Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.627
Filter
1.
Sci Rep ; 14(1): 12487, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38816545

ABSTRACT

Peritoneal metastases (PM) in colorectal cancer (CRC) is associated with a dismal prognosis. Identifying and exploiting new biomarkers, signatures, and molecular targets for personalised interventions in the treatment of PM in CRC is imperative. We conducted transcriptomic profiling using RNA-seq data generated from the primary tissues of 19 CRC patients with PM. Using our dataset established in a previous study, we identified 1422 differentially expressed genes compared to non-metastatic CRC. The profiling demonstrated no differential expression in liver and lung metastatic CRC. We selected 12 genes based on stringent criteria and evaluated their expression patterns in a validation cohort of 32 PM patients and 84 without PM using real-time reverse transcription-polymerase chain reaction. We selected cartilage intermediate layer protein 2 (CILP2) because of high mRNA expression in PM patients in our validation cohort and its association with a poor prognosis in The Cancer Genome Atlas. Kaplan-Meier survival analysis in our validation cohort demonstrated that CRC patients with high CILP2 expression had significantly poor survival outcomes. Knockdown of CILP2 significantly reduced the proliferation, colony-forming ability, invasiveness, and migratory capacity and downregulated the expression of molecules related to epithelial-mesenchymal transition in HCT116 cells. In an in vivo peritoneal dissemination mouse knockdown of CILP2 also inhibited CRC growth. Therefore, CILP2 is a promising biomarker for the prediction and treatment of PM in CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Peritoneal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Animals , Mice , Male , Female , Prognosis , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , HCT116 Cells , Gene Expression Profiling , Middle Aged , Cell Movement , Aged
2.
Commun Biol ; 7(1): 655, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806706

ABSTRACT

The gut microbiota influences human health and the development of chronic diseases. However, our understanding of potentially protective or harmful microbe-host interactions at the molecular level is still in its infancy. To gain further insights into the hidden gut metabolome and its impact, we identified a cryptic non-ribosomal peptide BGC in the genome of Bacillus cereus DSM 28590 from the mouse intestine ( www.dsmz.de/miBC ), which was predicted to encode a thiazol(in)e substructure. Cloning and heterologous expression of this BGC revealed that it produces bacillamide D. In-depth functional evaluation showed potent cytotoxicity and inhibition of cell migration using the human cell lines HCT116 and HEK293, which was validated using primary mouse organoids. This work establishes the bacillamides as selective cytotoxins from a bacterial gut isolate that affect mammalian cells. Our targeted structure-function-predictive approach is demonstrated to be a streamlined method to discover deleterious gut microbial metabolites with potential effects on human health.


Subject(s)
Bacillus cereus , Gastrointestinal Microbiome , Bacillus cereus/metabolism , Bacillus cereus/genetics , Animals , Mice , Humans , HEK293 Cells , Cytotoxins/metabolism , Cytotoxins/genetics , HCT116 Cells , Intestines/microbiology , Cell Movement , Organoids/metabolism
3.
Anticancer Res ; 44(6): 2587-2595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821580

ABSTRACT

BACKGROUND/AIM: Apoptosis resistance in cancer cells adapted to acidic microenvironments poses a challenge for effective treatment. This study investigated the potential use of caffeic acid as an adjunct therapy to overcome drug resistance in colorectal cancer cells under acidic conditions. MATERIALS AND METHODS: Long-term exposure to low-pH conditions induced resistance in HCT116 colorectal cancer cells. The effects of caffeic acid on proliferation, clonogenicity, and apoptosis induction were assessed alone and in combination with oxaliplatin and 5-Fluorouracil. The signaling pathways involved in drug resistance were examined by assessing the activities of PI3K/Akt and ERK1/2. RESULTS: Caffeic acid inhibited the proliferation and clonogenicity of acid-adapted cancer cells, and enhanced apoptosis when combined with anticancer drugs. Mechanistically, caffeic acid attenuated the hyperactivation of the PI3K/Akt and ERK1/2 signaling pathways associated with drug resistance. CONCLUSION: Caffeic acid is a promising therapeutic agent for targeting resistant cancer cells in acidic microenvironments. Its ability to inhibit proliferation, sensitize cells to apoptosis, and modulate signaling pathways highlights its potential for overcoming drug resistance in cancer therapy.


Subject(s)
Apoptosis , Caffeic Acids , Cell Proliferation , Colonic Neoplasms , Drug Resistance, Neoplasm , Fluorouracil , Humans , Caffeic Acids/pharmacology , Apoptosis/drug effects , HCT116 Cells , Cell Proliferation/drug effects , Fluorouracil/pharmacology , Drug Resistance, Neoplasm/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/pharmacology , Oxaliplatin/pharmacology , Signal Transduction/drug effects , Hydrogen-Ion Concentration , Drug Synergism , Phosphatidylinositol 3-Kinases/metabolism , Organoplatinum Compounds/pharmacology , Tumor Microenvironment/drug effects
4.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731610

ABSTRACT

Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive compounds in shochu spirits infused with Cordyceps militaris, a Chinese medicine. The results revealed that a bioactive fraction was eluted from the spirit extract with 40% ethanol. The infusion time impacted the inhibitory effect of the spirit extract on the proliferation of colon cancer-derived cell line HCT-116 cells, and a 21-day infusion showed the strongest inhibitory effect. Furthermore, the spirit extract was separated into four fractions, A-D, by high-performance liquid chromatography (HPLC), and Fractions B, C, and D, but not A, exerted the effects of proliferation inhibition and apoptotic induction of HCT-116 cells and HL-60 cells. Furthermore, Fractions B, C, and D were, respectively, identified as adenosine, cordycepin, and N6-(2-hydroxyethyl)-adenosine (HEA) by comprehensive chemical analyses, including proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). To better understand the bioactivity mechanisms of cordycepin and HEA, the agonist and antagonist tests of the A3 adenosine receptor (A3AR) were performed. Cell viability was suppressed by cordycepin, and HEA was restored by the A3AR antagonist MR1523, suggesting that cordycepin and HEA possibly acted as agonists to activate A3ARs to inhibit cell proliferation. Molecular docking simulations revealed that both adenosine and cordycepin bound to the same pocket site of A3ARs, while HEA exhibited a different binding pattern, supporting a possible explanation for the difference in their bioactivity. Taken together, the present study demonstrated that cordycepin and HEA were major bioactive ingredients in Cordyceps militaries-infused sweet potato shochu spirits, which contributed to the in vitro anticancer activity.


Subject(s)
Apoptosis , Cell Proliferation , Cordyceps , Humans , Cordyceps/chemistry , Cell Proliferation/drug effects , HCT116 Cells , Apoptosis/drug effects , Adenosine/pharmacology , Adenosine/analogs & derivatives , Adenosine/chemistry , Deoxyadenosines/pharmacology , Deoxyadenosines/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Docking Simulation , HL-60 Cells , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor
5.
Drug Dev Res ; 85(3): e22200, 2024 May.
Article in English | MEDLINE | ID: mdl-38747107

ABSTRACT

In this study, we analyzed and verified differentially expressed genes (DEGs) in ROS and KEAP1 crosstalk in oncogenic signatures using GEO data sets (GSE4107 and GSE41328). Multiple pathway enrichment analyses were finished based on DEGs. The genetic signature for colorectal adenocarcinoma (COAD) was identified by using the Cox regression analysis. Kaplan-Meier survival and receiver operating characteristic curve analysis were used to explore the prognosis value of specific genes in COAD. The potential immune signatures and drug sensitivity prediction were also analyzed. Promising small-molecule agents were identified and predicted targets of α-hederin in SuperPred were validated by molecular docking. Also, expression levels of genes and Western blot analysis were conducted. In total, 48 genes were identified as DEGs, and the hub genes such as COL1A1, CXCL12, COL1A2, FN1, CAV1, TIMP3, and IGFBP7 were identified. The ROS and KEAP1-associated gene signatures comprised of hub key genes were developed for predicting the prognosis and evaluating the immune cell responses and immune infiltration in COAD. α-hederin, a potential anti-colorectal cancer (CRC) agent, was found to enhance the sensitivity of HCT116 cells, regulate CAV1 and COL1A1, and decrease KEAP1, Nrf2, and HO-1 expression significantly. KEAP1-related genes could be an essential mediator of ROS in CRC, and KEAP1-associated genes were effective in predicting prognosis and evaluating individualized CRC treatment. Therefore, α-hederin may be an effective chemosensitizer for CRC treatments in clinical settings.


Subject(s)
Colorectal Neoplasms , Kelch-Like ECH-Associated Protein 1 , Reactive Oxygen Species , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Molecular Docking Simulation , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Cell Death/drug effects , Cell Line, Tumor , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
BMC Cancer ; 24(1): 587, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741073

ABSTRACT

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Hippo Signaling Pathway , Organoplatinum Compounds , Oxaliplatin , Protein Serine-Threonine Kinases , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Suppressor Protein p53 , Humans , Oxaliplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Verteporfin/pharmacology , Verteporfin/therapeutic use , Cell Line, Tumor , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , YAP-Signaling Proteins/metabolism , Porphyrins/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects
7.
Neoplasma ; 71(2): 193-200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766852

ABSTRACT

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies with a high mortality rate. In the last few years, attention has been focused on substances of natural origin with anticancer activity. One such substance is thymol and its derivatives, which have been shown to have an antitumor effect also against CRC cells. In our study, we focused on determining the biological and antibacterial effects of thymol and thymol derivatives. Analyses were performed on a 3D model of human colon carcinoma cell lines (HCT-116 and HT-29) - spheroids. The cytotoxic (MTT assay) and genotoxic effect (comet assay) of thymol and derivatives: acetic acid thymol ester and thymol ß-D-glucoside were determined. ROS levels (ROS-Glo™ H2O2 Assay) and total antioxidant status (Randox TAS Assay) were also monitored. Last but not least, we also detected the effect of the derivatives using a disk diffusion assay and determined the number of colonies on the plates on selected bacteria such as Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus brevis, Lactobacillus pentosus and Weizmannia coagulans. The derivatives did not show a significant inhibitory effect on the growth of LAB bacteria (lactic acid bacteria) in contrast to thymol. Overall, thymol derivatives are cytotoxic, genotoxic and increase ROS levels. Among the derivatives tested, acetic acid thymol ester (IC50 ~ 0.2 µg/ml) was more effective. The second derivative tested (thymol ß-D-glucoside) was effective at higher concentrations than thymol. Our research confirmed that thymol derivatives have a toxic effect on the 3D model of intestinal tumor cells, while they do not have a toxic effect on selected intestinal bacteria. Thus, they could bring new significance to the prevention or treatment of CRC.


Subject(s)
Colorectal Neoplasms , Spheroids, Cellular , Thymol , Humans , Thymol/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Spheroids, Cellular/drug effects , HCT116 Cells , HT29 Cells , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antineoplastic Agents/pharmacology
8.
Int J Oncol ; 64(6)2024 06.
Article in English | MEDLINE | ID: mdl-38757343

ABSTRACT

Daunorubicin, also known as daunomycin, is a DNA­targeting anticancer drug that is used as chemotherapy, mainly for patients with leukemia. It has also been shown to have anticancer effects in monotherapy or combination therapy in solid tumors, but at present it has not been adequately studied in colorectal cancer (CRC). In the present study, from a screening using an FDA­approved drug library, it was found that daunorubicin suppresses GLI­dependent luciferase reporter activity. Daunorubicin also increased p53 levels, which contributed to both GLI1 suppression and apoptosis. The current detailed investigation showed that daunorubicin promoted the ß­TrCP­mediated ubiquitination and proteasomal degradation of GLI1. Moreover, a competition experiment using BODIPY­cyclopamine, a well­known Smo inhibitor, suggested that daunorubicin does not bind to Smo in HCT116 cells. Administration of daunorubicin (2 mg/kg, ip, qod, 15 days) into HCT116 xenograft mice profoundly suppressed tumor progress and the GLI1 level in tumor tissues. Taken together, the present results revealed that daunorubicin suppresses canonical Hedgehog pathways in CRC. Ultimately, the present study discloses a new mechanism of daunorubicin's anticancer effect and might provide a rationale for expanding the clinical application of daunorubicin.


Subject(s)
Apoptosis , Colorectal Neoplasms , Daunorubicin , Xenograft Model Antitumor Assays , Zinc Finger Protein GLI1 , Humans , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Daunorubicin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Animals , Mice , Apoptosis/drug effects , HCT116 Cells , Smoothened Receptor/metabolism , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Ubiquitination/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects
9.
Oncotarget ; 15: 313-325, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753413

ABSTRACT

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Subject(s)
Cell Proliferation , Epithelial-Mesenchymal Transition , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Epithelial-Mesenchymal Transition/drug effects , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Antiviral Agents/pharmacology , HCT116 Cells , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Profiling
10.
BMC Cancer ; 24(1): 664, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822331

ABSTRACT

Recent studies have shown that blue light-emitting diode (LED) light has anti-tumor effects, suggesting the possibility of using visible light in cancer therapy. However, the effects of blue light irradiation on cells in the tumor microenvironment, including tumor-associated macrophages (TAMs), are unknown. Here, THP-1 cells were cultured in the conditioned medium (CM) of HCT-116 cells to prepare TAMs. TAMs were divided into LED-irradiated and control groups. Then, the effects of blue LED irradiation on TAM activation were examined. Expression levels of M2 macrophage markers CD163 and CD206 expression were significantly decreased in LED-irradiated TAMs compared with the control group. While control TAM-CM could induce HCT-116 cell migration, these effects were not observed in cells cultured in TAM-CM with LED irradiation. Vascular endothelial growth factor (VEGF) secretion was significantly suppressed in LED-exposed TAMs. PD-L1 expression was upregulated in HCT-116 cells cultured with TAM-CM but attenuated in cells cultured with LED-irradiated TAM-CM. In an in vivo model, protein expression levels of F4/80 and CD163, which are TAM markers, were reduced in the LED-exposed group. These results indicate that blue LED light may have an inhibitory effect on TAMs, as well as anti-tumor effects on colon cancer cells.


Subject(s)
Colonic Neoplasms , Light , Tumor-Associated Macrophages , Humans , Colonic Neoplasms/radiotherapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/radiation effects , Tumor-Associated Macrophages/immunology , Light/adverse effects , Animals , HCT116 Cells , Mice , Tumor Microenvironment/radiation effects , Cell Movement/radiation effects , Culture Media, Conditioned/pharmacology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Vascular Endothelial Growth Factor A/metabolism , Receptors, Cell Surface/metabolism , Macrophages/metabolism , Macrophages/radiation effects , Macrophages/immunology , Phototherapy/methods , Macrophage Activation/radiation effects , Blue Light
11.
Asian Pac J Cancer Prev ; 25(5): 1579-1587, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809629

ABSTRACT

BACKGROUND: Gac aril contains high level of carotenoids. This carotenoid possesses several pharmacological properties including antioxidant, anti-inflammatory, and anti-tumor activities. OBJECTIVE: To investigate the anti-cancer activity of Gac aril extract on human colorectal cancer cells and its related mechanisms. METHODS: Colorectal cancer cell lines HCT116 and HT29 were treated with Gac aril extract and its effects on cytotoxicity and anti-proliferation were analyzed using the MTT/MTS and colony formation assay, respectively. Then, further related mechanisms responsible for anti-proliferation were investigated by cell death detection ELISA and Flow cytometry. RESULTS: The results showed that treated cells became rounded up and there was a loss of contact with neighboring cells, leading to a reduction of cell viability. The cytotoxic effects were evaluated IC50 for HCT116 and HT29 cells were 2.16 mg/mL and 1.29 mg/mL, respectively but it not toxic to normal HEK293 at the same dose. Moreover, Gac aril extract significantly inhibits proliferative ability with increasing concentrations having a greater effect. Subsequently, the cellular mechanism responsible for suppressive proliferation was validated. It shows apoptosis induction and arrest of cell cycle. CONCLUSION: Our findings demonstrated that Gac aril extract can induce apoptosis and arrest of cell cycle at S and G2/M phases in both HCT116 and HT29 colorectal cancer cells.


Subject(s)
Apoptosis , Cell Proliferation , Colorectal Neoplasms , Momordica , Plant Extracts , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Momordica/chemistry , Tumor Cells, Cultured , Cell Cycle/drug effects , HCT116 Cells , HT29 Cells
12.
Cell Death Dis ; 15(5): 375, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811536

ABSTRACT

ARID1A, a component of the SWI/SNF chromatin-remodeling complex, is frequently mutated in various cancer types and has emerged as a potential therapeutic target. In this study, we observed that ARID1A-deficient colorectal cancer (CRC) cells showed synthetic lethal effects with a p53 activator, RITA (reactivating p53 and inducing tumor apoptosis). RITA, an inhibitor of the p53-MDM2 interaction, exhibits increased sensitivity in ARID1A-deficient cells compared to ARID1A wild-type cells. Mechanistically, the observed synthetic lethality is dependent on both p53 activation and DNA damage accumulation, which are regulated by the interplay between ARID1A and RITA. ARID1A loss exhibits an opposing effect on p53 targets, leading to decreased p21 expression and increased levels of proapoptotic genes, PUMA and NOXA, which is further potentiated by RITA treatment, ultimately inducing cell apoptosis. Meanwhile, ARID1A loss aggravates RITA-induced DNA damage accumulation by downregulating Chk2 phosphorylation. Taken together, ARID1A loss significantly heightens sensitivity to RITA in CRC, revealing a novel synthetic lethal interaction between ARID1A and RITA. These findings present a promising therapeutic approach for colorectal cancer characterized by ARID1A loss-of-function mutations.


Subject(s)
Apoptosis , Colorectal Neoplasms , DNA-Binding Proteins , Transcription Factors , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/deficiency , Apoptosis/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , DNA Damage , Animals , Mice , HCT116 Cells , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Mice, Nude , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Furans , Proto-Oncogene Proteins
13.
Cell Death Dis ; 15(5): 373, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811535

ABSTRACT

The targeted elimination of radio- or chemotherapy-induced senescent cells by so-called senolytic substances represents a promising approach to reduce tumor relapse as well as therapeutic side effects such as fibrosis. We screened an in-house library of 178 substances derived from marine sponges, endophytic fungi, and higher plants, and determined their senolytic activities towards DNA damage-induced senescent HCT116 colon carcinoma cells. The Pan-PI3K-inhibitor wortmannin and its clinical derivative, PX-866, were identified to act as senolytics. PX-866 potently induced apoptotic cell death in senescent HCT116, MCF-7 mammary carcinoma, and A549 lung carcinoma cells, independently of whether senescence was induced by ionizing radiation or by chemotherapeutics, but not in proliferating cells. Other Pan-PI3K inhibitors, such as the FDA-approved drug BAY80-6946 (Copanlisib, Aliqopa®), also efficiently and specifically eliminated senescent cells. Interestingly, only the simultaneous inhibition of both PI3K class I alpha (with BYL-719 (Alpelisib, Piqray®)) and delta (with CAL-101 (Idelalisib, Zydelig®)) isoforms was sufficient to induce senolysis, whereas single application of these inhibitors had no effect. On the molecular level, inhibition of PI3Ks resulted in an increased proteasomal degradation of the CDK inhibitor p21WAF1/CIP1 in all tumor cell lines analyzed. This led to a timely induction of apoptosis in senescent tumor cells. Taken together, the senolytic properties of PI3K-inhibitors reveal a novel dimension of these promising compounds, which holds particular potential when employed alongside DNA damaging agents in combination tumor therapies.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21 , Humans , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HCT116 Cells , Proteasome Endopeptidase Complex/metabolism , Apoptosis/drug effects , Phosphoinositide-3 Kinase Inhibitors/pharmacology , MCF-7 Cells , Proteolysis/drug effects , A549 Cells , Wortmannin/pharmacology , Senotherapeutics/pharmacology , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Damage/drug effects , Pyrimidines , Quinazolines
14.
Cell Mol Biol Lett ; 29(1): 80, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811901

ABSTRACT

BACKGROUND: Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. METHODS: The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein-protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. RESULTS: Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. CONCLUSIONS: These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.


Subject(s)
Apoptosis , Cell Proliferation , Colorectal Neoplasms , Endoplasmic Reticulum Stress , Mitochondria , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Endoplasmic Reticulum Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Proliferation/drug effects , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Canagliflozin/pharmacology , HT29 Cells , HCT116 Cells , Sirtuin 3/metabolism , Sirtuin 3/genetics , Cell Cycle Checkpoints/drug effects , Glucose/metabolism
15.
Commun Biol ; 7(1): 551, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720110

ABSTRACT

Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.


Subject(s)
Colorectal Neoplasms , Epigenome , Fusobacterium Infections , Fusobacterium nucleatum , Oxygen , Transcriptome , Humans , Fusobacterium nucleatum/genetics , Fusobacterium nucleatum/physiology , Fusobacterium nucleatum/pathogenicity , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , HCT116 Cells , Fusobacterium Infections/genetics , Fusobacterium Infections/microbiology , Fusobacterium Infections/metabolism , Oxygen/metabolism , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic
16.
Eur J Med Chem ; 272: 116497, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38759453

ABSTRACT

A series of combretastatin A-4 (CA-4) derivatives were designed and synthesized, which contain stilbene core structure with different linker, predominantly piperazine derivatives. These compounds were evaluated for their cytotoxic activities against four cancer cell lines, HCT116, A549, AGS, and SK-MES-1. Among them, compound 13 displayed the best effectiveness with IC50 values of 0.227 µM and 0.253 µM against HCT116 and A549 cells, respectively, showing low toxicity to normal cells. Mechanistic studies showed that 13 inhibited HCT116 proliferation via arresting cell cycle at the G2/M phase through disrupting the microtubule network and inducing autophagy in HCT116 cells by regulating the expression levels of autophagy-related proteins. In addition, 13 displayed antiproliferative activities against A549 cells through blocking the cell cycle and inducing A549 cells apoptosis. Because of the poor water solubility of 13, four carbohydrate conjugates were synthesized which exhibited better water solubility. Further investigations revealed that 13 showed positive effects in vivo anticancer study with HCT116 xenograft models. These data suggest that 13 could be served as a promising lead compound for further development of anti-colon carcinoma agent.


Subject(s)
Antineoplastic Agents , Autophagy , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Polymerization , Stilbenes , Tubulin , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Autophagy/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Stilbenes/pharmacology , Stilbenes/chemistry , Stilbenes/chemical synthesis , Tubulin/metabolism , Animals , Polymerization/drug effects , Molecular Structure , HCT116 Cells , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Mice , Dose-Response Relationship, Drug , Apoptosis/drug effects , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Mice, Nude , Piperazine/chemistry , Piperazine/pharmacology , Piperazine/chemical synthesis , Mice, Inbred BALB C
17.
Front Biosci (Landmark Ed) ; 29(5): 174, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38812296

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a major cause of mortality and morbidity. A study proved that brexpiprazole, as a novel dopamine receptor partial agonist, can also prevent CRC cell proliferation. Therefore, clarifying the molecular mechanism of brexpiprazole is vital to developing a novel therapeutic strategy for CRC. METHODS: The effect of brexpiprazole on human colorectal cancer cell proliferation was measured with Cell Counting Kit-8 (CCK-8) kits. Cell migration capability was measured using wound healing and transwell. Cell apoptosis was evaluated with a flow cytometer. Western blots and immunohistochemical staining were used to evaluate protein expression. The effects observed in vitro were also confirmed in xenograft models. RESULTS: Brexpiprazole remarkably inhibited the proliferation, suppressed the migration ability, and induced apoptosis of colorectal cancer cells. Mechanism study showed that brexpiprazole exerted these effects by inhibiting the EGFR pathway. Brexpiprazole enhanced HCT116 cells' sensitivity to cetuximab, and a combination of brexpiprazole and cetuximab inhibited xenograft tumor growth in vivo. CONCLUSIONS: Our finding suggested that brexpiprazole inhibits proliferation, promotes apoptosis, and enhances CRC cells' sensitivity to cetuximab by regulating the EGFR pathway and it might be an efficacious treatment strategy for CRC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Cetuximab , Colorectal Neoplasms , ErbB Receptors , Mice, Nude , Quinolones , Thiophenes , Xenograft Model Antitumor Assays , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Thiophenes/pharmacology , Thiophenes/therapeutic use , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Apoptosis/drug effects , Cetuximab/pharmacology , Quinolones/pharmacology , Cell Movement/drug effects , Cell Line, Tumor , Mice , HCT116 Cells , Mice, Inbred BALB C , Disease Progression
18.
Int J Pharm ; 658: 124186, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38701908

ABSTRACT

Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.


Subject(s)
Coumarins , Oxazoles , Photochemotherapy , Photosensitizing Agents , Photochemotherapy/methods , Humans , Coumarins/chemistry , Oxazoles/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , HCT116 Cells , Cell Survival/drug effects , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Chlorophyll/pharmacology , Nanoparticles/chemistry , Drug Carriers/chemistry , Polymers/chemistry
19.
Eur J Med Chem ; 272: 116448, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704936

ABSTRACT

Colorectal cancer (CRC) is trending to be a major health problem throughout the world. Therapeutics with dual modes of action have shown latent capacity to create ideal anti-tumor activity. Signal transducer and activator of transcription 3 (STAT3) has been proved to be a potential target for the development of anti-colon cancer drug. In addition, modulation of tumor redox homeostasis through deploying exogenous reactive oxygen species (ROS)-enhancing agents has been widely applied as anti-tumor strategy. Thus, simultaneously targeting STAT3 and modulation ROS balance would offer a fresh avenue to combat CRC. In this work, we designed and synthesized a novel series of isoxazole-fused quinones, which were evaluated for their preliminary anti-proliferative activity against HCT116 cells. Among these quinones, compound 41 exerted excellent in vitro anti-tumor effect against HCT116 cell line with an IC50 value of 10.18 ± 0.4 nM. Compound 41 was proved to bind to STAT3 by using Bio-Layer Interferometry (BLI) assay, and can significantly inhibit phosphorylation of STAT3. It also elevated ROS of HCT116 cells by acting as a substrate of NQO1. Mitochondrial dysfunction, apoptosis, and cell cycle arrest, which was caused by compound 41, might be partially due to the inhibition of STAT3 phosphorylation and ROS production induced by 41. Moreover, it exhibited ideal anti-tumor activity in human colorectal cancer xenograft model and good safety profiles in vivo. Overall, this study provided a novel quinone derivative 41 with excellent anti-tumor activity by inhibiting STAT3 and elevating ROS level, and gave insights into designing novel anti-tumor therapeutics by simultaneously modulation of STAT3 and ROS.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Colorectal Neoplasms , Drug Screening Assays, Antitumor , Isoxazoles , Quinones , Reactive Oxygen Species , STAT3 Transcription Factor , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Reactive Oxygen Species/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Animals , Isoxazoles/pharmacology , Isoxazoles/chemistry , Isoxazoles/chemical synthesis , Quinones/pharmacology , Quinones/chemistry , Quinones/chemical synthesis , Apoptosis/drug effects , Molecular Structure , Mice , Dose-Response Relationship, Drug , HCT116 Cells , Mice, Nude , Mice, Inbred BALB C
20.
Nanoscale ; 16(21): 10350-10365, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38739006

ABSTRACT

Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.


Subject(s)
Cell Proliferation , Ceramides , Docetaxel , Micelles , Neovascularization, Pathologic , Animals , Ceramides/chemistry , Ceramides/pharmacology , Humans , Mice , Cell Proliferation/drug effects , Docetaxel/pharmacology , Docetaxel/chemistry , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Lithocholic Acid/chemistry , Lithocholic Acid/pharmacology , Polyethylene Glycols/chemistry , Cell Line, Tumor , Mice, Inbred BALB C , Stilbenes/chemistry , Stilbenes/pharmacology , HCT116 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Female , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...