male , Gray Matter/diagnostic imaging , Gray Matter/physiology , Female
2.
Sci Rep ; 14(1): 11465, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769421

ABSTRACT

Childhood maltreatment is reportedly associated with atypical gray matter structures in the primary visual cortex (V1). This study explores the hypothesis that retinal structures, the sensory organs of vision, are associated with brain atypicality and child maltreatment and examines their interrelation. General ophthalmologic examinations, visual cognitive tasks, retinal imaging, and structural magnetic resonance imaging (MRI) were conducted in children and adolescents aged 9-18 years with maltreatment experiences (CM) and typically developing (TD) children. The retinal nerve fiber layer (RNFL), the most superficial of the ten distinct retinal layers, was found to be significantly thinner in both eyes in CM. While whole-brain analysis using Voxel-based morphometry revealed a significantly larger gray matter volume (GMV) in the thalamus in CM, no significant correlation with RNFL thickness was observed. However, based on region-of-interest analysis, a thinner RNFL was associated with a larger GMV in the right V1. Although it cannot be ruled out that this outcome resulted from maltreatment alone, CM demonstrated subclinical structural atypicality in the retina, which may also correlate with the immaturity of V1 development. Examination of retinal thickness offers a novel clinical approach to capturing characteristics associated with childhood maltreatment.


Subject(s)
Child Abuse , Gray Matter , Magnetic Resonance Imaging , Retina , Visual Cortex , Humans , Child , Gray Matter/diagnostic imaging , Gray Matter/pathology , Male , Adolescent , Female , Retina/pathology , Retina/diagnostic imaging , Magnetic Resonance Imaging/methods , Visual Cortex/diagnostic imaging , Visual Cortex/pathology
3.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771243

ABSTRACT

Variability in brain structure is associated with the capacity for behavioral change. However, a causal link between specific brain areas and behavioral change (such as motor learning) has not been demonstrated. We hypothesized that greater gray matter volume of a primary motor cortex (M1) area active during a hand motor learning task is positively correlated with subsequent learning of the task, and that the disruption of this area blocks learning of the task. Healthy participants underwent structural MRI before learning a skilled hand motor task. Next, participants performed this learning task during fMRI to determine M1 areas functionally active during this task. This functional ROI was anatomically constrained with M1 boundaries to create a group-level "Active-M1" ROI used to measure gray matter volume in each participant. Greater gray matter volume in the left hemisphere Active-M1 ROI was related to greater motor learning in the corresponding right hand. When M1 hand area was disrupted with repetitive transcranial stimulation (rTMS), learning of the motor task was blocked, confirming its causal link to motor learning. Our combined imaging and rTMS approach revealed greater cortical volume in a task-relevant M1 area is causally related to learning of a hand motor task in healthy humans.


Subject(s)
Gray Matter , Hand , Learning , Magnetic Resonance Imaging , Motor Cortex , Transcranial Magnetic Stimulation , Humans , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Male , Female , Hand/physiology , Learning/physiology , Adult , Young Adult , Gray Matter/physiology , Gray Matter/diagnostic imaging , Motor Skills/physiology , Brain Mapping , Functional Laterality/physiology
4.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38752981

ABSTRACT

Adolescents are high-risk population for major depressive disorder. Executive dysfunction emerges as a common feature of depression and exerts a significant influence on the social functionality of adolescents. This study aimed to identify the multimodal co-varying brain network related to executive function in adolescent with major depressive disorder. A total of 24 adolescent major depressive disorder patients and 43 healthy controls were included and completed the Intra-Extra Dimensional Set Shift Task. Multimodal neuroimaging data, including the amplitude of low-frequency fluctuations from resting-state functional magnetic resonance imaging and gray matter volume from structural magnetic resonance imaging, were combined with executive function using a supervised fusion method named multimodal canonical correlation analysis with reference plus joint independent component analysis. The major depressive disorder showed more total errors than the healthy controls in the Intra-Extra Dimensional Set Shift task. Their performance on the Intra-Extra Dimensional Set Shift Task was negatively related to the 14-item Hamilton Rating Scale for Anxiety score. We discovered an executive function-related multimodal fronto-occipito-temporal network with lower amplitude of low-frequency fluctuation and gray matter volume loadings in major depressive disorder. The gray matter component of the identified network was negatively related to errors made in Intra-Extra Dimensional Set Shift while positively related to stages completed. These findings may help to deepen our understanding of the pathophysiological mechanisms of cognitive dysfunction in adolescent depression.


Subject(s)
Depressive Disorder, Major , Executive Function , Magnetic Resonance Imaging , Multimodal Imaging , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Adolescent , Executive Function/physiology , Male , Female , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuroimaging/methods , Cognition/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Neuropsychological Tests , Brain Mapping/methods
5.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Article in English | MEDLINE | ID: mdl-38727010

ABSTRACT

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Subject(s)
Atlases as Topic , Brain , Diffusion Tensor Imaging , Gray Matter , White Matter , Humans , Infant , Child, Preschool , Male , White Matter/diagnostic imaging , White Matter/anatomy & histology , White Matter/growth & development , Female , Gray Matter/diagnostic imaging , Gray Matter/growth & development , Gray Matter/anatomy & histology , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Brain/growth & development , Brain/anatomy & histology , Image Processing, Computer-Assisted/methods
6.
Medicine (Baltimore) ; 103(19): e38139, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728497

ABSTRACT

Both Parkinson disease (PD) and Essential tremor (ET) are movement disorders causing tremors in elderly individuals. Although PD and ET are different disease, they often present with similar initial symptoms, making their differentiation challenging with magnetic resonance imaging (MRI) techniques. This study aimed to identify structural brain differences among PD, ET, and health controls (HCs) using 7-Tesla (T) MRI. We assessed the whole-brain parcellation in gray matter volume, thickness, subcortical volume, and small regions of basal ganglia in PD (n = 18), ET (n = 15), and HCs (n = 18), who were matched for age and sex. Brain structure analysis was performed automatic segmentation through Freesurfer software. Small regions of basal ganglia were manually segmented by ITK-SNAP. Additionally, we examined the associations between clinical indicators (symptom duration, unified Parkinson diseases rating scale (UPDRS), and clinical rating scale for tremor (CRST)) and brain structure. PD showed a significant reduction in gray matter volume in the postcentral region compared to ET. ET showed a significant reduction in cerebellum volume compared to HCs. There was a negative correlation between CRST scores (B and C) and gray matter thickness in right superior frontal in ET. This study demonstrated potential of 7T MRI in differentiating brain structure differences among PD, ET, and HCs. Specific findings, such as parietal lobe atrophy in PD compared to ET and cerebellum atrophy in ET compared to HCs, the importance of advanced imaging techniques in accurately diagnosing and distinguishing between movement disorders that present with similar initial symptoms.


Subject(s)
Brain , Essential Tremor , Magnetic Resonance Imaging , Parkinson Disease , Humans , Essential Tremor/diagnostic imaging , Essential Tremor/pathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Magnetic Resonance Imaging/methods , Female , Male , Aged , Middle Aged , Brain/diagnostic imaging , Brain/pathology , Case-Control Studies , Gray Matter/diagnostic imaging , Gray Matter/pathology
7.
Hum Brain Mapp ; 45(7): e26705, 2024 May.
Article in English | MEDLINE | ID: mdl-38716698

ABSTRACT

The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.


Subject(s)
Singing , White Matter , Humans , Adult , Male , Middle Aged , Aged , Female , Young Adult , Singing/physiology , Aged, 80 and over , White Matter/diagnostic imaging , White Matter/physiology , White Matter/anatomy & histology , Aging/physiology , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/physiology , Brain/anatomy & histology , Gray Matter/diagnostic imaging , Gray Matter/anatomy & histology , Gray Matter/physiology , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging
8.
Sci Rep ; 14(1): 10313, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705875

ABSTRACT

Sunlight is closely intertwined with daily life. It remains unclear whether there are associations between sunlight exposure and brain structural markers. General linear regression analysis was used to compare the differences in brain structural markers among different sunlight exposure time groups. Stratification analyses were performed based on sex, age, and diseases (hypertension, stroke, diabetes). Restricted cubic spline was performed to examine the dose-response relationship between natural sunlight exposure and brain structural markers, with further stratification by season. A negative association of sunlight exposure time with brain structural markers was found in the upper tertile compared to the lower tertile. Prolonged natural sunlight exposure was associated with the volumes of total brain (ß: - 0.051, P < 0.001), white matter (ß: - 0.031, P = 0.023), gray matter (ß: - 0.067, P < 0.001), and white matter hyperintensities (ß: 0.059, P < 0.001). These associations were more pronounced in males and individuals under the age of 60. The results of the restricted cubic spline analysis showed a nonlinear relationship between sunlight exposure and brain structural markers, with the direction changing around 2 h of sunlight exposure. This study demonstrates that prolonged exposure to natural sunlight is associated with brain structural markers change.


Subject(s)
Biological Specimen Banks , Brain , Sunlight , Humans , Male , Female , Middle Aged , Brain/diagnostic imaging , Brain/radiation effects , Aged , United Kingdom , Magnetic Resonance Imaging , Biomarkers , White Matter/diagnostic imaging , White Matter/radiation effects , Adult , Gray Matter/diagnostic imaging , Gray Matter/radiation effects , Seasons , UK Biobank
9.
Aerosp Med Hum Perform ; 95(5): 245-253, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38715266

ABSTRACT

INTRODUCTION: The rapid development of the space industry requires a deeper understanding of spaceflight's impact on the brain. MRI research reports brain volume changes following spaceflight in astronauts, potentially affecting cognition. Recently, we have demonstrated that this evidence of volumetric changes, as measured by typical T1-weighted sequences (e.g., magnetization-prepared rapid gradient echo sequence; MPRAGE), is error-prone due to the microgravity-related redistribution of cerebrospinal fluid in the brain. More modern neuroimaging methods, particularly dual-echo MPRAGE (DEMPRAGE) and magnetization-prepared rapid gradient echo sequence utilizing two inversion pulses (MP2RAGE), have been suggested to be resilient to this error. Here, we tested if these imaging modalities offered consistent segmentation performance improvements in some commonly employed neuroimaging software packages.METHODS: We conducted manual gray matter tissue segmentation in traditional T1w MRI images to utilize for comparison. Automated tissue segmentation was performed for traditional T1w imaging, as well as on DEMPRAGE and MP2RAGE images from the same subjects. Statistical analysis involved a comparison of total gray matter volumes for each modality, and the extent of tissue segmentation agreement was assessed using a test of similarity (Dice coefficient).RESULTS: Neither DEMPRAGE nor MP2RAGE exhibited consistent segmentation performance across all toolboxes tested.DISCUSSION: This research indicates that customized data collection and processing methods are necessary for reliable and valid structural MRI segmentation in astronauts, as current methods provide erroneous classification and hence inaccurate claims of neuroplastic brain changes in the astronaut population.Berger L, Burles F, Jaswal T, Williams R, Iaria G. Modern magnetic resonance imaging modalities to advance neuroimaging in astronauts. Aerosp Med Hum Perform. 2024; 95(5):245-253.


Subject(s)
Astronauts , Magnetic Resonance Imaging , Neuroimaging , Space Flight , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Male , Adult , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Middle Aged , Female
10.
Behav Brain Funct ; 20(1): 10, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702688

ABSTRACT

BACKGROUND: Episodic memory (EM) deteriorates as a result of normal aging as well as Alzheimer's disease. The neural underpinnings of such age-related memory impairments in older individuals are not well-understood. Although previous research has unveiled the association between gray matter volume (GMV) and EM in the elderly population, such findings exhibit variances across distinct age cohorts. Consequently, an investigation into the dynamic evolution of this relationship with advancing age is imperative. RESULT: The present study utilized a sliding window approach to examine how the correlation between EM and GMV varied with age in a cross-sectional sample of 926 Chinese older adults. We found that both verbal EM (VEM) and spatial EM (SEM) exhibited positive correlations with GMV in extensive areas primarily in the temporal and frontal lobes and that these correlations typically became stronger with older age. Moreover, there were variations in the strength of the correlation between EM and GMV with age, which differed based on sex and the specific type of EM. Specifically, the association between VEM and GMVs in the insula and parietal regions became stronger with age for females but not for males, whereas the association between SEM and GMVs in the parietal and occipital regions became stronger for males but not for females. At the brain system level, there is a significant age-related increase in the correlations between both types of EM and the GMV of both the anterior temporal (AT) system and the posterior medial (PM) system in male group. In females, both types of EM show stronger age-related correlations with the GMV of the AT system compared to males. CONCLUSIONS: Our study revealed a significant positive correlation between GMV in most regions associated with EM and age, particularly in the frontal and temporal lobes. This discovery offers new insights into the connection between brain structure and the diminishing episodic memory function among older individuals.


Subject(s)
Aging , Frontal Lobe , Gray Matter , Magnetic Resonance Imaging , Memory, Episodic , Temporal Lobe , Humans , Male , Female , Aged , Gray Matter/diagnostic imaging , Frontal Lobe/diagnostic imaging , Aging/physiology , Aging/pathology , Temporal Lobe/diagnostic imaging , Middle Aged , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Aged, 80 and over , Organ Size/physiology
11.
Top Spinal Cord Inj Rehabil ; 30(2): 78-95, 2024.
Article in English | MEDLINE | ID: mdl-38799609

ABSTRACT

Background: Spinal cord injuries (SCI) often result in cardiovascular issues, increasing the risk of stroke and cognitive deficits. Objectives: This study assessed cerebrovascular reactivity (CVR) using functional magnetic resonance imaging (fMRI) during a hypercapnic challenge in SCI participants compared to noninjured controls. Methods: Fourteen participants were analyzed (n = 8 with SCI [unless otherwise noted], median age = 44 years; n = 6 controls, median age = 33 years). CVR was calculated through fMRI signal changes. Results: The results showed a longer CVR component (tau) in the grey matter of SCI participants (n = 7) compared to controls (median difference = 3.0 s; p < .05). Time since injury (TSI) correlated negatively with steady-state CVR in the grey matter and brainstem of SCI participants (RS = -0.81, p = .014; RS = -0.84, p = .009, respectively). Lower steady-state CVR in the brainstem of the SCI group (n = 7) correlated with lower diastolic blood pressure (RS = 0.76, p = .046). Higher frequency of hypotensive episodes (n = 7) was linked to lower CVR outcomes in the grey matter (RS = -0.86, p = .014) and brainstem (RS = -0.89, p = .007). Conclusion: Preliminary findings suggest a difference in the dynamic CVR component, tau, between the SCI and noninjured control groups, potentially explaining the higher cerebrovascular health burden in SCI individuals. Exploratory associations indicate that longer TSI, lower diastolic blood pressure, and more hypotensive episodes may lead to poorer CVR outcomes. However, further research is necessary to establish causality and support these observations.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Spinal Cord Injuries , Humans , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/complications , Male , Adult , Female , Middle Aged , Cerebrovascular Circulation/physiology , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Brain Stem/physiopathology , Brain Stem/diagnostic imaging
12.
Mol Brain ; 17(1): 25, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773624

ABSTRACT

A growing body of evidence indicates intra- and inter-regional heterogeneity of astrocytes in the brain. However, because of a lack of an efficient method for isolating astrocytes from the spinal cord, little is known about how much spinal cord astrocytes are heterogeneous in adult mice. In this study, we developed a new method for isolating spinal astrocytes from adult mice using a cold-active protease from Bacillus licheniformis with an astrocyte cell surface antigen-2 (ACSA-2) antibody. Using fluorescence-activated cell sorting, isolated spinal ACSA-2+ cells were divided into two distinct populations, ACSA-2high and ACSA-2low. By analyzing the expression of cell-type marker genes, the ACSA-2high and ACSA-2low populations were identified as astrocytes and ependymal cells, respectively. Furthermore, ACSA-2high cells had mRNAs encoding genes that were abundantly expressed in the gray matter (GM) but not white matter astrocytes. By optimizing enzymatic isolation procedures, the yield of GM astrocytes also increased. Therefore, our newly established method enabled the selective and efficient isolation of GM astrocytes from the spinal cord of adult mice and may be useful for bulk- or single-cell RNA-sequencing under physiological and pathological conditions.


Subject(s)
Astrocytes , Cell Separation , Gray Matter , Spinal Cord , Animals , Astrocytes/metabolism , Astrocytes/cytology , Spinal Cord/cytology , Cell Separation/methods , Mice, Inbred C57BL , Mice , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Aging
13.
PLoS One ; 19(5): e0301520, 2024.
Article in English | MEDLINE | ID: mdl-38758830

ABSTRACT

White matter (WM) changes occur throughout the lifespan at a different rate for each developmental period. We aggregated 10879 structural MRIs and 6186 diffusion-weighted MRIs from participants between 2 weeks to 100 years of age. Age-related changes in gray matter and WM partial volumes and microstructural WM properties, both brain-wide and on 29 reconstructed tracts, were investigated as a function of biological sex and hemisphere, when appropriate. We investigated the curve fit that would best explain age-related differences by fitting linear, cubic, quadratic, and exponential models to macro and microstructural WM properties. Following the first steep increase in WM volume during infancy and childhood, the rate of development slows down in adulthood and decreases with aging. Similarly, microstructural properties of WM, particularly fractional anisotropy (FA) and mean diffusivity (MD), follow independent rates of change across the lifespan. The overall increase in FA and decrease in MD are modulated by demographic factors, such as the participant's age, and show different hemispheric asymmetries in some association tracts reconstructed via probabilistic tractography. All changes in WM macro and microstructure seem to follow nonlinear trajectories, which also differ based on the considered metric. Exponential changes occurred for the WM volume and FA and MD values in the first five years of life. Collectively, these results provide novel insight into how changes in different metrics of WM occur when a lifespan approach is considered.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Adult , Male , Female , Adolescent , Middle Aged , Aged , Young Adult , Child , Aged, 80 and over , Infant , Child, Preschool , Aging/physiology , Longevity , Infant, Newborn , Diffusion Tensor Imaging , Diffusion Magnetic Resonance Imaging , Anisotropy , Brain/diagnostic imaging , Brain/growth & development , Gray Matter/diagnostic imaging
14.
Addict Biol ; 29(5): e13399, 2024 May.
Article in English | MEDLINE | ID: mdl-38711213

ABSTRACT

Excessive use of the internet, which is a typical scenario of self-control failure, could lead to potential consequences such as anxiety, depression, and diminished academic performance. However, the underlying neuropsychological mechanisms remain poorly understood. This study aims to investigate the structural basis of self-control and internet addiction. In a cohort of 96 internet gamers, we examined the relationships among grey matter volume and white matter integrity within the frontostriatal circuits and internet addiction severity, as well as self-control measures. The results showed a significant and negative correlation between dACC grey matter volume and internet addiction severity (p < 0.001), but not with self-control. Subsequent tractography from the dACC to the bilateral ventral striatum (VS) was conducted. The fractional anisotropy (FA) and radial diffusivity of dACC-right VS pathway was negatively (p = 0.011) and positively (p = 0.020) correlated with internet addiction severity, respectively, and the FA was also positively correlated with self-control (p = 0.036). These associations were not observed for the dACC-left VS pathway. Further mediation analysis demonstrated a significant complete mediation effect of self-control on the relationship between FA of the dACC-right VS pathway and internet addiction severity. Our findings suggest that the dACC-right VS pathway is a critical neural substrate for both internet addiction and self-control. Deficits in this pathway may lead to impaired self-regulation over internet usage, exacerbating the severity of internet addiction.


Subject(s)
Diffusion Tensor Imaging , Gray Matter , Internet Addiction Disorder , Self-Control , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Male , Internet Addiction Disorder/diagnostic imaging , Internet Addiction Disorder/physiopathology , Female , Diffusion Tensor Imaging/methods , Adult , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiopathology , Ventral Striatum/pathology , Severity of Illness Index , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Internet , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Frontal Lobe/physiopathology
15.
Mayo Clin Proc ; 99(5): 716-726, 2024 May.
Article in English | MEDLINE | ID: mdl-38702125

ABSTRACT

OBJECTIVE: To evaluate the associations between prescription opioid exposures in community-dwelling older adults and gray and white matter structure by magnetic resonance imaging. METHODS: Secondary analysis was conducted of a prospective, longitudinal population-based cohort study employing cross-sectional imaging of older adult (≥65 years) enrollees between November 1, 2004, and December 31, 2017. Gray matter outcomes included cortical thickness in 41 structures and subcortical volumes in 6 structures. White matter outcomes included fractional anisotropy in 40 tracts and global white matter hyperintensity volumes. The primary exposure was prescription opioid availability expressed as the per-year rate of opioid days preceding magnetic resonance imaging, with a secondary exposure of per-year total morphine milligram equivalents (MME). Multivariable models assessed associations between opioid exposures and brain structures. RESULTS: The study included 2185 participants; median (interquartile range) age was 80 (75 to 85) years, 47% were women, and 1246 (57%) received opioids. No significant associations were found between opioids and gray matter. Increased opioid days and MME were associated with decreased white matter fractional anisotropy in 15 (38%) and 16 (40%) regions, respectively, including the corpus callosum, posterior thalamic radiation, and anterior limb of the internal capsule, among others. Opioid days and MME were also associated with greater white matter hyperintensity volume (1.02 [95% CI, 1.002 to 1.036; P=.029] and 1.01 [1.001 to 1.024; P=.032] increase in the geometric mean, respectively). CONCLUSION: The duration and dose of prescription opioids were associated with decreased white matter integrity but not with gray matter structure. Future studies with longitudinal imaging and clinical correlation are warranted to further evaluate these relationships.


Subject(s)
Analgesics, Opioid , Independent Living , Magnetic Resonance Imaging , Humans , Female , Male , Aged , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Aged, 80 and over , Prospective Studies , Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Gray Matter/pathology , Brain/diagnostic imaging , Brain/drug effects , Brain/pathology , White Matter/diagnostic imaging , White Matter/drug effects , Longitudinal Studies , Cross-Sectional Studies
16.
Neuroreport ; 35(10): 627-637, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813904

ABSTRACT

This study aimed to investigate the prevalence of vertebrobasilar dolichoectasia (VBD) in Parkinson's disease (PD) patients and analyze its role in gray matter changes, white matter (WM) microstructure and network alterations in PD. This is a cross-sectional study including 341 PD patients. Prevalence of VBD in these PD patients was compared with general population. Diffusion tensor imaging and T1-weighted imaging analysis were performed among 174 PD patients with or without VBD. Voxel-based morphometry analysis was used to estimate gray matter volume changes. Tract-based spatial statistics and region of interest-based analysis were used to evaluate WM microstructure changes. WM network analysis was also performed. Significantly higher prevalence of VBD in PD patients was identified compared with general population. Lower fractional anisotropy and higher diffusivity, without significant gray matter involvement, were found in PD patients with VBD in widespread areas. Decreased global and local efficiency, increased hierarchy, decreased degree centrality at left Rolandic operculum, increased betweenness centrality at left postcentral gyrus and decreased average connectivity strength between and within several modules were identified in PD patients with VBD. VBD is more prevalent in PD patients than general population. Widespread impairments in WM microstructure and WM network involving various motor and nonmotor PD symptom-related areas are more prominent in PD patients with VBD compared with PD patients without VBD.


Subject(s)
Diffusion Tensor Imaging , Parkinson Disease , Vertebrobasilar Insufficiency , White Matter , Humans , Parkinson Disease/pathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/epidemiology , White Matter/diagnostic imaging , White Matter/pathology , Male , Vertebrobasilar Insufficiency/pathology , Vertebrobasilar Insufficiency/diagnostic imaging , Vertebrobasilar Insufficiency/epidemiology , Female , Aged , Cross-Sectional Studies , Middle Aged , Prevalence , Gray Matter/pathology , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging
17.
J Affect Disord ; 358: 487-499, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705527

ABSTRACT

BACKGROUND: Glaucoma, a progressive neurodegenerative disorder leading to irreversible blindness, is associated with heightened rates of generalized anxiety and depression. This study aims to comprehensively investigate brain morphological changes in glaucoma patients, extending beyond visual processing areas, and explores overlaps with morphological alterations observed in anxiety and depression. METHODS: A comparative meta-analysis was conducted, using case-control studies of brain structural integrity in glaucoma patients. We aimed to identify regions with gray matter volume (GMV) changes, examine their role within distinct large-scale networks, and assess overlap with alterations in generalized anxiety disorder (GAD) and major depressive disorder (MDD). RESULTS: Glaucoma patients exhibited significant GMV reductions in visual processing regions (lingual gyrus, thalamus). Notably, volumetric reductions extended beyond visual systems, encompassing the left putamen and insula. Behavioral and functional network decoding revealed distinct large-scale networks, implicating visual, motivational, and affective domains. The insular region, linked to pain and affective processes, displayed reductions overlapping with alterations observed in GAD. LIMITATIONS: While the study identified significant morphological alterations, the number of studies from both the glaucoma and GAD cohorts remains limited due to the lack of independent studies meeting our inclusion criteria. CONCLUSION: The study proposes a tripartite brain model for glaucoma, with visual processing changes related to the lingual gyrus and additional alterations in the putamen and insular regions tied to emotional or motivational functions. These neuroanatomical changes extend beyond the visual system, implying broader implications for brain structure and potential pathological developments, providing insights into the overall neurological consequences of glaucoma.


Subject(s)
Anxiety Disorders , Depressive Disorder, Major , Glaucoma , Gray Matter , Humans , Glaucoma/pathology , Glaucoma/physiopathology , Gray Matter/pathology , Gray Matter/diagnostic imaging , Anxiety Disorders/pathology , Anxiety Disorders/diagnostic imaging , Depressive Disorder, Major/pathology , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging , Brain/pathology , Brain/diagnostic imaging , Emotional Regulation/physiology , Case-Control Studies , Putamen/pathology , Putamen/diagnostic imaging
18.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771239

ABSTRACT

Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.


Subject(s)
Brain , Machine Learning , Magnetic Resonance Imaging , Neuropil , Humans , Male , Adult , Female , Magnetic Resonance Imaging/methods , Neuropil/metabolism , Brain/diagnostic imaging , White Matter/diagnostic imaging , Young Adult , Positron-Emission Tomography/methods , Middle Aged , Gray Matter/diagnostic imaging , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
19.
Addict Biol ; 29(5): e13402, 2024 May.
Article in English | MEDLINE | ID: mdl-38797559

ABSTRACT

Increases in harmful drinking among older adults indicate the need for a more thorough understanding of the relationship between later-life alcohol use and brain health. The current study investigated the relationships between alcohol use and progressive grey and white matter changes in older adults using longitudinal data. A total of 530 participants (aged 70 to 90 years; 46.0% male) were included. Brain outcomes assessed over 6 years included total grey and white matter volume, as well as volume of the hippocampus, thalamus, amygdala, corpus callosum, orbitofrontal cortex and insula. White matter integrity was also investigated. Average alcohol use across the study period was the main exposure of interest. Past-year binge drinking and reduction in drinking from pre-baseline were additional exposures of interest. Within the context of low-level average drinking (averaging 11.7 g per day), higher average amount of alcohol consumed was associated with less atrophy in the left (B = 7.50, pFDR = 0.010) and right (B = 5.98, pFDR = 0.004) thalamus. Past-year binge-drinking was associated with poorer white matter integrity (B = -0.013, pFDR = 0.024). Consuming alcohol more heavily in the past was associated with greater atrophy in anterior (B = -12.73, pFDR = 0.048) and posterior (B = -17.88, pFDR = 0.004) callosal volumes over time. Across alcohol exposures and neuroimaging markers, no other relationships were statistically significant. Within the context of low-level drinking, very few relationships between alcohol use and brain macrostructure were identified. Meanwhile, heavier drinking was negatively associated with white matter integrity.


Subject(s)
Alcohol Drinking , Atrophy , Brain , Gray Matter , Magnetic Resonance Imaging , White Matter , Humans , Male , Aged , Female , Longitudinal Studies , Brain/diagnostic imaging , Brain/pathology , Brain/drug effects , White Matter/diagnostic imaging , White Matter/pathology , White Matter/drug effects , Aged, 80 and over , Gray Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Atrophy/pathology , Aging/pathology , Aging/physiology , Binge Drinking/pathology , Binge Drinking/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/drug effects , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/drug effects , Amygdala/diagnostic imaging , Amygdala/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Corpus Callosum/drug effects
20.
Hum Brain Mapp ; 45(8): e26712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38798104

ABSTRACT

The aim of this study was to systematically investigate structural and functional alterations in amygdala subregions using multimodal magnetic resonance imaging (MRI) in patients with tinnitus with or without affective dysfunction. Sixty patients with persistent tinnitus and 40 healthy controls (HCs) were recruited. Based on a questionnaire assessment, 26 and 34 patients were categorized into the tinnitus patients with affective dysfunction (TPAD) and tinnitus patients without affective dysfunction (TPWAD) groups, respectively. MRI-based measurements of gray matter volume, fractional anisotropy (FA), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC) were conducted within 14 amygdala subregions for intergroup comparisons. Associations between the MRI properties and clinical characteristics were estimated via partial correlation analyses. Compared with that of the HCs, the TPAD and TPWAD groups exhibited significant structural and functional changes, including white matter integrity (WMI), fALFF, ReHo, DC, and FC alterations, with more pronounced WMI changes in the TPAD group, predominantly within the left auxiliary basal or basomedial nucleus (AB/BM), right central nucleus, right lateral nuclei (dorsal portion), and left lateral nuclei (ventral portion containing basolateral portions). Moreover, the TPAD group exhibited decreased FC between the left AB/BM and left middle occipital gyrus and right superior frontal gyrus (SFG), left basal nucleus and right SFG, and right lateral nuclei (intermediate portion) and right SFG. In combination, these amygdalar alterations exhibited a sensitivity of 65.4% and specificity of 96.9% in predicting affective dysfunction in patients with tinnitus. Although similar structural and functional amygdala remodeling were observed in the TPAD and TPWAD groups, the changes were more pronounced in the TPAD group. These changes mainly involved alterations in functionality and white matter microstructure in various amygdala subregions; in combination, these changes could serve as an imaging-based predictor of emotional disorders in patients with tinnitus.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Tinnitus , Humans , Tinnitus/diagnostic imaging , Tinnitus/physiopathology , Tinnitus/pathology , Amygdala/diagnostic imaging , Amygdala/pathology , Amygdala/physiopathology , Male , Female , Adult , Middle Aged , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/physiopathology , Mood Disorders/diagnostic imaging , Mood Disorders/etiology , Mood Disorders/physiopathology , Mood Disorders/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...