Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Int J Nanomedicine ; 19: 3295-3314, 2024.
Article in English | MEDLINE | ID: mdl-38606373

ABSTRACT

Background: Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods: H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results: GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion: GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.


Subject(s)
Exosomes , Growth Differentiation Factor 15 , Myocardial Infarction , Animals , Rats , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Apoptosis , Exosomes/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Myocytes, Cardiac , RNA, Messenger/metabolism
2.
Discov Med ; 36(181): 248-255, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38409830

ABSTRACT

Macrophage polarization is a critical determinant of disease progression and regression. Studies on macrophage plasticity and polarization can provide a theoretical basis for the tactics of diagnosis and treatment for macrophage-related diseases. These include inflammation-related diseases, such as sepsis, tumors, and metabolic disorders. Growth differentiation factor-15 (GDF-15) or macrophage inhibitory cytokine-1, a 25 kDa secreted homodimeric protein, is a member of the transforming growth factor-ß (TGF-ß) superfamily that is released in response to external stressors. GDF-15 regulates biological effects such as tumor occurrence, inflammatory response, tissue damage, angiogenesis, and bone metabolism. It has been shown to exert anti-inflammatory and pro-inflammatory effects in inflammation-related diseases. Moreover, inflammatory stimuli can induce GDF-15 expression in immune and parenchymal cells. GDF-15 exhibits a feedback inhibitory effect by inhibiting tumor necrosis factor-α secretion during the macrophage activation anaphase, suggesting that there may be a close association between the two. GDF-15 directly induces CD14+ monocytes to produce the M2-like macrophage phenotype, inhibits monocyte-derived macrophage for M1-like polarization, and induces monocyte-derived Mφ for M2-like polarization. This review summarizes the macrophage polarization mechanism of GDF-15 under the conditions of sepsis, colon cancer, atherosclerosis, and obesity. An improved understanding of the role and molecular mechanisms of action of GDF-15 could greatly elucidate the mechanism of disease occurrence and development and provide new ideas for targeted disease prevention and treatment. An advanced understanding of the function and molecular mechanisms of action of GDF-15 may be helpful in the assessment of its potential value as a therapeutic and diagnostic target.


Subject(s)
Growth Differentiation Factor 15 , Sepsis , Humans , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Macrophage Activation , Macrophages , Transforming Growth Factor beta/metabolism , Inflammation/metabolism
3.
Toxicol Appl Pharmacol ; 483: 116818, 2024 02.
Article in English | MEDLINE | ID: mdl-38215994

ABSTRACT

The recurrence and metastasis in breast cancer within 3 years after the chemotherapies or surgery leads to poor prognosis with approximately 1-year overall survival. Large-scale scanning research studies have shown that taking lipid-lowering drugs may assist to reduce the risk of death from many cancers, since cholesterol in lipid rafts are essential for maintain integral membrane structure and functional signaling regulation. In this study, we examined five lipid-lowering drugs: swertiamarin, gemfibrozil, clofibrate, bezafibrate, and fenofibrate in triple-negative breast cancer, which is the most migration-prone subtype. Using human and murine triple-negative breast cancer cell lines (Hs 578 t and 4 T1), we found that fenofibrate displays the highest potential in inhibiting the colony formation, wound healing, and transwell migration. We further discovered that fenofibrate reduces the activity of pro-metastatic enzymes, matrix metalloproteinases (MMP)-9 and MMP-2. In addition, epithelial markers including E-cadherin and Zonula occludens-1 are increased, whereas mesenchymal markers including Snail, Twist and α-smooth muscle actin are attenuated. Furthermore, we found that fenofibrate downregulates ubiquitin-dependent GDF-15 degradation, which leads to enhanced GDF-15 expression that inhibits cell migration. Besides, nuclear translocation of FOXO1 is also upregulated by fenofibrate, which may responsible for GDF-15 expression. In summary, fenofibrate with anti-cancer ability hinders TNBC from migration and invasion, and may be beneficial to repurposing use of fenofibrate.


Subject(s)
Fenofibrate , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Triple Negative Breast Neoplasms/metabolism , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use , Cell Line, Tumor , Cell Movement , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Epithelial-Mesenchymal Transition , Lipids , Cell Proliferation
4.
Obes Facts ; 17(1): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-37989122

ABSTRACT

BACKGROUND: Growth differentiation factor-15 (GDF15) is a member of the growth differentiation factor subfamily in the transforming growth factor beta superfamily. GDF15 has multiple functions and can regulate biological processes. High levels of GDF15 in the circulation can affect metabolic processes. Studies have shown that GDF15 is associated with changes in body weight. SUMMARY: This review reviews the current knowledge on the relationship between GDF15 and body weight change, focusing on the role and mechanism of GDF15 in body weight regulation. GDF15 plays an important role in reducing food intake, improving insulin resistance, and breaking down fat, suggesting that GDF15 has an important regulatory effect on body weight. The mechanism by which GDF15 causes reduced food intake may be related to changes in food preference, delayed gastric emptying, and conditioned taste aversion. GDF15 can combat insulin resistance induced by inflammation or protect ß cell from apoptosis. GDF15 probably promotes lipolysis through a brain-somatic tissue circuit. Several factors and related signaling pathways are also mentioned that can contribute to the effects of GDF15 on reducing weight. KEY MESSAGE: GDF15 plays an important role in weight regulation and provides a new direction for the treatment of obesity. Its effects on resisting obesity are of great significance to inhibiting the progression of metabolic diseases. It is expected to become a new target for regulating body weight, improving obesity, and treating metabolic diseases such as diabetes.


Subject(s)
Insulin Resistance , Metabolic Diseases , Humans , Obesity/metabolism , Food Preferences , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Metabolic Diseases/complications , Body Weight
5.
Peptides ; 170: 171112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918484

ABSTRACT

Growth differentiation factor-15 (GDF15) is a stress-activated cytokine that regulates cell growth and inflammatory and stress responses. We previously reported the role and regulation of GDF15 in pituitary corticotrophs. Dexamethasone increases Gdf15 gene expression levels and production. GDF15 suppresses adrenocorticotropic hormone synthesis in pituitary corticotrophs and subsequently mediates the negative feedback effect of glucocorticoids. Here, we analyzed corticotropin-releasing factor (Crf) promoter activity in hypothalamic 4B cells transfected with promoter-driven luciferase reporter constructs. The effects of time and GDF15 concentration on Crf mRNA levels were analyzed using quantitative real-time polymerase chain reaction. Glial cell-derived neurotrophic factor family receptor α-like (GFRAL) protein is expressed in 4B cells. GDF15 increased Crf promoter activity and Crf mRNA levels in 4B cells. The protein kinase A and C pathways also contributed to the GDF15-induced increase in Crf gene expression. GDF15 stimulates GFRAL, subsequently increasing the phosphorylation of AKT, an extracellular signal-related kinase, and the cAMP response element-binding protein. Therefore, GDF15-dependent pathways may be involved in regulating Crf expression under stressful conditions in hypothalamic cells.


Subject(s)
Corticotropin-Releasing Hormone , Growth Differentiation Factor 15 , Hypothalamus , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Promoter Regions, Genetic , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , RNA, Messenger/metabolism , Animals , Rats , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Humans
6.
J Med Chem ; 66(16): 11237-11249, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37506293

ABSTRACT

Growth differentiation factor 15 (GDF15) is a contributor to nausea, emesis, and anorexia following chemotherapy via binding to the GFRAL-RET receptor complex expressed in hindbrain neurons. Therefore, GDF15-mediated GFRAL-RET signaling is a promising target for improving treatment outcomes for chemotherapy patients. We developed peptide-based antagonists of GFRAL that block GDF15-mediated RET recruitment. Our initial library screen led to five novel peptides. Surface plasmon resonance and flow cytometric analyses of the most efficacious of this group, termed GRASP, revealed its capacity to bind to GFRAL. In vivo studies in rats revealed that GRASP could attenuate GDF15-induced nausea and anorexia resulting from cisplatin. Combined with Ondansetron, GRASP led to an even greater attenuation of the anorectic effects of cisplatin compared to either agent alone. Our results highlight the beneficial effects of GRASP as an agent to combat chemotherapy-induced malaise. GRASP may also be effective in other conditions associated with elevated levels of GDF15.


Subject(s)
Growth Differentiation Factor 15 , Animals , Rats , Anorexia/metabolism , Cell Membrane/metabolism , Cisplatin/therapeutic use , Growth Differentiation Factor 15/antagonists & inhibitors , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology
7.
Peptides ; 168: 171063, 2023 10.
Article in English | MEDLINE | ID: mdl-37495041

ABSTRACT

Growth differentiation factor 15 (GDF15) is believed to be a major causative factor for cancer-induced cachexia. Recent elucidation of the central circuits involved in GDF15 function and its signaling through the glial cell-derived neurotrophic factor family receptor α-like (GFRAL) has prompted the interest of targeting the GDF15-GFRAL signaling for energy homeostasis and body weight regulation. Here, we applied advanced peptide technologies to identify GDF15 peptide fragments inhibiting GFRAL signaling. SPOT peptide arrays revealed binding of GDF15 C-terminal peptide fragments to the extracellular domain of GFRAL. Parallel solid-phase peptide synthesis allowed for generation of complementary GDF15 peptide libraries and their subsequent functional evaluation in cells expressing the GFRAL/RET receptor complex. We identified a series of C-terminal fragments of GDF15 inhibiting GFRAL activity in the micromolar range. These novel GFRAL peptide inhibitors could serve as valuable tools for further development of peptide therapeutics towards the treatment of cachexia and other wasting disorders.


Subject(s)
Cachexia , Obesity , Humans , Cachexia/metabolism , Obesity/metabolism , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/metabolism , Peptide Fragments/pharmacology , Body Weight/physiology
8.
Cell Metab ; 35(8): 1327-1340.e5, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37473755

ABSTRACT

Growth differentiation factor 15 (GDF15) induces weight loss and increases insulin action in obese rodents. Whether and how GDF15 improves insulin action without weight loss is unknown. Obese rats were treated with GDF15 and displayed increased insulin tolerance 5 h later. Lean and obese female and male mice were treated with GDF15 on days 1, 3, and 5 without weight loss and displayed increased insulin sensitivity during a euglycemic hyperinsulinemic clamp on day 6 due to enhanced suppression of endogenous glucose production and increased glucose uptake in WAT and BAT. GDF15 also reduced glucagon levels during clamp independently of the GFRAL receptor. The insulin-sensitizing effect of GDF15 was completely abrogated in GFRAL KO mice and also by treatment with the ß-adrenergic antagonist propranolol and in ß1,ß2-adrenergic receptor KO mice. GDF15 activation of the GFRAL receptor increases ß-adrenergic signaling, in turn, improving insulin action in the liver and white and brown adipose tissue.


Subject(s)
Insulin Resistance , Receptors, Adrenergic, beta , Mice , Rats , Male , Female , Animals , Growth Differentiation Factor 15/pharmacology , Obesity , Adipose Tissue , Weight Loss , Insulin , Adipose Tissue, Brown , Liver
9.
Nature ; 619(7968): 143-150, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380764

ABSTRACT

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Subject(s)
Energy Metabolism , Growth Differentiation Factor 15 , Muscle, Skeletal , Weight Loss , Animals , Humans , Mice , Appetite Depressants/metabolism , Appetite Depressants/pharmacology , Appetite Depressants/therapeutic use , Caloric Restriction , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Eating/drug effects , Energy Metabolism/drug effects , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Receptors, Adrenergic, beta/metabolism , Weight Loss/drug effects
10.
Clin Transl Sci ; 16(8): 1431-1444, 2023 08.
Article in English | MEDLINE | ID: mdl-37154518

ABSTRACT

Growth Differentiation Factor-15 (GDF15) is a circulating polypeptide linked to cellular stress and metabolic adaptation. GDF15's half-life is ~3 h and activates the glial cell line-derived neurotrophic factor family receptor alpha-like (GFRAL) receptor expressed in the area postrema. To characterize sustained GFRAL agonism on food intake (FI) and body weight (BW), we tested a half-life extended analog of GDF15 (Compound H [CpdH]) suitable for reduced dosing frequency in obese cynomolgus monkeys. Animals were chronically treated once weekly (q.w.) with CpdH or long-acting GLP-1 analog dulaglutide. Mechanism-based longitudinal exposure-response modeling characterized effects of CpdH and dulaglutide on FI and BW. The novel model accounts for both acute, exposure-dependent effects reducing FI and compensatory changes in energy expenditure (EE) and FI occurring over time with weight loss. CpdH had linear, dose-proportional pharmacokinetics (terminal half-life ~8 days) and treatment caused exposure-dependent reductions in FI and BW. The 1.6 mg/kg CpdH reduced mean FI by 57.5% at 1 week and sustained FI reductions of 31.5% from weeks 9-12, resulting in peak reduction in BW of 16 ± 5%. Dulaglutide had more modest effects on FI and peak BW loss was 3.8 ± 4.0%. Longitudinal modeling of both the FI and BW profiles suggested reductions in BW observed with both CpdH and dulaglutide were fully explained by exposure-dependent reductions in FI without increase in EE. Upon verification of the pharmacokinetic/pharmacodynamic relationship established in monkeys and humans for dulaglutide, we predicted that CpdH could reach double digit BW loss in humans. In summary, a long-acting GDF15 analog led to sustained reductions in FI in overweight monkeys and holds potential for effective clinical obesity pharmacotherapy.


Subject(s)
Eating , Obesity , Humans , Animals , Obesity/metabolism , Weight Loss , Body Weight/physiology , Primates , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use
11.
Int Immunopharmacol ; 119: 110149, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058747

ABSTRACT

Obese asthma is a form of refractory asthma with inflammation as the underlying mechanism. The specific mechanism of action of anti-inflammatory growth differentiation factor 15 (GDF15) in obese asthma is unclear. The purpose of this study was to explore the effect of GDF15 on cell pyroptosis in obese asthma and to determine its mechanism of airway protection. Male C57BL6/J mice were fed with a high-fat diet, sensitized, and challenged with ovalbumin. Recombinant human (rh)GDF15 was administered 1 h before the challenge. GDF15 treatment significantly reduced airway inflammatory cell infiltration, mucus hypersecretion and airway resistant, and decreased cell counts and inflammatory factors in bronchoalveolar lavage fluid. Serum inflammatory factors decreased, and the increased levels of NLR family pyrin domain containing 3 (NLRP3), caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and gasdermin-D (GSDMD-N) in obese asthmatic mice were inhibited. Furthermore, the suppressed phosphoinositide 3-kinase (PI3K)/AKT signal pathway was activated after rhGDF15 treatment. The same result was obtained by overexpression of GDF15 in human bronchial epithelial cells induced by lipopolysaccharide (LPS) in vitro, and the effect of GDF15 was reversed after the application of a PI3K pathway inhibitor. Thus, GDF15 could protect the airway by inhibiting cell pyroptosis in obese asthmatic mice through the PI3K/AKT signaling pathway.


Subject(s)
Asthma , Phosphatidylinositol 3-Kinases , Animals , Mice , Male , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt , Growth Differentiation Factor 15/pharmacology , Phosphatidylinositol 3-Kinase , Pyroptosis , Asthma/drug therapy , Asthma/metabolism , Inflammation/metabolism , Obesity/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
12.
Anticancer Drugs ; 34(3): 351-360, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36729006

ABSTRACT

Growth differentiation factor 15 (GDF15) is a pleiotropic cytokine, which is involved in the cellular stress response following acute damage. However, the functional role of GDF15 in triple-negative breast cancer (TNBC) has not been fully elucidated. ELISA, Western blot, and PCR assays as well as bioinformatics analyses were conducted to observe the expression of GDF15. Cell Counting Kit-8, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet staining assays were conducted to evaluate paclitaxel resistance and cell viability. Cell apoptosis was analyzed by Western blotting. Murine xenograft model assay was employed to evaluate tumor growth in vivo . Our data indicate that GDF15 is markedly elevated in paclitaxel-resistant TNBC cells, which is significantly associated with unfavorable prognosis. Silencing of GDF15 robustly inhibits the proliferation of tumor cells and increases their sensitivity to paclitaxel in vitro and in vivo , whereas the treatment of purified GDF15 protein confers breast cancer cells with chemoresistance ability. Moreover, GDF15 activates protein kinase B (AKT) /mammalian target of rapamycin (mTOR) signaling, inhibition of AKT or mTOR reverses the prosurvival effect of GDF15 and enhances the antitumor efficacy of paclitaxel in TNBC cells. Altogether, our study uncovers the role of GDF15 in tumor growth and paclitaxel resistance, implicating a potential therapeutic target for TNBC.


Subject(s)
Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use , Mammals/metabolism , Paclitaxel/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms/pathology
13.
Exp Mol Med ; 55(1): 158-170, 2023 01.
Article in English | MEDLINE | ID: mdl-36631664

ABSTRACT

Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the ß2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.


Subject(s)
Kupffer Cells , Liver Diseases, Alcoholic , Mice , Animals , Kupffer Cells/metabolism , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Lipopolysaccharides/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Ethanol/toxicity , Ethanol/metabolism , Inflammation/metabolism , Apoptosis
14.
Exp Mol Med ; 55(2): 364-376, 2023 02.
Article in English | MEDLINE | ID: mdl-36720918

ABSTRACT

Targeting bromodomain and extra-terminal domain (BET) proteins has shown a promising therapeutic effect on melanoma. The development of strategies to better kill melanoma cells with BET inhibitor treatment may provide new clinical applications. Here, we used a drug synergy screening approach to combine JQ1 with 240 antitumor drugs from the Food and Drug Administration (FDA)-approved drug library and found that sunitinib synergizes with BET inhibitors in melanoma cells. We further demonstrated that BET inhibitors synergize with sunitinib in melanoma by inducing apoptosis and cell cycle arrest. Mechanistically, BET inhibitors sensitize melanoma cells to sunitinib by inhibiting GDF15 expression. Strikingly, GDF15 is transcriptionally regulated directly by BRD4 or indirectly by the BRD4/IL6/STAT3 axis. Xenograft assays revealed that the combination of BET inhibitors with sunitinib causes melanoma suppression in vivo. Altogether, these findings suggest that BET inhibitor-mediated GDF15 inhibition plays a critical role in enhancing sunitinib sensitivity in melanoma, indicating that BET inhibitors synergize with sunitinib in melanoma.


Subject(s)
Melanoma , Transcription Factors , Humans , Sunitinib/pharmacology , Transcription Factors/metabolism , Nuclear Proteins/metabolism , Cell Line, Tumor , Melanoma/drug therapy , Xenograft Model Antitumor Assays , Cell Proliferation , Cell Cycle Proteins , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/pharmacology
15.
Front Med ; 17(1): 119-131, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36525138

ABSTRACT

Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Cisplatin/pharmacology , Cisplatin/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptor, Transforming Growth Factor-beta Type II/therapeutic use , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
16.
Biomolecules ; 14(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38254638

ABSTRACT

Growth differentiation factor-15 (GDF-15) is proposed to be strongly associated with several cardiovascular diseases, such as heart failure and atherosclerosis. Moreover, some recent studies have reported an association between GDF-15 and platelet activation. In this study, we isolated peripheral blood platelets from healthy volunteers and evaluated the effect of GDF-15 on adenosine diphosphate (ADP)-induced platelet activation using the platelet aggregation assay. Subsequently, we detected the expression of GDF-15-related receptors on platelets, including the epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), transforming growth factor-beta receptor I (TGF-ßRI), transforming growth factor-beta receptor II (TGF-ßRII), glial-cell-line-derived neurotrophic factor family receptor α-like (GFRAL), and those rearranged during transfection (RET). Then, we screened for GDF-15 receptors using the GDF-15-related receptor microarray comprising these recombinant proteins. We also performed the immunoprecipitation assay to investigate the interaction between GDF-15 and the receptors on platelets. For the further exploration of signaling pathways, we investigated the effects of GDF-15 on the extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and Janus kinase 2 (JAK2) pathways. We also investigated the effects of GDF-15 on the ERK and AKT pathways and platelet aggregation in the presence or absence of RET agonists or inhibition. Our study revealed that GDF-15 can dose-independently inhibit ADP-induced human platelet aggregation and that the binding partner of GDF-15 on platelets is GFRAL. We also found that GDF-15 inhibits ADP-induced AKT and ERK activation in platelets. Meanwhile, our results revealed that the inhibitory effects of GDF-15 can be mediated by the GFRAL/RET complex. These findings reveal the novel inhibitory mechanism of ADP-induced platelet activation by GDF-15.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor Receptors , Growth Differentiation Factor 15 , Platelet Aggregation , Proto-Oncogene Proteins c-ret , Humans , Adenosine Diphosphate/pharmacology , ErbB Receptors , Extracellular Signal-Regulated MAP Kinases , Growth Differentiation Factor 15/pharmacology , Platelet Aggregation/genetics , Proto-Oncogene Proteins c-akt , Transforming Growth Factors , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism
17.
J Diabetes ; 14(12): 806-814, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36444166

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic endocrine disorder due to the reduction of insulin sensitivity and relative deficiency of insulin secretion. Growth differentiation factor 15 (GDF15) belongs to the transforming growth factor beta (TGF-ß) superfamily and was initially identified as macrophage inhibitory cytokine-1 (MIC-1). GDF15 is considered a cytokine with an anti-inflammatory effect and increases insulin sensitivity, reduces body weight, and improves clinical outcomes in diabetic patients. GDF15 acts through stimulation of glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL), which is highly expressed in the brain stem to induce taste aversion. Metformin belongs to the group of biguanides that are derived from the plant Galega officinalis. It is interesting to note that metformin is an insulin-sensitizing agent used as a first-line therapy for T2DM that has been shown to increase the circulating level of GDF15. Thus, the present review aims to determine the critical association of the GDF15 biomarker in T2DM and how metformin agents affect it. This review illustrates that metformin activates GDF15 expression, which reduces appetite and leads to weight loss in both diabetic and nondiabetic patients. However, the present review cannot give a conclusion in this regard. Therefore, experimental, preclinical, and clinical studies are warranted to confirm the potential role of GDF15 in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Obesity/metabolism , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Growth Differentiation Factor 15/therapeutic use
18.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: mdl-36271504

ABSTRACT

Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle-brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.


Subject(s)
Growth Differentiation Factor 15 , Obesity , Female , Male , Humans , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Obesity/metabolism , Corticotropin-Releasing Hormone , Corticosterone , Glial Cell Line-Derived Neurotrophic Factor , Eating/genetics , Anxiety
19.
Int J Mol Sci ; 23(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36142823

ABSTRACT

Radiotherapy is one of the conventional methods for the clinical treatment of breast cancer. However, radioresistance has an adverse effect on the prognosis of breast cancer patients after radiotherapy. In this study, using bioinformatic analysis of GSE59732 and GSE59733 datasets in the Gene Expression Omnibus (GEO) database together with the prognosis database of breast cancer patients after radiotherapy, the GDF15 gene was screened out to be related to the poor prognosis of breast cancer after radiotherapy. Compared with radiosensitive parental breast cancer cells, breast cancer cells with acquired radioresistance exhibited a high level of GDF15 expression and enhanced epithelial-to-mesenchymal transition (EMT) properties of migration and invasion, as well as obvious stem-like traits, including the increases of mammosphere formation ability, the proportion of stem cells (CD44+ CD24- cells), and the expressions of stem cell-related markers (SOX2, NANOG). Moreover, knockdown of GDF15 sensitized the radioresistance cells to irradiation and significantly inhibited their EMT and stem-like traits, indicating that GDF15 promoted the radioresistance of breast cancer by enhancing the properties of EMT and stemness. Conclusively, GDF15 may be applicable as a novel prognosis-related biomarker and a potential therapeutic target for breast cancer radiotherapy.


Subject(s)
Breast Neoplasms , Biomarkers , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/pharmacology , Humans , Neoplastic Stem Cells/metabolism , Radiation Tolerance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...