Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.033
Filter
1.
Retrovirology ; 21(1): 10, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778414

ABSTRACT

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Subject(s)
HIV-1 , Immunity, Innate , Nucleotidyltransferases , gag Gene Products, Human Immunodeficiency Virus , HIV-1/immunology , HIV-1/genetics , HIV-1/physiology , Humans , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Antiviral Restriction Factors , Macrophages/immunology , Macrophages/virology , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , THP-1 Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/immunology , Immune Evasion , Capsid/metabolism , Capsid/immunology , Virus Replication , Virion/metabolism , Virion/genetics , Virion/immunology , Host-Pathogen Interactions/immunology , DNA, Viral/genetics , Cell Line
2.
PLoS Pathog ; 20(5): e1011821, 2024 May.
Article in English | MEDLINE | ID: mdl-38781120

ABSTRACT

The human immunodeficiency virus (HIV) integrates into the host genome forming latent cellular reservoirs that are an obstacle for cure or remission strategies. Viral transcription is the first step in the control of latency and depends upon the hijacking of the host cell RNA polymerase II (Pol II) machinery by the 5' HIV LTR. Consequently, "block and lock" or "shock and kill" strategies for an HIV cure depend upon a full understanding of HIV transcriptional control. The HIV trans-activating protein, Tat, controls HIV latency as part of a positive feed-forward loop that strongly activates HIV transcription. The recognition of the TATA box and adjacent sequences of HIV essential for Tat trans-activation (TASHET) of the core promoter by host cell pre-initiation complexes of HIV (PICH) has been shown to be necessary for Tat trans-activation, yet the protein composition of PICH has remained obscure. Here, DNA-affinity chromatography was employed to identify the mitotic deacetylase complex (MiDAC) as selectively recognizing TASHET. Using biophysical techniques, we show that the MiDAC subunit DNTTIP1 binds directly to TASHET, in part via its CTGC DNA motifs. Using co-immunoprecipitation assays, we show that DNTTIP1 interacts with MiDAC subunits MIDEAS and HDAC1/2. The Tat-interacting protein, NAT10, is also present in HIV-bound MiDAC. Gene silencing revealed a functional role for DNTTIP1, MIDEAS, and NAT10 in HIV expression in cellulo. Furthermore, point mutations in TASHET that prevent DNTTIP1 binding block the reactivation of HIV by latency reversing agents (LRA) that act via the P-TEFb/7SK axis. Our data reveal a key role for MiDAC subunits DNTTIP1, MIDEAS, as well as NAT10, in Tat-activated HIV transcription and latency. DNTTIP1, MIDEAS and NAT10 emerge as cell cycle-regulated host cell transcription factors that can control activated HIV gene expression, and as new drug targets for HIV cure strategies.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections , HIV-1 , Promoter Regions, Genetic , Virus Latency , Humans , HIV-1/genetics , HIV-1/physiology , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics , Viral Transcription
3.
Biol Pharm Bull ; 47(5): 905-911, 2024.
Article in English | MEDLINE | ID: mdl-38692867

ABSTRACT

Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.


Subject(s)
Glycolysis , HIV Infections , HIV-1 , Virus Replication , Humans , HIV-1/physiology , Glycolysis/physiology , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/immunology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
4.
Nat Commun ; 15(1): 4023, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740816

ABSTRACT

Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.


Subject(s)
Cytokinesis , Endosomal Sorting Complexes Required for Transport , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Humans , Methylation , HeLa Cells , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , HIV-1/metabolism , HIV-1/genetics , HIV-1/physiology , Lysine/metabolism , Protein Processing, Post-Translational
5.
Methods Mol Biol ; 2807: 3-14, 2024.
Article in English | MEDLINE | ID: mdl-38743217

ABSTRACT

To successfully infect a cell, HIV-1 has to overcome several host barriers while exploiting cellular cofactors. HIV-1 infection is highly inefficient with the great majority of viral particles not being able to successfully integrate into the target cell genome. Nonproductive HIV-1 particles are degraded or accumulated in cellular compartments. Thus, it becomes hard to distinguish between viral behaviors that lead to effectively infecting the cell from the ones that do not by using traditional methods. Here, we describe the infectious virus tracking method that detects and quantifies individual fluorescent viral particles over time and links viral particle behavior to its infectivity. This method employs live-cell imaging at ultra-low MOIs to detect the outcome of infection for every HIV-1 particle.


Subject(s)
HIV-1 , HIV-1/physiology , Humans , Virion , HIV Infections/virology , Microscopy, Fluorescence/methods , Cells, Cultured
6.
Nat Commun ; 15(1): 4391, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782925

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) is responsible for significant mortality and morbidity worldwide. Despite complete control of viral replication with antiretrovirals, cells with integrated HIV-1 provirus can produce viral transcripts. In a cross-sectional study of 84 HIV+ individuals of whom 43 were followed longitudinally, we found that HIV-1 RNAs are present in extracellular vesicles (EVs) derived from cerebrospinal fluid and serum of all individuals. We used seven digital droplet polymerase chain reaction assays to evaluate the transcriptional status of the latent reservoir. EV-associated viral RNA was more abundant in the CSF and correlated with neurocognitive dysfunction in both, the cross-sectional and longitudinal studies. Sequencing studies suggested compartmentalization of defective viral transcripts in the serum and CSF. These findings suggest previous studies have underestimated the viral burden and there is a significant relationship between latent viral transcription and CNS complications of long-term disease despite the adequate use of antiretrovirals.


Subject(s)
Extracellular Vesicles , HIV Infections , HIV-1 , RNA, Viral , Humans , Extracellular Vesicles/metabolism , HIV-1/genetics , HIV-1/physiology , RNA, Viral/genetics , Male , Cross-Sectional Studies , HIV Infections/virology , HIV Infections/blood , Female , Adult , Middle Aged , Longitudinal Studies , Viral Load , Virus Latency/genetics , Neurocognitive Disorders/virology , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/etiology
7.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793548

ABSTRACT

Human Immunodeficiency Virus type 1 (HIV-1) latency represents a significant hurdle in finding a cure for HIV-1 infections, despite tireless research efforts. This challenge is partly attributed to the intricate nature of HIV-1 latency, wherein various host and viral factors participate in multiple physiological processes. While substantial progress has been made in discovering therapeutic targets for HIV-1 transcription, targets for the post-transcriptional regulation of HIV-1 infections have received less attention. However, cumulative evidence now suggests the pivotal contribution of post-transcriptional regulation to the viral latency in both in vitro models and infected individuals. In this review, we explore recent insights on post-transcriptional latency in HIV-1 and discuss the potential of its therapeutic targets, illustrating some host factors that restrict HIV-1 at the post-transcriptional level.


Subject(s)
HIV Infections , HIV-1 , Virus Latency , Virus Latency/genetics , HIV-1/genetics , HIV-1/physiology , HIV-1/drug effects , Humans , HIV Infections/virology , HIV Infections/drug therapy , Gene Expression Regulation, Viral , RNA Processing, Post-Transcriptional , Host-Pathogen Interactions/genetics
8.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793552

ABSTRACT

The HIV-1 capsid (CA) protein forms the outer shell of the viral core that is released into the cytoplasm upon infection. CA binds various cellular proteins, including CPSF6, that direct HIV-1 integration into speckle-associated domains in host chromatin. Upon HIV-1 infection, CPSF6 forms puncta in the nucleus. Here, we characterised these CPSF6 puncta further in HeLa cells, T-cells and macrophages and confirmed that integration and reverse transcription are not required for puncta formation. Indeed, we found that puncta formed very rapidly after infection, correlating with the time that CA entered the nucleus. In aphidicolin-treated HeLa cells and macrophages, puncta were detected for the length of the experiment, suggesting that puncta are only lost upon cell division. CA still co-localised with CPSF6 puncta at the latest time points, considerably after the peak of reverse transcription and integration. Intriguingly, the number of puncta induced in macrophages did not correlate with the MOI or the total number of nuclear speckles present in each cell, suggesting that CA/CPSF6 is only directed to a few nuclear speckles. Furthermore, we found that CPSF6 already co-localised with nuclear speckles in uninfected T-cells, suggesting that HIV-1 promotes a natural behaviour of CPSF6.


Subject(s)
HIV-1 , Macrophages , T-Lymphocytes , mRNA Cleavage and Polyadenylation Factors , HIV-1/physiology , Humans , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , T-Lymphocytes/virology , T-Lymphocytes/metabolism , HeLa Cells , Macrophages/virology , Macrophages/metabolism , Virus Integration , Cell Nucleus/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , HIV Infections/virology , HIV Infections/metabolism , Capsid/metabolism
9.
Viruses ; 16(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38793575

ABSTRACT

BACKGROUND: EcoHIV is a chimeric HIV that replicates in mice in CD4+ T cells, macrophages, and microglia (but not in neurons), causing lasting neurocognitive impairment resembling neurocognitive disease in people living with HIV. The present study was designed to develop EcoHIV-susceptible primary mouse brain cultures to investigate the indirect effects of HIV infection on neuronal integrity. RESULTS: We used two EcoHIV clones encoding EGFP and mouse bone marrow-derived macrophages (BMM), mixed mouse brain cells, or enriched mouse glial cells from two wild-type mouse strains to test EcoHIV replication efficiency, the identity of productively infected cells, and neuronal apoptosis and integrity. EcoHIV replicated efficiently in BMM. In mixed brain cell cultures, EcoHIV targeted microglia but did not cause neuronal apoptosis. Instead, the productive infection of the microglia activated them and impaired synaptophysin expression, dendritic density, and axonal structure in the neurons. EcoHIV replication in the microglia and neuronal structural changes during infection were prevented by culture with an antiretroviral. CONCLUSIONS: In murine brain cell cultures, EcoHIV replication in the microglia is largely responsible for the aspects of neuronal dysfunction relevant to cognitive disease in infected mice and people living with HIV. These cultures provide a tool for further study of HIV neuropathogenesis and its control.


Subject(s)
Brain , Microglia , Neurons , Virus Replication , Animals , Mice , Brain/virology , Brain/pathology , Neurons/virology , Neurons/pathology , Microglia/virology , Cells, Cultured , HIV Infections/virology , Macrophages/virology , Disease Models, Animal , Apoptosis , Humans , HIV-1/physiology , Primary Cell Culture , Mice, Inbred C57BL
10.
Viruses ; 16(5)2024 05 04.
Article in English | MEDLINE | ID: mdl-38793610

ABSTRACT

APOBEC3G (A3G) restricts HIV-1 replication primarily by reducing viral cDNA and inducing G-to-A hypermutations in viral cDNA. HIV-1 encodes virion infectivity factor (Vif) to counteract A3G primarily by excluding A3G viral encapsidation. Even though the Vif-induced exclusion is robust, studies suggest that A3G is still detectable in the virion. The impact of encapsidated A3G in the HIV-1 replication is unclear. Using a highly sensitive next-generation sequencing (NGS)-based G-to-A hypermutation detecting assay, we found that wild-type HIV-1 produced from A3G-expressing T-cells induced higher G-to-A hypermutation frequency in viral cDNA than HIV-1 from non-A3G-expressing T-cells. Interestingly, although the virus produced from A3G-expressing T-cells induced higher hypermutation frequency, there was no significant difference in viral infectivity, revealing a disassociation of cDNA G-to-A hypermutation to viral infectivity. We also measured G-to-A hypermutation in the viral RNA genome. Surprisingly, our data showed that hypermutation frequency in the viral RNA genome was significantly lower than in the integrated DNA, suggesting a mechanism exists to preferentially select intact genomic RNA for viral packing. This study revealed a new insight into the mechanism of HIV-1 counteracting A3G antiviral function and might lay a foundation for new antiviral strategies.


Subject(s)
APOBEC-3G Deaminase , DNA, Complementary , HIV-1 , Mutation , Virus Replication , vif Gene Products, Human Immunodeficiency Virus , HIV-1/genetics , HIV-1/physiology , HIV-1/pathogenicity , Humans , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , Virus Replication/genetics , DNA, Complementary/genetics , vif Gene Products, Human Immunodeficiency Virus/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism , DNA, Viral/genetics , HIV Infections/virology , T-Lymphocytes/virology , High-Throughput Nucleotide Sequencing , HEK293 Cells
11.
Nat Commun ; 15(1): 3813, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714682

ABSTRACT

Innate antiviral factors are essential for effective defense against viral pathogens. However, the identity of major restriction mechanisms remains elusive. Current approaches to discover antiviral factors usually focus on the initial steps of viral replication and are limited to a single round of infection. Here, we engineered libraries of >1500 replication-competent HIV-1 constructs each expressing a single gRNAs to target >500 cellular genes for virus-driven discovery of antiviral factors. Passaging in CD4+ T cells robustly enriched HIV-1 encoding sgRNAs against GRN, CIITA, EHMT2, CEACAM3, CC2D1B and RHOA by >50-fold. Using an HIV-1 library lacking the accessory nef gene, we identified IFI16 as a Nef target. Functional analyses in cell lines and primary CD4+ T cells support that the HIV-driven CRISPR screen identified restriction factors targeting virus entry, transcription, release and infectivity. Our HIV-guided CRISPR technique enables sensitive discovery of physiologically relevant cellular defense factors throughout the entire viral replication cycle.


Subject(s)
CD4-Positive T-Lymphocytes , HIV-1 , Virus Replication , nef Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/genetics , HIV-1/physiology , Virus Replication/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , HEK293 Cells , CRISPR-Cas Systems , HIV Infections/virology , HIV Infections/genetics , HIV Infections/immunology , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Virus Internalization
12.
Retrovirology ; 21(1): 8, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693565

ABSTRACT

The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.


Subject(s)
CD4-Positive T-Lymphocytes , Disease Models, Animal , HIV Infections , HIV-1 , Animals , Mice , HIV Infections/immunology , HIV Infections/virology , HIV Infections/drug therapy , HIV-1/physiology , HIV-1/drug effects , Humans , CD4-Positive T-Lymphocytes/immunology , Lymphoid Tissue/virology , Lymphoid Tissue/immunology , Viral Load/drug effects , Spleen/virology , Spleen/immunology , Lymph Nodes/immunology , Lymph Nodes/virology , Caspases/metabolism , Caspase Inhibitors/pharmacology , Anti-Retroviral Agents/therapeutic use
13.
Methods Mol Biol ; 2807: 15-30, 2024.
Article in English | MEDLINE | ID: mdl-38743218

ABSTRACT

Live-cell imaging has become a powerful tool for dissecting the behavior of viral complexes during HIV-1 infection with high temporal and spatial resolution. Very few HIV-1 particles in a viral population are infectious and successfully complete replication (~1/50). Single-particle live-cell imaging enables the study of these rare infectious viral particles, which cannot be accomplished in biochemical assays that measure the average property of the entire viral population, most of which are not infectious. The timing and location of many events in the early stage of the HIV-1 life cycle, including nuclear import, uncoating, and integration, have only recently been elucidated. Live-cell imaging also provides a valuable approach to study interactions of viral and host factors in distinct cellular compartments and at specific stages of viral replication. Successful live-cell imaging experiments require careful consideration of the fluorescent labeling method used and avoid or minimize its potential impact on normal viral replication and produce misleading results. Ideally, it is beneficial to utilize multiple virus labeling strategies and compare the results to ensure that the virion labeling did not adversely influence the viral replication step that is under investigation. Another potential benefit of using different labeling strategies is that they can provide information about the state of the viral complexes. Here, we describe our methods that utilize multiple fluorescent protein labeling approaches to visualize and quantify important events in the HIV-1 life cycle, including docking HIV-1 particles with the nuclear envelope (NE) and their nuclear import, uncoating, and proviral transcription.


Subject(s)
Active Transport, Cell Nucleus , HIV-1 , Transcription, Genetic , Virus Replication , HIV-1/physiology , HIV-1/genetics , Humans , Virus Uncoating , Proviruses/genetics , Proviruses/physiology , Cell Nucleus/metabolism , Cell Nucleus/virology , HIV Infections/virology , HIV Infections/metabolism , Virion/metabolism , Virion/genetics
14.
Methods Mol Biol ; 2807: 61-76, 2024.
Article in English | MEDLINE | ID: mdl-38743221

ABSTRACT

The 20-year revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and timely acquisition, allows the visualization of nanoscaled objects in cell biology. Currently, the use of a recent generation of super-resolution fluorescence microscope coupled with improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus particle or protein level. Here, we highlight the protocol for visualizing HIV-1 Gag assembly at the host T-cell plasma membrane using super-resolution light microscopy. Total internal reflection fluorescence microscopy (TIRF-M) coupled with single-molecule localization microscopy (SMLM) enables the detection and characterization of the assembly of viral proteins at the plasma membrane of infected host cells at the single protein level. Here, we describe the TIRF equipment, the T-cell culture for HIV-1, the sample preparation for single-molecule localization microscopies such as PALM and STORM, acquisition protocols, and Gag assembling cluster analysis.


Subject(s)
Cell Membrane , HIV-1 , Microscopy, Fluorescence , Single Molecule Imaging , T-Lymphocytes , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus , HIV-1/physiology , Humans , Cell Membrane/metabolism , Cell Membrane/virology , Single Molecule Imaging/methods , T-Lymphocytes/virology , T-Lymphocytes/metabolism , Microscopy, Fluorescence/methods , gag Gene Products, Human Immunodeficiency Virus/metabolism
15.
Methods Mol Biol ; 2807: 77-91, 2024.
Article in English | MEDLINE | ID: mdl-38743222

ABSTRACT

HIV-1 virions incorporate viral RNA, cellular RNAs, and proteins during the assembly process. Some of these components, such as the viral RNA genome and viral proteins, are essential for viral replication, whereas others, such as host innate immune proteins, can inhibit virus replication. Therefore, analyzing the virion content is an integral part of studying HIV-1 replication. Traditionally, virion contents have been examined using biochemical assays, which can provide information on the presence or absence of the molecule of interest but not its distribution in the virion population. Here, we describe a method, single-virion analysis, that directly examines the presence of molecules of interest in individual viral particles using fluorescence microscopy. Thus, this method can detect both the presence and the distribution of molecules of interest in the virion population. Single-virion analysis was first developed to study HIV-1 RNA genome packaging. In this assay, HIV-1 unspliced RNA is labeled with a fluorescently tagged RNA-binding protein (protein A) and some of the Gag proteins are labeled with a different fluorescent protein (protein B). Using fluorescence microscopy, HIV-1 particles can be identified by the fluorescent protein B signal and the presence of unspliced HIV-1 RNA can be identified by the fluorescent protein A signal. Therefore, the proportions of particles that contain unspliced RNA can be determined by the fraction of Gag particles that also have a colocalized RNA signal. By tagging the molecule of interest with fluorescent proteins, single-virion analysis can be easily adapted to study the incorporation of other viral or host cell molecules into particles. Indeed, this method has been adapted to examine the proportion of HIV-1 particles that contain APOBEC3 proteins and the fraction of particles that contain a modified Gag protein. Therefore, single-virion analysis is a flexible method to study the nucleic acid and protein content of HIV-1 particles.


Subject(s)
HIV-1 , Microscopy, Fluorescence , RNA, Viral , Virion , HIV-1/physiology , HIV-1/genetics , Virion/metabolism , Microscopy, Fluorescence/methods , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Assembly , Virus Replication , HIV Infections/virology , HIV Infections/metabolism
16.
Methods Mol Biol ; 2807: 113-125, 2024.
Article in English | MEDLINE | ID: mdl-38743224

ABSTRACT

The postnuclear entry steps of HIV-1 involve reverse transcription, uncoating, and integration into the host genome. The differential regulation of these steps has a significant impact on HIV overall replication, including integration site selection and viral gene expression. Recently, another important phenomenon has been uncovered as part of HIV interplay with the nuclear environment, specifically involving the cleavage and polyadenylation specific factor 6 (CPSF6) protein. This phenomenon is the formation of nuclear HIV-induced membraneless organelles (HIV-1 MLOs). In this article, we will describe the methods used to assess the composition and liquid-liquid phase separation (LLPS) properties of these organelles using fluorescence microscopy. The study of HIV-1 MLOs represents a new frontier that may reveal previously unknown key players in the fate of HIV-infected cells.


Subject(s)
Cell Nucleus , HIV-1 , Microscopy, Fluorescence , Humans , Microscopy, Fluorescence/methods , HIV-1/physiology , HIV-1/genetics , Cell Nucleus/metabolism , Organelles/metabolism , HIV Infections/virology , HIV Infections/metabolism
17.
Methods Mol Biol ; 2807: 45-59, 2024.
Article in English | MEDLINE | ID: mdl-38743220

ABSTRACT

Latent HIV-1 reservoirs are a major obstacle to the eradication of HIV-1. Several cure strategies have been proposed to eliminate latent reservoirs. One of the key strategies involves the reactivation of latent HIV-1 from cells using latency-reversing agents. However, currently it is unclear whether any of the latency-reversing agents are able to completely reactivate HIV-1 provirus transcription in all latent cells. An understanding of the reactivation of HIV-1 provirus at single-cell single-molecule level is necessary to fully comprehend the reactivation of HIV-1 in the reservoirs. Furthermore, since reactivable viruses in the pool of latent reservoirs are rare, combining single-cell imaging techniques with the ability to visualize a large number of reactivated single cells that express both viral RNA and proteins in a pool of uninfected and non-reactivated cells will provide unprecedented information about cell-to-cell variability in reactivation. Here, we describe the single-cell single-molecule RNA-FISH (smRNA-FISH) method to visualize HIV-1 gag RNA combined with the immunofluorescence (IF) method to detect Gag protein to characterize the reactivated cells. This method allows the visualization of subcellular localization of RNA and proteins before and after reactivation and facilitates absolute quantitation of the number of transcripts per cell using FISH-quant. In addition, we describe a high-speed and high-resolution scanning (HSHRS) fluorescence microscopy imaging method to visualize rare and reactivated cells in a pool of non-reactivated cells with high efficiency.


Subject(s)
Fluorescent Antibody Technique , HIV-1 , In Situ Hybridization, Fluorescence , RNA, Viral , Single Molecule Imaging , Single-Cell Analysis , Virus Activation , Virus Latency , HIV-1/physiology , HIV-1/genetics , Humans , In Situ Hybridization, Fluorescence/methods , RNA, Viral/genetics , Single-Cell Analysis/methods , Single Molecule Imaging/methods , Fluorescent Antibody Technique/methods , HIV Infections/virology , Proviruses/genetics
18.
Methods Mol Biol ; 2807: 127-138, 2024.
Article in English | MEDLINE | ID: mdl-38743225

ABSTRACT

The initial stages of HIV-1 infection involve the transport of the viral core into the nuclear compartment. The presence of the HIV-1 core in the nucleus triggers the translocation of CPSF6/CPSF5 from paraspeckles into nuclear speckles, forming puncta-like structures. While this phenomenon is well-documented, the efficiency of CPSF6 translocation to nuclear speckles upon HIV-1 infection varies depending on the type of cell used. In some human cell lines, only 1-2% of the cells translocate CPSF6 to nuclear speckles when exposed to a 95% infection rate. To address the issue that only 1-2% of cells translocate CPSF6 to nuclear speckles when a 95% infection rate is achieved, we screened several human cell lines and identified a human a cell line in which approximately 85% of the cells translocate CPSF6 to nuclear speckles when 95% infection rate is achieved. This cellular system has enabled the development of a robust fluorescence microscopy method to quantify the translocation of CPSF6 into nuclear speckles following HIV-1 infection. This assay holds the potential to support studies aimed at understanding the role of CPSF6 translocation to nuclear speckles in HIV-1 infection. Additionally, since the translocation of CPSF6 into nuclear speckles depends on the physical presence of the viral core in the nucleus, our method also serves as a reporter of HIV-1 nuclear import.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleus , HIV-1 , mRNA Cleavage and Polyadenylation Factors , Humans , HIV-1/metabolism , HIV-1/physiology , HIV-1/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Cell Nucleus/metabolism , Cell Line , HIV Infections/virology , HIV Infections/metabolism
19.
Methods Mol Biol ; 2807: 93-110, 2024.
Article in English | MEDLINE | ID: mdl-38743223

ABSTRACT

Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.


Subject(s)
HIV Infections , Humans , HIV Infections/virology , HIV-1/physiology , Mass Spectrometry/methods , Microscopy, Electron/methods , Molecular Imaging/methods , Disease Reservoirs/virology
20.
Methods Mol Biol ; 2807: 175-194, 2024.
Article in English | MEDLINE | ID: mdl-38743229

ABSTRACT

Retroviruses must overcome cellular restrictions to the nucleocytoplasmic export of viral mRNAs that retain introns in order to complete their replication cycle. HIV accomplishes this using a system comprised of a trans-acting viral protein, Rev, and a cis-acting RNA secondary structure in the viral genome, the Rev-Response Element (RRE). HIV primary isolates differ with respect to the sequence and functional activity of the Rev-RRE system. Here, we describe a high throughput assay system for analyzing Rev-RRE functional activity using packageable viral vectors.


Subject(s)
RNA, Viral , Response Elements , rev Gene Products, Human Immunodeficiency Virus , Humans , rev Gene Products, Human Immunodeficiency Virus/genetics , rev Gene Products, Human Immunodeficiency Virus/metabolism , Response Elements/genetics , RNA, Viral/genetics , HIV-1/genetics , HIV-1/physiology , Gene Expression Regulation, Viral , Virus Replication/genetics , Genetic Vectors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...