Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Thromb Haemost ; 12(11): 1921-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25069533

ABSTRACT

BACKGROUND: Endothelial protein C receptor (EPCR) must be bound to a molecule of phosphatidylcholine (PC) to be fully functional, i.e. to interact with protein C/activated protein C (APC) properly. PC can be replaced with other lipids, such as lysophosphatidylcholine or platelet-activating factor, by the action of group V secretory phospholipase A2 (sPLA2-V), an enzyme that is upregulated in a variety of inflammatory conditions. Studies in purified systems have demonstrated that the substitution of PC notably impairs EPCR function in a process called EPCR encryption. OBJECTIVES: To analyze whether sPLA2-V was able to regulate EPCR-dependent protein C activation in vivo, and its impact on thrombosis and the hemostatic system. METHODS: Mice were transfected with sPLA2-V by hydrodynamic gene delivery. The effects on thrombosis were studied with the laser carotid artery occlusion model, and APC generation capacity was measured with ELISA. Global hemostasis was analyzed with thromboelastometry. RESULTS: We found that sPLA2-V overexpression in mice significantly decreased their ability to generate APC. Furthermore, a murine carotid artery laser thrombosis model revealed that higher sPLA2-V levels were directly associated with faster artery thrombosis. CONCLUSIONS: sPLA2-V plays a thrombogenic role by impairing the ability of EPCR to promote protein C activation.


Subject(s)
Carotid Stenosis/enzymology , Group V Phospholipases A2/biosynthesis , Liver/enzymology , Protein C/metabolism , Receptors, Cell Surface/metabolism , Thrombosis/enzymology , Animals , Carotid Stenosis/blood , Carotid Stenosis/genetics , Disease Models, Animal , Endothelial Protein C Receptor , Enzyme Activation , Enzyme Induction , Enzyme Inhibitors/pharmacology , Gene Transfer Techniques , Group V Phospholipases A2/antagonists & inhibitors , Group V Phospholipases A2/genetics , Hemostasis , Humans , Liver/drug effects , Mice, Inbred ICR , Signal Transduction , Thrombosis/blood , Thrombosis/genetics , Time Factors
3.
Food Chem Toxicol ; 50(6): 1826-33, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22429818

ABSTRACT

High mobility group box 1 (HMGB1) mediates proinflammatory responses in inflammatory diseases. Lycopene found in tomatoes and tomato products has anti-oxidant, anti-cancer and antiinflammatory effects. The potential anti-inflammatory roles of lycopene in HMGB1-mediated proinflammatory responses in both primary human umbilical vein endothelial cells (HUVECs) and animal were investigated. The anti-inflammatory effects of lycopene were determined including permeability, monocyte adhesion and migration, and activation of proinflammatory proteins and HMGB1 receptors on HMGB1 activated HUVECs. In the in vivo model, the anti-inflammatory effect of lycopene was assessed by monitoring vascular permeability and migration of leukocytes to the peritoneal cavity of mice injected with lycopene. Lycopene inhibited lipopolysaccharide (LPS)-mediated release of HMGB1, expression of HMGB1-mediated tumor necrosis factor (TNF)-secretory phospholipase A2 (sPLA2)-IIA, and HMGB1-mediated pro-inflammatory signaling responses in endothelial cells. It did this through down-regulation of cell surface expression of cell adhesion molecules (CAMs), HMGB1 receptors, toll-like receptor (TLR)-2, and -4, and receptors for advanced glycation end products (RAGE). These findings suggest that lycopene promotes barrier integrity, inhibits monocyte adhesion and migration to HMGB1 activating HUVECs by blocking activation of proinflammatory cytokines and expression of CAMs and HMGB1 receptors, thereby showing its usefulness as a therapy for vascular inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Carotenoids/pharmacology , HMGB1 Protein/antagonists & inhibitors , Inflammation/genetics , Animals , Blotting, Western , Cell Adhesion/drug effects , Cell Membrane Permeability/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Down-Regulation/drug effects , Enzyme-Linked Immunosorbent Assay , Female , Group V Phospholipases A2/biosynthesis , HMGB1 Protein/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Lipopolysaccharides/pharmacology , Lycopene , Mice , Mice, Inbred ICR , Real-Time Polymerase Chain Reaction , Receptor for Advanced Glycation End Products , Receptors, Cell Surface/drug effects , Receptors, Immunologic/biosynthesis , Signal Transduction/drug effects , Toll-Like Receptor 2/biosynthesis , Toll-Like Receptor 4/biosynthesis , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...