Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.423
Filter
1.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38692139

ABSTRACT

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Subject(s)
Guanidine , Influenza A virus , RNA, Viral , SARS-CoV-2 , Specimen Handling , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Influenza A virus/drug effects , Influenza A virus/genetics , Guanidine/pharmacology , Guanidine/chemistry , RNA, Viral/genetics , Humans , Specimen Handling/methods , Genome, Viral , COVID-19/virology , COVID-19/diagnosis , Chlorocebus aethiops , Vero Cells , Virus Inactivation/drug effects , Animals , RNA Stability/drug effects , Containment of Biohazards , Guanidines/pharmacology , Guanidines/chemistry , Salts/pharmacology , Salts/chemistry
2.
Malar J ; 23(1): 160, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778399

ABSTRACT

BACKGROUND: Anopheles mosquito resistance to insecticide remains a serious threat to malaria vector control affecting several sub-Sahara African countries, including Côte d'Ivoire, where high pyrethroid, carbamate and organophosphate resistance have been reported. Since 2017, new insecticides, namely neonicotinoids (e.g.; clothianidin) and pyrroles (e.g.; chlorfenapyr) have been pre-qualified by the World Health Organization (WHO) for use in public health to manage insecticide resistance for disease vector control. METHODS: Clothianidin and chlorfenapyr were tested against the field-collected Anopheles gambiae populations from Gagnoa, Daloa and Abengourou using the WHO standard insecticide susceptibility biossays. Anopheles gambiae larvae were collected from several larval habitats, pooled and reared to adulthood in each site in July 2020. Non-blood-fed adult female mosquitoes aged 2 to 5 days were exposed to diagnostic concentration deltamethrin, permethrin, alpha-cypermethrin, bendiocarb, and pirimiphos-methyl. Clothianidin 2% treated papers were locally made and tested using WHO tube bioassay while chlorfenapyr (100 µg/bottle) was evaluated using WHO bottle assays. Furthermore, subsamples of exposed mosquitoes were identified to species and genotyped for insecticide resistance markers including the knock-down resistance (kdr) west and east, and acetylcholinesterase (Ace-1) using molecular techniques. RESULTS: High pyrethroid resistance was recorded with diagnostic dose in Abengourou (1.1 to 3.4% mortality), in Daloa (15.5 to 33.8%) and in Gagnoa (10.3 to 41.6%). With bendiocarb, mortality rates ranged from 49.5 to 62.3%. Complete mortality (100% mortality) was recorded with clothianidin in Gagnoa, 94.9% in Daloa and 96.6% in Abengourou, while susceptibility (mortality > 98%) to chlorfenapyr 100 µg/bottle was recorded at all sites and to pirimiphos-methyl in Gagnoa and Abengourou. Kdr-west mutation was present at high frequency (0.58 to 0.73) in the three sites and Kdr-east mutation frequency was recorded at a very low frequency of 0.02 in both Abengourou and Daloa samples and absent in Gagnoa. The Ace-1 mutation was present at frequencies between 0.19 and 0.29 in these areas. Anopheles coluzzii represented 100% of mosquitoes collected in Daloa and Gagnoa, and 72% in Abengourou. CONCLUSIONS: This study showed that clothianidin and chlorfenapyr insecticides induce high mortality in the natural and pyrethroid-resistant An. gambiae populations in Côte d'Ivoire. These results could support a resistance management plan by proposing an insecticide rotation strategy for vector control interventions.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Mosquito Vectors , Pyrethrins , Animals , Anopheles/drug effects , Anopheles/genetics , Insecticides/pharmacology , Insecticide Resistance/genetics , Cote d'Ivoire , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Female , Neonicotinoids/pharmacology , Guanidines/pharmacology , Malaria/prevention & control , Malaria/transmission , Thiazoles/pharmacology , Pyrroles/pharmacology , Mosquito Control , Larva/drug effects
3.
J Agric Food Chem ; 72(20): 11716-11723, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728745

ABSTRACT

A total of 32 novel sulfoximines bearing cyanoguanidine and nitroguanidine moieties were designed and synthesized by a rational molecule design strategy. The bioactivities of the title compounds were evaluated and the results revealed that some of the target compounds possessed excellent antifungal activities against six agricultural fungi, including Sclerotinia sclerotiorum, Fusarium graminearum, Phytophthora capsici, Botrytis cinerea, Rhizoctonia solani, and Pyricularia grisea. Among them, compounds 8e1 and 8e4 exhibited significant efficacy against P. grisea with EC50 values of 2.72 and 2.98 µg/mL, respectively, which were much higher than that of commercial fungicides boscalid (47.95 µg/mL). Interestingly, in vivo assays determined compound 8e1 possessed outstanding activity against S. sclerotiorum with protective and curative effectiveness of 98 and 95.6% at 50 µg/mL, which were comparable to those of boscalid (93.2, 91.9%). The further preliminary mechanism investigation disclosed that compound 8e1 could damage the structure of the cell membrane of S. sclerotiorum, increase its permeability, and suppress its growth. Overall, the findings enhanced that these novel sulfoximine derivatives could be potential lead compounds for the development of new fungicides.


Subject(s)
Drug Design , Fungicides, Industrial , Fusarium , Guanidines , Plant Diseases , Rhizoctonia , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/chemical synthesis , Structure-Activity Relationship , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Fusarium/drug effects , Fusarium/growth & development , Plant Diseases/microbiology , Phytophthora/drug effects , Phytophthora/growth & development , Ascomycota/drug effects , Ascomycota/growth & development , Botrytis/drug effects , Botrytis/growth & development , Molecular Structure
4.
Int Immunopharmacol ; 134: 112190, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38703569

ABSTRACT

Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.


Subject(s)
Benzamidines , Guanidines , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Spinal Cord Injuries , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Mice , Guanidines/pharmacology , Guanidines/therapeutic use , NF-kappa B/metabolism , Male , Signal Transduction/drug effects , Disease Models, Animal , Cathepsin B/metabolism
5.
Exp Mol Med ; 56(5): 1221-1229, 2024 May.
Article in English | MEDLINE | ID: mdl-38816566

ABSTRACT

Mouse models expressing human ACE2 for coronavirus disease 2019 have been frequently used to understand its pathogenesis and develop therapeutic strategies against SARS-CoV-2. Given that human TMPRSS2 supports viral entry, replication, and pathogenesis, we established a double-transgenic mouse model expressing both human ACE2 and TMPRSS2 for SARS-CoV-2 infection. Co-overexpression of both genes increased viral infectivity in vitro and in vivo. Double-transgenic mice showed significant body weight loss, clinical disease symptoms, acute lung injury, lung inflammation, and lethality in response to viral infection, indicating that they were highly susceptible to SARS-CoV-2. Pretreatment with the TMPRSS2 inhibitor, nafamostat, effectively reduced virus-induced weight loss, viral replication, and mortality in the double-transgenic mice. Moreover, the susceptibility and differential pathogenesis of SARS-CoV-2 variants were demonstrated in this animal model. Together, our results demonstrate that double-transgenic mice could provide a highly susceptible mouse model for viral infection to understand SARS-CoV-2 pathogenesis and evaluate antiviral therapeutics against coronavirus disease 2019.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Mice, Transgenic , SARS-CoV-2 , Serine Endopeptidases , Animals , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , SARS-CoV-2/physiology , SARS-CoV-2/genetics , Humans , Mice , Virus Replication , Benzamidines , Guanidines/pharmacology , Chlorocebus aethiops , COVID-19 Drug Treatment
6.
Sci Rep ; 14(1): 8620, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616188

ABSTRACT

Scientists and researchers have been searching for drugs targeting the main protease (Mpro) of SARS-CoV-2, which is crucial for virus replication. This study employed a virtual screening based on molecular docking to identify benzoylguanidines from an in-house chemical library that can inhibit Mpro on the active site and three allosteric sites. Molecular docking was performed on the LaSMMed Chemical Library using 88 benzoylguanidine compounds. Based on their RMSD values and conserved pose, three potential inhibitors (BZG1, BZG2, and BZG3) were selected. These results indicate that BZG1 and BZG3 may bind to the active site, while BZG2 may bind to allosteric sites. Molecular dynamics data suggest that BZG2 selectively targets allosteric site 3. In vitro tests were performed to measure the proteolytic activity of rMpro. The tests showed that BZG2 has uncompetitive inhibitory activity, with an IC50 value of 77 µM. These findings suggest that benzoylguanidines possess potential as Mpro inhibitors and pave the way towards combating SARS-Cov-2 effectively.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Guanidine , Molecular Docking Simulation , Guanidines/pharmacology , Enzyme Assays , Small Molecule Libraries
7.
Malar J ; 23(1): 119, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664703

ABSTRACT

BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.


Subject(s)
Anopheles , Guanidines , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Neonicotinoids , Organothiophosphorus Compounds , Pyrethrins , Thiazoles , Animals , Anopheles/drug effects , Insecticides/pharmacology , Guanidines/pharmacology , Mosquito Vectors/drug effects , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Mosquito Control/methods , Organothiophosphorus Compounds/pharmacology , Malaria/prevention & control , Malaria/transmission , Benin , Nitriles/pharmacology , Humans
8.
J Org Chem ; 89(9): 5977-5987, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38557022

ABSTRACT

Mellpaladines A-C (1-3) and dopargimine (4) are dopamine-derived guanidine alkaloids isolated from a specimen of Palauan Didemnidae tunicate as possible modulators of neuronal receptors. In this study, we isolated the dopargimine derivative 1-carboxydopargimine (5), three additional mellpaladines D-F (6-8), and serotodopalgimine (9), along with a dimer of serotonin, 5,5'-dihydroxy-4,4'-bistryptamine (10). The structures of these compounds were determined based on spectrometric and spectroscopic analyses. Compound 4 and its congeners dopargine (11), nordopargimine (15), and 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-1-yl)ethan-1-amine (16) were synthetically prepared for biological evaluations. The biological activities of all isolated compounds were evaluated in comparison with those of 1-4 using a mouse behavioral assay upon intracerebroventricular injection, revealing key functional groups in the dopargimines and mellpaladines for in vivo behavioral toxicity. Interestingly, these alkaloids also emerged during a screen of our marine natural product library aimed at identifying antiviral activities against dengue virus, SARS-CoV-2, and vesicular stomatitis Indiana virus (VSV) pseudotyped with Ebola virus glycoprotein (VSV-ZGP).


Subject(s)
Alkaloids , Dopamine , Urochordata , Animals , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemical synthesis , Urochordata/chemistry , Mice , Dopamine/chemistry , Dopamine/pharmacology , Molecular Structure , Guanidine/chemistry , Guanidine/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/isolation & purification , SARS-CoV-2/drug effects , Humans
9.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38555048

ABSTRACT

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Subject(s)
Calcium , Myocytes, Cardiac , Pyruvaldehyde , Rats, Wistar , Animals , Pyruvaldehyde/toxicity , Rats , Calcium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Guanidines/pharmacology , Calcium Channels, L-Type/metabolism , Heart/drug effects , Myocardium/metabolism , Verapamil/pharmacology , Myocardial Contraction/drug effects
10.
J Nat Prod ; 87(4): 906-913, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38430199

ABSTRACT

The chemical diversity of annelids, particularly those belonging to the class Sipuncula, remains largely unexplored. However, as part of a Marine Biodiscovery program in Ireland, the peanut worm Phascolosoma granulatum emerged as a promising source of unique metabolites. The purification of the MeOH/CH2Cl2 extract of this species led to the isolation of six new linear guanidine amides, named phascolosomines A-F (1-6). NMR analysis allowed for the elucidation of their structures, all of which feature a terminal guanidine, central amide linkage, and a terminal isobutyl group. Notably, these guanidine amides were present in unusually high concentrations, comprising ∼3% of the dry mass of the organism. The primary concentration of the phascolosomines in the viscera is similar to that previously identified in linear amides from sipunculid worms and marine fireworms. The compounds from sipunculid worms have been hypothesized to be toxins, while those from fireworms are reported to be defensive irritants. However, screening of the newly isolated compounds for inhibitory bioactivity showed no significant inhibition in any of the assays conducted.


Subject(s)
Amides , Annelida , Guanidines , Animals , Amides/chemistry , Amides/pharmacology , Amides/isolation & purification , Guanidine/chemistry , Guanidine/pharmacology , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/isolation & purification , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Annelida/chemistry
11.
J Am Chem Soc ; 146(17): 11679-11693, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482849

ABSTRACT

Lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics have emerged with promising potentials in the fields of infectious diseases, cancer vaccines, and protein replacement therapies; however, their therapeutic efficacy and safety can still be promoted by the optimization of LNPs formulations. Unfortunately, current LNPs suffer from increased production of reactive oxygen species during translation, which leads to a decreased translation efficiency and the onset of inflammation and other side effects. Herein, we synthesize a lipid-modified poly(guanidine thioctic acid) polymer to fabricate novel LNPs for mRNA vaccines. The acquired G-LNPs significantly promote the translation efficiency of loaded mRNA and attenuate inflammation after vaccination through the elimination of reactive oxygen species that are responsible for translational inhibition and inflammatory responses. In vivo studies demonstrate the excellent antitumor efficacy of the G-LNPs@mRNA vaccine, and two-dose vaccination dramatically increases the population and infiltration of cytotoxic T cells due to the intense antitumor immune responses, thus generating superior antitumor outcomes compared with the mRNA vaccine prepared from traditional LNPs. By synergy with immune checkpoint blockade, the tumor inhibition of G-LNPs@mRNA is further boosted, indicating that G-LNPs-based mRNA vaccines will be powerful and versatile platforms to combat cancer.


Subject(s)
Cancer Vaccines , Lipids , Liposomes , Nanoparticles , RNA, Messenger , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Nanoparticles/chemistry , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/immunology , Lipids/chemistry , Humans , Thioctic Acid/chemistry , Thioctic Acid/pharmacology , Polymers/chemistry , Guanidines/chemistry , Guanidines/pharmacology , Cell Line, Tumor
12.
Antiviral Res ; 224: 105853, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430970

ABSTRACT

While clinical trials have illuminated both the virological and clinical efficacy of baloxavir for influenza and post-treatment viral resistance, these aspects warrant further study in real-world settings. In response, we executed a prospective, observational study of the Japanese 2022-2023 influenza season. A cohort of 73 A(H3N2)-diagnosed outpatients-36 treated with baloxavir, 20 with oseltamivir, and 17 with other neuraminidase inhibitors (NAIs)-were analyzed. Viral samples were collected before and after administering an antiviral on days 1, 5, and 10, respectively. Cultured viruses were amplified using RT-PCR and sequenced to detect mutations. Fever and other symptoms were tracked via self-reporting diaries. In the baloxavir cohort, viral detection was 11.1% (4/36) and 0% (0/36) on day 5 and day 10, respectively. Two isolates from day 5 (5.6%, 2/36) manifested I38T/M-substitutions in the polymerase acidic protein (PA). For oseltamivir and other NAIs, viral detection rates were 60.0% (12/20) and 52.9% (9/17) on day 5, and 16.7% (3/18) and 6.3% (1/16) on day 10, respectively. No oseltamivir-resistant neuraminidase mutations were identified after treatment. Median fever durations for the baloxavir, oseltamivir, and other NAI cohorts were 27.0, 38.0, and 36.0 h, respectively, with no significant difference. Two patients harboring PA I38T/M-substitutions did not exhibit prolonged fever or other symptoms. These findings affirm baloxavir's virological and clinical effectiveness against A(H3N2) in the 2022-2023 season and suggest limited clinical influence of post-treatment resistance emergence.


Subject(s)
Dibenzothiepins , Influenza, Human , Morpholines , Triazines , Humans , Influenza, Human/drug therapy , Oseltamivir/therapeutic use , Oseltamivir/pharmacology , Neuraminidase/genetics , Neuraminidase/therapeutic use , Influenza A Virus, H3N2 Subtype/genetics , Outpatients , Seasons , Prospective Studies , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Pyridones/therapeutic use , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Fever/drug therapy
13.
Adv Healthc Mater ; 13(14): e2303295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38321619

ABSTRACT

The emerging antibiotic resistance has been named by the World Health Organization (WHO) as one of the top 10 threats to public health. Notably, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VREF) are designated as serious threats, whereas Clostridioides difficile (C. difficile) is recognized as one of the most urgent threats to human health and unmet medical need. Herein, they report the design and application of novel biodegradable polymers - the lipidated antimicrobial guanidinylate polycarbonates. These polymers showed potent antimicrobial activity against a panel of bacteria with fast-killing kinetics and low resistance development tendency, mainly due to their bacterial membrane disruption mechanism. More importantly, the optimal polymer showed excellent antibacterial activity against C. difficile infection (CDI) in vivo via oral administration. In addition, compared with vancomycin, the polymer demonstrated a much-prolonged therapeutic effect and virtually diminished recurrence rate of CDI. The convenient synthesis, easy scale-up, low cost, as well as biodegradability of this class of polycarbonates, together with their in vitro broad-spectrum antimicrobial activity and orally in vivo efficacy against CDI, suggest the great potential of lipidated guandinylate polycarbonates as a new class of antibacterial biomaterials to treat CDI and combat emerging antibiotic resistance.


Subject(s)
Clostridioides difficile , Polycarboxylate Cement , Clostridioides difficile/drug effects , Animals , Polycarboxylate Cement/chemistry , Polycarboxylate Cement/pharmacology , Mice , Administration, Oral , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Guanidines/chemistry , Guanidines/pharmacology , Clostridium Infections/drug therapy , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
14.
Eur J Med Chem ; 268: 116162, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394930

ABSTRACT

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.


Subject(s)
Parasites , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Trypanocidal Agents/chemistry , Trypanosoma brucei rhodesiense , Guanidine/pharmacology , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Guanidines/pharmacology , Energy Metabolism , Mammals
15.
Eur J Med Chem ; 264: 115981, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38086192

ABSTRACT

The occurrence of increased antibiotic resistance has reduced the availability of drugs effective in the control of infectious diseases, especially those caused by various combinations of bacteria and/or fungi that are often associated with poorer patient outcomes. In the hunt for novel antibiotics of interest to treat polymicrobial diseases, molecules bearing guanidine moieties have recently come to the fore in designing and optimizing antimicrobial agents. Due to their remarkable antibacterial and antifungal activities, labdane diterpenes are also attracting increasing interest in antimicrobial drug discovery. In this study, six different guanidines prenylated with labdanic fragments were synthesized and evaluated for their antimicrobial properties. Assays were carried out against both non-resistant and antibiotic-resistant bacteria strains, while their possible antifungal activities have been tested on the yeast Candida albicans. Two of the synthesized compounds, namely labdan-8,13(R)-epoxy-15-oyl guanidine and labdan-8,13(S)-epoxy-15-oyl guanidine, were finally selected as the best candidates for further developments in drug discovery, due to their antimicrobial effects on both Gram-negative and Gram-positive bacterial strains, their fungicide action, and their moderate toxicity in vivo on zebrafish embryos. The study also provides insights into the structure-activity relationships of the guanidine-functionalized labdane-type diterpenoids.


Subject(s)
Anti-Infective Agents , Diterpenes , Animals , Humans , Antifungal Agents/pharmacology , Guanidine/pharmacology , Zebrafish , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Diterpenes/pharmacology , Candida albicans , Guanidines/pharmacology , Microbial Sensitivity Tests
16.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138964

ABSTRACT

To obtain biologically active species, a series of decavanadates (Hpbg)4[H2V10O28]·6H2O (1) (Htbg)4[H2V10O28]·6H2O; (2) (Hgnd)2(Hgnu)4[V10O28]; (3) (Hgnu)6[V10O28]·2H2O; and (4) (pbg = 1-phenyl biguanide, tbg = 1-(o-tolyl)biguanide, gnd = guanidine, and gnu = guanylurea) were synthesized and characterized by several spectroscopic techniques (IR, UV-Vis, and EPR) as well as by single crystal X-ray diffraction. Compound (1) crystallizes in space group P-1 while (3) and (4) adopt the same centrosymmetric space group P21/n. The unusual signal identified by EPR spectroscopy was assigned to a charge-transfer π(O)→d(V) process. Both stability in solution and reactivity towards reactive oxygen species (O2- and OH·) were screened through EPR signal modification. All compounds inhibited the development of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis bacterial strains in a planktonic state at a micromolar level, the most active being compound (3). However, the experiments conducted at a minimal inhibitory concentration (MIC) indicated that the compounds do not disrupt the biofilm produced by these bacterial strains. The cytotoxicity assayed against A375 human melanoma cells and BJ human fibroblasts by testing the viability, lactate dehydrogenase, and nitric oxide levels indicated compound (1) as the most active in tumor cells.


Subject(s)
Anti-Infective Agents , Vanadates , Humans , Vanadates/chemistry , Anti-Infective Agents/pharmacology , Bacteria , Spectrum Analysis , Guanidines/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
17.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958669

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.


Subject(s)
Pentamidine , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Pentamidine/metabolism , Guanidines/pharmacology , Guanidines/metabolism , Hippocampus/metabolism , Cells, Cultured , N-Methylaspartate/metabolism
18.
Bull Exp Biol Med ; 175(6): 774-776, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37987947

ABSTRACT

We studied the effect of inducible NO synthase (iNOS) inhibitor aminoguanidine on the behavioral effects of chronic perinatal caffeine exposure. Administration of caffeine in the prenatal and early postnatal periods led to the development of anxiolytic, stimulating, and analgesic effects. Administration of aminoguanidine attenuated the anxiolytic and stimulating effects and potentiated the analgesic effect of perinatal administration of caffeine. Chronic perinatal administration of caffeine leads to significant changes in the level of anxiety, motor activity, and pain sensitivity, and inhibition of iNOS has a pronounced multidirectional effect on these effects.


Subject(s)
Anti-Anxiety Agents , Nitric Oxide Synthase , Rats , Animals , Anti-Anxiety Agents/pharmacology , Caffeine/pharmacology , Nitric Oxide Synthase Type II/metabolism , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Analgesics/pharmacology , Nitric Oxide/metabolism
19.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762123

ABSTRACT

The modular synthesis of the guanidine core by guanylation reactions using commercially available ZnEt2 as a catalyst has been exploited as a tool for the rapid development of antitumoral guanidine candidates. Therefore, a series of phenyl-guanidines were straightforwardly obtained in very high yields. From the in vitro assessment of the antitumoral activity of such structurally diverse guanidines, the guanidine termed ACB3 has been identified as the lead compound of the series. Several biological assays, an estimation of AMDE values, and an uptake study using Fluorescence Lifetime Imaging Microscopy were conducted to gain insight into the mechanism of action. Cell death apoptosis, induction of cell cycle arrest, and reduction in cell adhesion and colony formation have been demonstrated for the lead compound in the series. In this work, and as a proof of concept, we discuss the potential of the catalytic guanylation reactions for high-throughput testing and the rational design of guanidine-based cancer therapeutic agents.


Subject(s)
Guanidines , Neoplasms , Humans , Guanidine , Guanidines/pharmacology , Apoptosis , Cell Death , Neoplasms/drug therapy
20.
Braz J Microbiol ; 54(4): 3211-3220, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37651088

ABSTRACT

The aim of this study was to evaluate the antimicrobial efficacy of polyhexamethylene hydrochloride guanidine (PHMGH) compared to chlorhexidine digluconate (CLX) for use as an oral antiseptic during dental procedures in wild cats. This research is crucial due to limited information on the diversity of oral microorganisms in wild cats and the detrimental local and systemic effects of oral diseases, which highlights the importance of improving prevention and treatment strategies. Samples were collected from the oral cavities of four Puma concolor, one Panthera onca, and one Panthera leo, and the number of colony-forming units per milliliter (CFU/mL) was counted and semi-automatically identified. The antimicrobial susceptibility profile of bacterial isolates was determined using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill kinetics of PHMGH and CLX. A total of 16 bacterial isolates were identified, consisting of six Gram-positive and 10 Gram-negative. PHMGH displayed MIC and MBC from 0.24 to 125.00 µg/mL, lower than those of CLX against three isolates. Time-kill kinetics showed that PHMGH reduced the microbial load by over 90% for all microorganisms within 30 min, whereas CLX did not. Only two Gram-positive isolates exposed to the polymer showed incomplete elimination after 60 min of contact. The results could aid in the development of effective prevention and treatment strategies for oral diseases in large felids. PHMGH showed promising potential at low concentrations and short contact times compared to the commercial product CLX, making it a possible active ingredient in oral antiseptic products for veterinary use in the future.


Subject(s)
Anti-Infective Agents, Local , Anti-Infective Agents, Local/pharmacology , Guanidine , Chlorhexidine/pharmacology , Guanidines/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...