Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.724
Filter
1.
Nat Commun ; 15(1): 5514, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951492

ABSTRACT

HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.


Subject(s)
HIV-1 , Immunity, Innate , Macrophages , Proto-Oncogene Proteins , Trans-Activators , vpr Gene Products, Human Immunodeficiency Virus , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , vpr Gene Products, Human Immunodeficiency Virus/metabolism , vpr Gene Products, Human Immunodeficiency Virus/genetics , HIV-1/physiology , HIV-1/immunology , Trans-Activators/metabolism , Trans-Activators/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HIV Infections/immunology , HIV Infections/virology , HIV Infections/genetics , HEK293 Cells , Virion/metabolism , Protein Serine-Threonine Kinases
2.
Afr Health Sci ; 24(1): 1-9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38962334

ABSTRACT

Background: The impact of Tuberculosis (TB) places an immense burden on the health care system. Infection with Human Immunodeficiency Virus (HIV) is a significant risk factor in the development and progression of TB disease. Single Nucleotide Polymorphisms (SNPs) in the promoter region of Interleukin-10 (IL-10) and Tumour Necrotic Factor-Alpha (TNF-α) may play a major role in the disease mechanism and understanding these mechanisms might prove to be a useful diagnostic tool in evaluating the immune regulation and progression of the disease. Objective: This study aimed to determine the relationship between cytokine levels and gene variants of Interleukin-10 and Tumour Necrotic Factor Alpha in TB and HIV-infected participants. Methods: Cytokine levels were determined by ELISA, and SNPs were determined by MassArray®. Results: The levels of TNF-α were higher in the TB group than the HIV (p < 0.001) and TB-HIV (p = 0.011) groups, but similar to the TNF-α levels in the control group. In the HIV group, IL-10 levels were higher than those of the TB (p < 0.001) and control groups (p = 0.039), whereas there was no difference between the IL-10 levels in the HIV and the TB-HIV infection groups. The ratio was determined and there were no differences between the four infection groups. In this study, no associations were detected between the circulating plasma levels of TNF-α and IL-10 and their genotypes. Conclusion: Our data showed that the gene variants were not associated with circulating plasma levels of TNF-α and IL-10 in our study population. A pro-inflammatory environment was found in the TB and TB-HIV groups, which is suggesting of bacterial clearance, while an anti-inflammatory environment was found in the HIV group, which suggests the suppression of viral replication.


Subject(s)
HIV Infections , Interleukin-10 , Polymorphism, Single Nucleotide , Tuberculosis , Tumor Necrosis Factor-alpha , Humans , Interleukin-10/genetics , Interleukin-10/blood , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/blood , HIV Infections/genetics , South Africa , Male , Female , Adult , Tuberculosis/genetics , Middle Aged , Case-Control Studies , Genotype , Promoter Regions, Genetic
3.
Vopr Virusol ; 69(3): 231-240, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38996372

ABSTRACT

INTRODUCTION: The amino acid substitution A62V in reverse transcriptase was identified as a mutation correlated with virologic failure in patients on first-line therapy including tenofovir (TDF) and tenofovir alafenamide (TAF). A62V is a typically polymorphic mutation in HIV-1 sub-subtype A6, which is the most widespread virus variant in Russia. MATERIALS AND METHODS: The European EuResist (EIDB) database was queried to form two equivalent groups of patients: group 1 ‒ patients with A62V at baseline treated with TDF or TAF on the first-line therapy, group 2 ‒ patients without A62V at baseline treated with TDF or TAF on the first-line therapy. Each group included 23 patients. RESULTS: There was no statistical difference between the two groups in virologic efficacy in 4, 12, and 24 weeks after the start of antiretroviral therapy (ART) and in the frequency of virologic failures. CONCLUSION: This study has some limitations, and the exact role of A62V in the efficacy of the first-line ART based on tenofovir deserves further investigation.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Reverse Transcriptase , HIV-1 , Mutation , Tenofovir , Humans , Tenofovir/therapeutic use , Tenofovir/analogs & derivatives , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/genetics , HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-1/drug effects , Male , Female , Adult , Anti-HIV Agents/therapeutic use , Middle Aged , Drug Resistance, Viral/genetics , Amino Acid Substitution , Alanine/therapeutic use , Russia/epidemiology , Adenine/analogs & derivatives , Adenine/therapeutic use , Reverse Transcriptase Inhibitors/therapeutic use , Viral Load/drug effects
4.
Proc Natl Acad Sci U S A ; 121(29): e2404349121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985764

ABSTRACT

Intron-containing RNA expressed from the HIV-1 provirus activates type 1 interferon in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with short hairpin RNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte-derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the interferon-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with nontargetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant 2-CARD domain-deletion or phosphomimetic point mutations, indicates that IFIH1 (MDA5) filament formation, dephosphorylation, and association with MAVS are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 (MDA5) and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1 knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes by HIV-1. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 (MDA5), over two orders of magnitude, was revealed by formaldehyde cross-linking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is the innate immune receptor for intron-containing RNA from the HIV-1 provirus and that IFIH1 potentially contributes to chronic inflammation in people living with HIV-1, even in the presence of effective antiretroviral therapy.


Subject(s)
Dendritic Cells , HIV-1 , Immunity, Innate , Interferon-Induced Helicase, IFIH1 , Introns , Proviruses , RNA, Viral , Humans , HIV-1/genetics , HIV-1/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Proviruses/genetics , Dendritic Cells/immunology , Dendritic Cells/virology , Dendritic Cells/metabolism , Introns/genetics , RNA, Viral/genetics , RNA, Viral/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , HIV Infections/immunology , HIV Infections/virology , HIV Infections/genetics , Karyopherins/genetics , Karyopherins/metabolism
5.
Bull Math Biol ; 86(9): 107, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003370

ABSTRACT

Human immunodeficiency virus (HIV) infects CD4+ cells and causes progressive immune function failure, and CD8+ cells lyse infected CD4+ cell via recognising peptide presented by human leukocyte antigens (HLA). Variations in HLA allele lead to observed different HIV infection outcomes. Within-host HIV dynamics involves virus replication within infected cells and lysing of infected cells by CD8+ cells, but how variations in HLA alleles determine different infection outcomes was far from clear. Here, we used mathematical modelling and parameter inference with a new analysis of published virus inhibition assay data to estimate CD8+ cell lysing efficiency, and found that lysing efficiency fall in the gap between low bound (0.1-0.2 day-1 (Elemans et al. in PLoS Comput Biol 8(2):e1002381, 2012)) and upper boundary (6.5-8.4 day-1 (Wick et al. in J Virol 79(21):13579-13586, 2005)). Our outcomes indicate that both lysing efficiency and viral inoculum size jointly determine observed different infection outcomes. Low lysing rate associated with non-protective HLA alleles leads to monostable viral kinetic to high viral titre and oscillatory viral kinetics. High lysing rate associated with protective HLA alleles leads monostable viral kinetic to low viral titre and bistable viral kinetics; at a specific interval of CD8+ cell counts, small viral inoculum sizes are inhibited but not large viral inoculum sizes remain infectious. Further, with CD8+ cell recruitment, HIV kinetics always exhibit oscillatory kinetics, but lysing rate is negatively correlated with range of CD8+ cell count. Our finding highlights role of HLA allele determining different infection outcomes, thereby providing a potential mechanistic explanation for observed good and bad HIV infection outcomes induced by protective HLA allele.


Subject(s)
Alleles , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , HIV Infections , HLA Antigens , Mathematical Concepts , Models, Immunological , Virus Replication , Humans , HIV Infections/immunology , HIV Infections/genetics , HIV Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Virus Replication/immunology , HIV-1/immunology , HIV-1/physiology , Computer Simulation , Viral Load
6.
PLoS Pathog ; 20(7): e1012359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980912

ABSTRACT

A strong genetic predictor of outcome following untreated HIV-1 infection is the carriage of specific alleles of human leukocyte antigens (HLAs) that present viral epitopes to T cells. Residual variation in outcome measures may be attributed, in part, to viral adaptation to HLA-restricted T cell responses. Variants of the endoplasmic reticulum aminopeptidases (ERAPs) influence the repertoire of T cell epitopes presented by HLA alleles as they trim pathogen-derived peptide precursors to optimal lengths for antigen presentation, along with other functions unrelated to antigen presentation. We investigated whether ERAP variants influence HLA-associated HIV-1 adaptation with demonstrable effects on overall HIV-1 disease outcome. Utilizing host and viral data of 249 West Australian individuals with HIV-1 subtype B infection, we identified a novel association between two linked ERAP2 single nucleotide polymorphisms (SNPs; rs2248374 and rs2549782) with plasma HIV RNA concentration (viral load) (P adjusted = 0.0024 for both SNPs). Greater HLA-associated HIV-1 adaptation in the HIV-1 Gag gene correlated significantly with higher viral load, lower CD4+ T cell count and proportion; P = 0.0103, P = 0.0061, P = 0.0061, respectively). When considered together, there was a significant interaction between the two ERAP2 SNPs and HLA-associated HIV-1 adaptation on viral load (P = 0.0111). In a comprehensive multivariate model, addition of ERAP2 haplotypes and HLA associated adaptation as an interaction term to known HLA and CCR5 determinants and demographic factors, increased the explanatory variance of population viral load from 17.67% to 45.1% in this dataset. These effects were not replicated in publicly available datasets with comparably sized cohorts, suggesting that any true global epistasis may be dependent on specific HLA-ERAP allelic combinations. Our data raises the possibility that ERAP2 variants may shape peptide repertoires presented to HLA class I-restricted T cells to modulate the degree of viral adaptation within individuals, in turn contributing to disease variability at the population level. Analyses of other populations and experimental studies, ideally with locally derived ERAP genotyping and HLA-specific viral adaptations are needed to elucidate this further.


Subject(s)
Aminopeptidases , Epistasis, Genetic , HIV Infections , HIV-1 , Polymorphism, Single Nucleotide , Humans , Aminopeptidases/genetics , HIV Infections/immunology , HIV Infections/genetics , HIV Infections/virology , HIV-1/immunology , HIV-1/genetics , Australia , Male , Female , HLA Antigens/genetics , Viral Load , Adult , Middle Aged
7.
Viruses ; 16(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38932142

ABSTRACT

HIV-1 protease inhibitors are an essential component of antiretroviral therapy. However, drug resistance is a pervasive issue motivating a persistent search for novel therapies. Recent reports found that when protease activates within the host cell's cytosol, it facilitates the pyroptotic killing of infected cells. This has led to speculation that promoting protease activation, rather than inhibiting it, could help to eradicate infected cells and potentially cure HIV-1 infection. Here, we used a nanoscale flow cytometry-based assay to characterize protease resistance mutations and polymorphisms. We quantified protease activity, viral concentration, and premature protease activation and confirmed previous findings that major resistance mutations generally destabilize the protease structure. Intriguingly, we found evidence that common polymorphisms in the hinge domain of protease can influence its susceptibility to premature activation. This suggests that viral heterogeneity could pose a considerable challenge for therapeutic strategies aimed at inducing premature protease activation in the future.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV Protease , HIV-1 , Polymorphism, Genetic , HIV Protease/genetics , HIV Protease/metabolism , HIV-1/genetics , HIV-1/drug effects , HIV-1/enzymology , Humans , Drug Resistance, Viral/genetics , HIV Infections/virology , HIV Infections/drug therapy , HIV Infections/genetics , HIV Protease Inhibitors/pharmacology , Mutation
8.
Viruses ; 16(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932230

ABSTRACT

Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.


Subject(s)
HIV Infections , HIV-1 , Immunity, Innate , Virus Replication , HIV-1/genetics , HIV-1/physiology , Humans , HIV Infections/virology , HIV Infections/genetics , HIV Infections/immunology , Gene Expression Regulation, Viral , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Interferon Type I/metabolism , Interferon Type I/genetics , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Interferons/metabolism , Interferons/genetics , Interferons/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
Article in English | MEDLINE | ID: mdl-38902848

ABSTRACT

Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.


Subject(s)
CD4-Positive T-Lymphocytes , GATA3 Transcription Factor , HIV-1 , Single-Cell Analysis , Virus Activation , Virus Latency , Virus Latency/genetics , Humans , Virus Activation/genetics , Single-Cell Analysis/methods , HIV-1/genetics , HIV-1/physiology , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , HIV Infections/virology , HIV Infections/genetics , HIV Infections/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcriptome/genetics , Gene Expression Regulation, Viral
10.
Bioinformatics ; 40(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38885409

ABSTRACT

MOTIVATION: Multi-strain infection is a common yet under-investigated phenomenon of many pathogens. Currently, biologists analyzing SNP information sometimes have to discard mixed infection samples as many downstream analyses require monogenomic inputs. Such a protocol impedes our understanding of the underlying genetic diversity, co-infection patterns, and genomic relatedness of pathogens. A scalable tool to learn and resolve the SNP-haplotypes from polygenomic data is an urgent need in molecular epidemiology. RESULTS: We develop a slice sampling Markov Chain Monte Carlo algorithm, named SNP-Slice, to learn not only the SNP-haplotypes of all strains in the populations but also which strains infect which hosts. Our method reconstructs SNP-haplotypes and individual heterozygosities accurately without reference panels and outperforms the state-of-the-art methods at estimating the multiplicity of infections and allele frequencies. Thus, SNP-Slice introduces a novel approach to address polygenomic data and opens a new avenue for resolving complex infection patterns in molecular surveillance. We illustrate the performance of SNP-Slice on empirical malaria and HIV datasets and provide recommendations for using our method on empirical datasets. AVAILABILITY AND IMPLEMENTATION: The implementation of the SNP-Slice algorithm, as well as scripts to analyze SNP-Slice outputs, are available at https://github.com/nianqiaoju/snp-slice.


Subject(s)
Algorithms , Haplotypes , Polymorphism, Single Nucleotide , Humans , HIV Infections/genetics , Coinfection , Malaria/genetics , Markov Chains , Monte Carlo Method , Gene Frequency
11.
PLoS Pathog ; 20(6): e1012281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848441

ABSTRACT

Understanding the mechanisms that drive HIV expression and latency is a key goal for achieving an HIV cure. Here we investigate the role of the SETD2 histone methyltransferase, which deposits H3K36 trimethylation (H3K36me3), in HIV infection. We show that prevention of H3K36me3 by a potent and selective inhibitor of SETD2 (EPZ-719) leads to reduced post-integration viral gene expression and accelerated emergence of latently infected cells. CRISPR/Cas9-mediated knockout of SETD2 in primary CD4 T cells confirmed the role of SETD2 in HIV expression. Transcriptomic profiling of EPZ-719-exposed HIV-infected cells identified numerous pathways impacted by EPZ-719. Notably, depletion of H3K36me3 prior to infection did not prevent HIV integration but resulted in a shift of integration sites from highly transcribed genes to quiescent chromatin regions and to polycomb repressed regions. We also observed that SETD2 inhibition did not apparently affect HIV RNA levels, indicating a post-transcriptional mechanism affecting HIV expression. Viral RNA splicing was modestly reduced in the presence of EPZ-719. Intriguingly, EPZ-719 exposure enhanced responsiveness of latent HIV to the HDAC inhibitor vorinostat, suggesting that H3K36me3 can contribute to a repressive chromatin state at the HIV locus. These results identify SETD2 and H3K36me3 as novel regulators of HIV integration, expression and latency.


Subject(s)
HIV Infections , HIV-1 , Histone-Lysine N-Methyltransferase , Virus Latency , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Humans , Virus Latency/physiology , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/genetics , HIV-1/physiology , HIV-1/genetics , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Viral
12.
J Clin Invest ; 134(14)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833307

ABSTRACT

Despite effective antiretroviral therapy (ART), persons living with HIV harbor reservoirs of persistently infected CD4+ cells, which constitute a barrier to cure. Initiation of ART during acute infection reduces the size of the HIV reservoir, and we hypothesized that in addition, it would favor integration of proviruses in HIV-specific CD4+ T cells, while initiation of ART during chronic HIV infection would favor relatively more proviruses in herpesvirus-specific cells. We further hypothesized that proviruses in acute ART initiators would be integrated into antiviral genes, whereas integration sites (ISs) in chronic ART initiators would favor genes associated with cell proliferation and exhaustion. We found that the HIV DNA distribution across HIV-specific versus herpesvirus-specific CD4+ T cells was as hypothesized. HIV ISs in acute ART initiators were significantly enriched in gene sets controlling lipid metabolism and HIF-1α-mediated hypoxia, both metabolic pathways active in early HIV infection. Persistence of these infected cells during prolonged ART suggests a survival advantage. ISs in chronic ART initiators were enriched in a gene set controlling EZH2 histone methylation, and methylation has been associated with diminished long terminal repeat transcription. These differences that we found in antigen specificities and IS distributions within HIV-infected cells might be leveraged in designing cure strategies tailored to the timing of ART initiation.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , Proviruses , Virus Integration , Humans , HIV Infections/drug therapy , HIV Infections/genetics , HIV Infections/virology , HIV Infections/immunology , Proviruses/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV-1/genetics , Male , Female , Adult , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , DNA, Viral/genetics , Anti-Retroviral Agents/administration & dosage , Anti-Retroviral Agents/therapeutic use
13.
Article in English | MEDLINE | ID: mdl-38918943

ABSTRACT

INTRODUCTION: This study explores the immunogenetic associations of human leukocyte antigens (HLA) and the calcium release-activated calcium modulator 1 (ORAI1) and stromal interaction molecule 1 (STIM1) genes in HIV-1‒positive patients with HIV-related skin disorders. METHODS: This study assessed the distribution of variants of HLA class II alleles and expression levels of ORAI1 and STIM1 genes in the blood between HIV-1‒positive patients with HIV-related skin disorders and the control group with no HIV within the Latvian population. RESULTS: The research group comprised 115 HIV-1‒positive patients with HIV-related skin disorders, and the control group included 80 healthy individuals. Risk alleles (HLA- DQB1*02:01-0301 and HLA-DQA1*01:01-0501) and protective alleles (HLA-DRB1*07-13, DRB1*01-13, DRB1*04-11, and HLA-DQA1*05:01-0501) showed statistical significance in the groups. In 38 out of 115 patients, higher expression levels of ORAI1 and STIM1 genes were detected in the blood at the beginning of treatment. A significantly higher level of the microribonucleic acid (mRNA) ORAI1 gene was also found in the control group. CONCLUSIONS: The results demonstrate that HLA class II alleles are associated with a trend toward risk/protection concerning HIV-related skin disorders in HIV-1‒positive patients. It was also shown that a low level of ORAI1 mRNA and the risk allele HLA-DQB1*0201-0301 were simultaneously present in the research group.


Subject(s)
HIV Infections , ORAI1 Protein , Polymorphism, Genetic , Stromal Interaction Molecule 1 , Humans , ORAI1 Protein/genetics , Male , Latvia , Female , Stromal Interaction Molecule 1/genetics , Adult , HIV Infections/genetics , Middle Aged , Skin Diseases/genetics , Case-Control Studies , Neoplasm Proteins/genetics , Genetic Predisposition to Disease
14.
Cells ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891030

ABSTRACT

NeuroHIV affects approximately 30-60% of people living with HIV-1 (PLWH) and is characterized by varying degrees of cognitive impairments, presenting a multifaceted challenge, the underlying cause of which is chronic, low-level neuroinflammation. Such smoldering neuroinflammation is likely an outcome of lifelong reliance on antiretrovirals coupled with residual virus replication in the brains of PLWH. Despite advancements in antiretroviral therapeutics, our understanding of the molecular mechanism(s) driving inflammatory processes in the brain remains limited. Recent times have seen the emergence of non-coding RNAs (ncRNAs) as critical regulators of gene expression, underlying the neuroinflammatory processes in HIV infection, NeuroHIV, and their associated comorbidities. This review explores the role of various classes of ncRNAs and their regulatory functions implicated in HIV infection, neuropathogenesis, and related conditions. The dysregulated expression of ncRNAs is known to exacerbate the neuroinflammatory responses, thus contributing to neurocognitive impairments in PLWH. This review also discusses the diagnostic and therapeutic potential of ncRNAs in HIV infection and its comorbidities, suggesting their utility as non-invasive biomarkers and targets for modulating neuroinflammatory pathways. Understanding these regulatory roles could pave the way for novel diagnostic strategies and therapeutic interventions in the context of HIV and its comorbidities.


Subject(s)
Comorbidity , HIV Infections , RNA, Untranslated , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , HIV Infections/genetics , HIV Infections/virology , HIV Infections/complications , HIV-1/genetics
15.
Front Public Health ; 12: 1308784, 2024.
Article in English | MEDLINE | ID: mdl-38903589

ABSTRACT

To comprehensively investigate the molecular transmission patterns of HIV-1 genotypes among men who have sex with men (MSM) in Chongqing, we employed 392 pol sequences of MSM to construct a phylogenetic tree and gene transmission network. Among the viral subtypes, CRF07_BC accounted for 73.2% (287/392) and CRF01_AE accounted for 20.7% (81/392), emerging as the predominant subtypes in this investigation. Additionally, we observed the presence of CRF55_01B, subtype B, CRF08_BC and other circulating recombinant forms. The HIV-1 molecular network was constructed with a gene distance threshold of 1.5%, resulting in an entry rate of 61.4% (241/392). Within the network, we identified a total of 23 molecular clusters, with the largest cluster being the CRF07_BC molecular cluster comprising 148 node values. Transmitted drug-resistance (TDR) mutations were found in 4.34% of the cases, with 1.79% associated with protease inhibitors (PIs), 0.51% with nucleoside reverse transcriptase inhibitors (NRTIs), and 2.55% with non-nucleoside reverse transcriptase inhibitors (NNRTIs). Statistical analysis indicated a higher enrollment rate in the HIV-1 molecular network among infected individuals with the CRF07_BC subtype, those identifying with same-sex sexual roles as "vers," and individuals with higher education levels. This suggests the need for strengthened investigation and intervention in this population to prevent the formation of larger transmission clusters. Furthermore, continuous monitoring of the HIV-1 molecular dynamics network is necessary to promptly and accurately track changes in molecular epidemic characteristics.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Homosexuality, Male , Phylogeny , Humans , Male , China/epidemiology , Homosexuality, Male/statistics & numerical data , HIV-1/genetics , HIV-1/drug effects , Drug Resistance, Viral/genetics , Adult , HIV Infections/epidemiology , HIV Infections/genetics , HIV Infections/transmission , Genotype , Acquired Immunodeficiency Syndrome/epidemiology , Acquired Immunodeficiency Syndrome/transmission , Middle Aged , Mutation
16.
J Infect Dev Ctries ; 18(5): 779-786, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865405

ABSTRACT

INTRODUCTION: Human immunodeficiency virus (HIV) / hepatitis B virus (HBV) causes higher rates of liver disease compared to infection with just one virus. Co-infection can accelerate the progression to liver fibrosis or hepatocellular carcinoma and disturb the treatment response. APOBEC3G is a host defense factor which interferes with HIV-1 and HBV. We aimed to determine the prevalence of hepatitis B surface antigen (HBsAg) among HIV-infected patients and seronegative controls, and screen the HIV/HBV population for APOBEC3G variants rs8177832, rs35228531 and rs2294367, previously associated with HIV-1 infection susceptibility in Morocco. METHODOLOGY: A case control study was conducted on 404 individuals (204 HIV-infected and 200 eligible blood donors) from April to November 2021. HBsAg was measured on the Roche Cobas e411 automatic analyzer (Roche Diagnostics, Basel, Switzerland) and APOBEC3G polymorphisms were identified using the TaqMan genotyping allelic discrimination method. Fisher Exact test, odds ratio (OR) with 95% confidence interval (CI), and haplotype frequencies were calculated. RESULTS: Of the 204 HIV-1 seropositive patients and 200 controls, 4.9% (95%CI: 2.38-8.83) and 2.50% (95% CI: 0.82-5.74) were HBsAg-positive respectively. There was a significant association between increasing age (> 40 years) and HBV infection among controls (p = 0.04). The distribution of genotypes and alleles frequencies of APOBEC3G variants was heterogenous and five different haplotypes with frequencies ≥ 5% were obtained, of which ACC (rs8177832, rs35228531, rs2294367) was the most prevalent. CONCLUSIONS: HBV co-infection is common among HIV-1 infected individuals in Morocco. Efforts should be made to prevent, treat and control HBV transmission in this population.


Subject(s)
APOBEC-3G Deaminase , Coinfection , HIV Infections , Hepatitis B Surface Antigens , Humans , Morocco/epidemiology , Male , HIV Infections/genetics , HIV Infections/complications , HIV Infections/epidemiology , Female , Adult , Coinfection/genetics , Coinfection/epidemiology , Coinfection/virology , APOBEC-3G Deaminase/genetics , Case-Control Studies , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/blood , Middle Aged , Prevalence , Hepatitis B/genetics , Hepatitis B/epidemiology , Hepatitis B/complications , HIV-1/genetics , Young Adult , Hepatitis B virus/genetics
17.
mBio ; 15(7): e0136324, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38888311

ABSTRACT

HIV-1 replication is tightly regulated in host cells, and various restriction factors have important roles in inhibiting viral replication. SAMHD1, a well-known restriction factor, suppresses HIV-1 replication by hydrolyzing intracellular dNTPs, thereby limiting the synthesis of viral cDNA in quiescent cells. In this study, we revealed an additional and distinct mechanism of SAMHD1 inhibition during the postviral cDNA synthesis stage. Using immunoprecipitation and mass spectrometry analysis, we demonstrated the interaction between SAMHD1 and MX2/MxB, an interferon-induced antiviral factor that inhibits HIV-1 cDNA nuclear import. The disruption of endogenous MX2 expression significantly weakened the ability of SAMHD1 to inhibit HIV-1. The crucial region within SAMHD1 that binds to MX2 has been identified. Notably, we found that SAMHD1 can act as a sensor that recognizes and binds to the incoming HIV-1 core, subsequently delivering it to the molecular trap formed by MX2, thereby blocking the nuclear entry of the HIV-1 core structure. SAMHD1 mutants unable to recognize the HIV-1 core showed a substantial decrease in antiviral activity. Certain mutations in HIV-1 capsids confer resistance to MX2 inhibition while maintaining susceptibility to suppression by the SAMHD1-MX2 axis. Overall, our study identifies an intriguing antiviral pattern wherein two distinct restriction factors, SAMHD1 and MX2, collaborate to establish an alternative mechanism deviating from their actions. These findings provide valuable insight into the complex immune defense networks against exogenous viral infections and have implications for the development of targeted anti-HIV therapeutics. IMPORTANCE: In contrast to most restriction factors that directly bind to viral components to exert their antiviral effects, SAMHD1, the only known deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, indirectly inhibits viral replication in quiescent cells by reducing the pool of dNTP substrates available for viral cDNA synthesis. Our study provides a novel perspective on the antiviral functions of SAMHD1. In addition to its role in dNTP hydrolysis, SAMHD1 cooperates with MX2 to inhibit HIV-1 nuclear import. In this process, SAMHD1 acts as a sensor for incoming HIV-1 cores, detecting and binding to them, before subsequently delivering the complex to the molecular trap formed by MX2, thereby immobilizing the virus. This study not only reveals a new antiviral pathway for SAMHD1 but also identifies a unique collaboration and interaction between two distinct restriction factors, establishing a novel line of defense against HIV-1 infection, which challenges the traditional view of restriction factors acting independently. Overall, our findings further indicate the intricate complexity of the host immune defense network and provide potential targets for promoting host antiviral immune defense.


Subject(s)
HIV Infections , HIV-1 , Myxovirus Resistance Proteins , SAM Domain and HD Domain-Containing Protein 1 , Virus Replication , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Humans , HIV-1/physiology , HIV-1/genetics , Myxovirus Resistance Proteins/metabolism , Myxovirus Resistance Proteins/genetics , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/genetics , DNA, Viral/metabolism , DNA, Viral/genetics , HEK293 Cells , Host-Pathogen Interactions , Protein Binding
18.
Nat Commun ; 15(1): 5290, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906865

ABSTRACT

Long-term non-progressors (LTNPs) of HIV-1 infection may provide important insights into mechanisms involved in viral control and pathogenesis. Here, our results suggest that the ribosomal protein lateral stalk subunit P1 (RPLP1) is expressed at higher levels in LTNPs compared to regular progressors (RPs). Functionally, RPLP1 inhibits transcription of clade B HIV-1 strains by occupying the C/EBPß binding sites in the viral long terminal repeat (LTR). This interaction requires the α-helixes 2 and 4 domains of RPLP1 and is evaded by HIV-1 group M subtype C and group N, O and P strains that do not require C/EBPß for transcription. We further demonstrate that HIV-1-induced translocation of RPLP1 from the cytoplasm to the nucleus is essential for antiviral activity. Finally, knock-down of RPLP1 promotes reactivation of latent HIV-1 proviruses. Thus, RPLP1 may play a role in the maintenance of HIV-1 latency and resistance to RPLP1 restriction may contribute to the effective spread of clade C HIV-1 strains.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , HIV Infections , HIV Long Terminal Repeat , HIV-1 , Ribosomal Proteins , Humans , Binding Sites , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Nucleus/metabolism , Gene Expression Regulation, Viral , HEK293 Cells , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/genetics , HIV Long Terminal Repeat/genetics , HIV-1/genetics , HIV-1/metabolism , HIV-1/physiology , Protein Binding , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Transcription, Genetic , Virus Latency/genetics
19.
PLoS One ; 19(6): e0304408, 2024.
Article in English | MEDLINE | ID: mdl-38923958

ABSTRACT

Human Immunodeficiency Virus (HIV) is a significant threat to public health. HIV genotyping and antiretroviral resistance testing may have contributed to improved non-treated management. Immune markers might assist HIV-1 diagnosis and drug-resistant variant identification. HIV-1 immunogenicity and molecular characteristics of antiretroviral drug resistance are evaluated in 56 treatment-naive HIV patients. DNA sequencing and retroviral resistance testing identified HIV-1 genotypes. 55.4% of patients were susceptible to protease inhibitors (PI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) antiretroviral drugs, whereas 44.6% had drug-resistance mutations against at least one antiretroviral drug. 3.6% of cases had PI-resistant mutations, while 30.4% had NRTI-resistant mutations, and 30.4% had NNRTI-resistant mutations. In patients who are susceptible to PI, the mean value of human plasma sCD80 is 2.11 ± 0.65 ng/mL; in patients with mutations, it is 3.93 ± 2.91 ng/mL. Individuals who are susceptible to PI have plasma sCD27 levels of 78.7 ± 63.2 U/mL, whereas individuals who are mutant have levels of 56.5 ± 32.1 U/mL. IP-10's mean value was 363 ± 109.2 pg/mL for the susceptible patients and 429 ± 20.7 pg/mL for the mutated patients. In susceptible patients, the plasma sCD4 level is 0.163 ± 0.229 ng/mL; in mutant patients, it is 0.084 ± 0.012 ng/mL. The data showed a relative relation between immunological parameters such as sCD80, sCD27, sCD4, and IP-10 and mutation for drug resistance.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Mutation , Humans , HIV-1/genetics , HIV-1/drug effects , Saudi Arabia , Male , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV Infections/immunology , HIV Infections/genetics , Female , Adult , Middle Aged , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , Genotype , Young Adult
20.
Med Sci (Paris) ; 40(5): 421-427, 2024 May.
Article in French | MEDLINE | ID: mdl-38819277

ABSTRACT

The genomic RNA of HIV-1 is modified by epitranscriptomic modifications, including 2'-O-methylations, which are found on 17 internal positions. These methylations are added by the cellular methyltransferase FTSJ3, and have pro-viral effects, since they shield the viral genome from the detection by the innate immune sensor MDA5. In turn, the production of interferons by infected cells is reduced, limiting the expression of interferon-stimulated genes (ISGs) with antiviral activities. Moreover, 2'-O-methylations protect the HIV-1 genome from its degradation by ISG20, an interferon-induced exonuclease. Conversely, these methylations also exhibit antiviral effects, as they impede reverse-transcription in vitro or in quiescent cells, which are known to contain low nucleotide concentrations. Altogether, these observations suggest a balance between the proviral effect of 2'-O-methylations, related to the protection of the viral genome from detection by MDA5 and degradation by ISG20, and the antiviral effect, associated with the negative impact of 2'-O-methylations on the viral replication. These findings pave the way for further optimization of therapeutic RNA, by selective methylation of specific nucleotides.


Title: Effets de la 2'-O-méthylation de l'ARN génomique du VIH-1 sur la réplication virale. Abstract: Les ARN du virus de l'immunodéficience humaine sont décorés par des marques épitranscriptomiques, dont des 2'-O-méthylations internes. Ces marques ajoutées par une enzyme cellulaire, FTSJ3, sont des marqueurs du « soi ¼. Elles ont des effets proviraux en protégeant l'ARN viral de la détection par le senseur de l'immunité innée MDA5, et en limitant sa dégradation par l'exonucléase cellulaire ISG20, induite par l'interféron. Ces méthylations ont également un effet antiviral, dans la mesure où elles perturbent la rétrotranscription du génome ARN du virus, in vitro et dans des cellules quiescentes. Un équilibre subtil existe donc entre les effets proviraux et antiviraux des 2'-O-méthylations, assurant ainsi une réplication optimale du virus. Ces découvertes ouvrent des perspectives d'optimisation des ARN thérapeutiques à effet antiviral, par la méthylation sélective de certains nucléotides.


Subject(s)
Genome, Viral , HIV-1 , Virus Replication , Humans , HIV-1/physiology , HIV-1/genetics , Virus Replication/genetics , Virus Replication/physiology , Genome, Viral/physiology , Methylation , HIV Infections/virology , HIV Infections/genetics , RNA, Viral/genetics , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...