Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.697
Filter
1.
Biol Pharm Bull ; 47(6): 1079-1086, 2024.
Article in English | MEDLINE | ID: mdl-38825461

ABSTRACT

Idiosyncratic drug toxicities (IDTs) pose a significant challenge; they are marked by life-threatening adverse reactions that emerge aftermarket release and are influenced by intricate genetic and environmental variations. Recent genome-wide association studies have highlighted a strong correlation between specific human leukocyte antigen (HLA) polymorphisms and IDT onset. This review provides an overview of current research on HLA-mediated drug toxicities. In the last six years, HLA-transgenic (Tg) mice have been instrumental in advancing our understanding of these underlying mechanisms, uncovering systemic immune reactions that replicate human drug-induced immune stimulation. Additionally, the potential role of immune tolerance in shaping individual differences in adverse effects highlights its relevance to the interplay between HLA polymorphisms and IDTs. Although HLA-Tg mice offer valuable insights into systemic immune reactions, further exploration is essential to decipher the intricate interactions that lead to organ-specific adverse effects, especially in organs such as the skin or liver. Navigating the intricate interplay of HLA, which may potentially trigger intracellular immune responses, this review emphasizes the need for a holistic approach that integrates findings from both animal models and molecular/cellular investigations. The overarching goal is to enhance our comprehensive understanding of HLA-mediated IDTs and identify factors shaping individual variations in drug reactions. This review aims to facilitate the development of strategies to prevent severe adverse effects, address existing knowledge gaps, and provide guidance for future research initiatives in the field of HLA-mediated IDTs.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , HLA Antigens , Animals , Humans , HLA Antigens/genetics , HLA Antigens/immunology , Mice, Transgenic , Polymorphism, Genetic , Mice
2.
HLA ; 103(6): e15543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837862

ABSTRACT

The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome-wide association studies have identified numerous disease-associated SNPs within this region. However, these associations do not fully capture the immune-biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi-ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole-genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross-validation of these reference panels, the multi-ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non-classical, MICA, MICB and HLA-H genes, previously unavailable for multi-ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA-B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.


Subject(s)
Alleles , Ethnicity , Gene Frequency , Polymorphism, Single Nucleotide , Humans , Brazil , Ethnicity/genetics , HLA Antigens/genetics , Linkage Disequilibrium , Genome-Wide Association Study/methods , Genotype , Genetics, Population/methods , Histocompatibility Antigens Class I/genetics , Computational Biology/methods
3.
HLA ; 103(6): e15560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839559

ABSTRACT

De novo anti-HLA donor-specific antibodies (DSAs) were rarely reported in stem cell transplantation patients. We present a case of 39-year-old acute myelogenous leukaemia patient who developed de novo DSAs only 16 days after transplantation with the highest mean fluorescence intensity (MFI) of 7406.23, which were associated with poor graft function (PGF). We used plasma exchange (PE) and intravenous immunoglobulin (IVIg) to reduce DSA level. A series of treatment including mesenchymal stem cells and donor cell transfusion were used to help recover graft function. On day 130, the patient achieved a successful engraftment.


Subject(s)
HLA Antigens , Hematopoietic Stem Cell Transplantation , Isoantibodies , Leukemia, Myeloid, Acute , Humans , Hematopoietic Stem Cell Transplantation/methods , Adult , HLA Antigens/immunology , Isoantibodies/immunology , Isoantibodies/blood , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Male , Tissue Donors , Transplantation, Haploidentical/methods , Immunoglobulins, Intravenous/therapeutic use , Plasma Exchange/methods , Female , Histocompatibility Testing
4.
Front Immunol ; 15: 1384823, 2024.
Article in English | MEDLINE | ID: mdl-38840925

ABSTRACT

Objective: In a cooperative study of the University Hospital Leipzig, University of Leipzig, and the Charité Berlin on kidney transplant patients, we analysed the occurrence of HLA-specific antibodies with respect to the HLA setup of the patients. We aimed at the definition of specific HLA antigens towards which the patients produced these antibodies. Methods: Patients were typed for the relevant HLA determinants using mainly the next-generation technology. Antibody screening was performed by the state-of-the-art multiplex-based technology using microspheres coupled with the respective HLA alleles of HLA class I and II determinants. Results: Patients homozygous for HLA-A*02, HLA-A*03, HLA-A*24, HLA-B*07, HLA-B*18, HLA-B*35, HLA-B*44, HLA-C*03, HLA-C*04, and HLA-C*07 in the class I group and HLA-DRB1*01, HLA-DRB1*03, HLA-DRB1*07, HLA-DRB1*15, HLA-DQA1*01, HLA-DQA1*05, HLA-DQB1*02, HLA-DQB1*03(7), HLA-DQB1*06, HLA-DPA1*01, and HLA-DPB1*04 in the class II group were found to have a significant higher antibody production compared to the heterozygous ones. In general, all HLA determinants are affected. Remarkably, HLA-A*24 homozygous patients can produce antibodies towards all HLA-A determinants, while HLA-B*18 homozygous ones make antibodies towards all HLA-B and selected HLA-A and C antigens, and are associated with an elevation of HLA-DRB1, parts of DQB1 and DPB1 alleles. Homozygosity for the HLA class II HLA-DRB1*01, and HLA-DRB1*15 seems to increase the risk for antibody responses against most of the HLA class I antigens (HLA-A, HLA-B, and HLA-C) in contrast to HLA-DQB1*03(7) where a lower risk towards few HLA-A and HLA-B alleles is found. The widely observed differential antibody response is therefore to be accounted to the patient's HLA type. Conclusion: Homozygous patients are at risk of producing HLA-specific antibodies hampering the outcome of transplantation. Including this information on the allocation procedure might reduce antibody-mediated immune reactivity and prevent graft loss in a patient at risk, increasing the life span of the transplanted organ.


Subject(s)
HLA Antigens , Homozygote , Isoantibodies , Kidney Transplantation , Humans , Risk Factors , HLA Antigens/genetics , HLA Antigens/immunology , Isoantibodies/immunology , Histocompatibility Testing , Alleles , Antibody Formation/genetics , Antibody Formation/immunology , Male , Female
5.
Front Immunol ; 15: 1376456, 2024.
Article in English | MEDLINE | ID: mdl-38827736

ABSTRACT

Background: Anti-IgLON5 disease is a rare chronic autoimmune disorder characterized by IgLON5 autoantibodies predominantly of the IgG4 subclass. Distinct pathogenic effects were described for anti-IgLON5 IgG1 and IgG4, however, with uncertain clinical relevance. Methods: IgLON5-specific IgG1-4 levels were measured in 46 sera and 20 cerebrospinal fluid (CSF) samples from 13 HLA-subtyped anti-IgLON5 disease patients (six females, seven males) using flow cytometry. Intervals between two consecutive serum or CSF samplings (31 and 10 intervals, respectively) were categorized with regard to the immunomodulatory treatment active at the end of the interval, changes of anti-IgLON5 IgG1 and IgG4 levels, and disease severity. Intrathecal anti-IgLON5 IgG4 synthesis (IS) was assessed using a quantitative method. Results: The median age at onset was 66 years (range: 54-75), disease duration 10 years (range: 15-156 months), and follow-up 25 months (range: 0-83). IgLON5-specific IgG4 predominance was observed in 38 of 46 (83%) serum and 11 of 20 (55%) CSF samples. Anti-IgLON5 IgG4 levels prior clinical improvement in CSF but not serum were significantly lower than in those prior stable/progressive disease. Compared to IgLON5 IgG4 levels in serum, CSF levels in HLA-DRB1*10:01 carriers were significantly higher than in non-carriers. Indeed, IgLON5-specific IgG4 IS was demonstrated not only in four of five HLA-DRB1*10:01 carriers but also in one non-carrier. Immunotherapy was associated with decreased anti-IgGLON5 IgG serum levels. In CSF, lower anti-IgLON5 IgG was associated with immunosuppressive treatments used in combination, that is, corticosteroids and/or azathioprine plus intravenous immunoglobulins or rituximab. Conclusion: Our findings might indicate that CSF IgLON5-specific IgG4 is frequently produced intrathecally, especially in HLA-DRB1*10:01 carriers. Intrathecally produced IgG4 may be clinically relevant. While many immunotherapies reduce serum IgLON5 IgG levels, more intense immunotherapies induce clinical improvement and may be able to target intrathecally produced anti-IgLON5 IgG. Further studies need to confirm whether anti-IgLON5 IgG4 IS is a suitable prognostic and predictive biomarker in anti-IgLON5 disease.


Subject(s)
Autoantibodies , Immunoglobulin G , Humans , Female , Immunoglobulin G/cerebrospinal fluid , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Aged , Autoantibodies/blood , Autoantibodies/immunology , Autoantibodies/cerebrospinal fluid , Cell Adhesion Molecules, Neuronal/immunology , HLA Antigens/immunology , Clinical Relevance
13.
HLA ; 103(5): e15515, 2024 May.
Article in English | MEDLINE | ID: mdl-38747019

ABSTRACT

Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.


Subject(s)
Alleles , Exome Sequencing , Genetic Predisposition to Disease , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/mortality , Exome Sequencing/methods , Case-Control Studies , Male , Female , Gene Frequency , HLA-DQ beta-Chains/genetics , HLA Antigens/genetics , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Polymorphism, Single Nucleotide
14.
Front Immunol ; 15: 1389358, 2024.
Article in English | MEDLINE | ID: mdl-38736873

ABSTRACT

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Genotype , Killer Cells, Natural , Receptors, KIR , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Male , Adult , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus/immunology , Receptors, KIR/genetics , Middle Aged , Sex Factors , Age Factors , CD57 Antigens , Histocompatibility Testing , Young Adult , NK Cell Lectin-Like Receptor Subfamily C/genetics , HLA Antigens/genetics , HLA Antigens/immunology , Aged , Receptors, KIR3DL1/genetics
16.
Pediatr Transplant ; 28(5): e14773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38808702

ABSTRACT

BACKGROUND: Optimizing graft survival and diminishing human leukocyte antigen (HLA) sensitization are essential for pediatric kidney transplant recipients. More precise HLA matching predicting epitope mismatches could reduce alloreactivity. We investigated the association of predicted HLA B- and T-cell molecular mismatches with the formation of de novo donor-specific antibodies, HLA antibodies, rejection, and graft survival. METHODS: Forty-nine pediatric kidney transplant recipients transplanted from 2009 to 2020 were retrospectively studied. Donors and recipients were high-resolution HLA typed, and recipients were screened for HLA antibodies posttransplant. HLA-EMMA (HLA Epitope MisMatch Algorithm) and PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes) predicted the molecular mismatches. The association of molecular mismatches and the end-points was explored with logistic regression. RESULTS: Five recipients (11%) developed de novo donor-specific antibodies. All five had de novo donor-specific antibodies against HLA class II, with four having HLA-DQ antibodies. We found no associations between PIRCHE-II or HLA-EMMA with de novo donor-specific antibodies, HLA sensitization, graft loss, or rejection. However, we did see a tendency towards an increased odds ratio in PIRCHE-II predicting de novo donor-specific antibodies formation, with an odds ratio of 1.12 (95% CI: 0.99; 1.28) on HLA class II. CONCLUSION: While the study revealed no significant associations between the number of molecular mismatches and outcomes, a notable trend was observed - indicating a reduced risk of dnDSA formation with improved molecular match. It is important to acknowledge, however, that the modest population size and limited observed outcomes preclude us from making definitive conclusions.


Subject(s)
Graft Rejection , Graft Survival , HLA Antigens , Histocompatibility Testing , Kidney Transplantation , T-Lymphocytes , Humans , Graft Rejection/immunology , Child , Graft Survival/immunology , Female , Male , Retrospective Studies , Adolescent , Child, Preschool , HLA Antigens/immunology , T-Lymphocytes/immunology , Isoantibodies/immunology , Isoantibodies/blood , Infant , HLA-B Antigens/immunology , B-Lymphocytes/immunology
18.
Transpl Immunol ; 84: 102049, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729449

ABSTRACT

INTRODUCTION: Antibody-mediated rejection (AMR) is the most common cause of immune-mediated allograft failure after kidney transplant and impacts allograft survival. Previous sensitization is a major risk factor for development of donor specific antibodies (DSA). AMR can have a wide range of clinical features such as impaired kidney function, proteinuria/hypertension or can be subclinical. HLA molecules have specific regions of antigens binding antibodies called epitopes and eplets are considered essential components responsible for immune recognition. We present a patient with subclinical AMR 1 week post transplantation. CASE REPORT: A 48-year-old, caucasian woman with end-stage kidney disease (ESKD) secondary to autosomal dominant polycystic kidney disease (ADPKD) on peritoneal dialysis was registered in deceased donor waitlist. She was a hypersensitized patient from 3 prior pregnancies with a calculated panel reactive antibody of 93,48%. She was transplanted through kidney paired exchange donation with no evidence of DSA pre transplantation. Surgery and post-op were unremarkable with excellent and immediate graft function. Per protocol DSA levels on the 5th day was DR1 of 3300 MFI, with an increase in MFI by day 13 with 7820 MFI and a new B41 1979MFI. Allograft kidney biopsy findings were diagnostic of AMR and she was treated with immunoglobulin and plasmapheresis. As early onset AMR post transplantation was observed an anamnestic response was hypothesized from a previous exposure to allo-HLA. We decided to type her husband, her son's father, which was presented with DSA. Mismatch eplet analysis revealed a shared 41 T and 67LQ eplets between the donor and husband, responsible for the reactivity and new HLA class I B41 and HLA class II DR1 DSA, respectively. DISCUSSION: Shared eplets between the patient husband and donor was responsible for the alloimmune response and early development of DSAs. This case highlights the importance of early monitoring DSA levels in highly sensitized patients after transplant in order to promptly address and lower inflammatory damage. Mismatch eplet analysis can provide a thorough and precise evaluation of immune compatibility providing a useful technique to immune risk stratification, donor selection and post-transplant immunosuppressive therapy and monitoring.


Subject(s)
Graft Rejection , Histocompatibility Testing , Isoantibodies , Kidney Failure, Chronic , Kidney Transplantation , Humans , Female , Middle Aged , Graft Rejection/immunology , Graft Rejection/diagnosis , Isoantibodies/immunology , Isoantibodies/blood , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/surgery , Kidney Failure, Chronic/therapy , HLA Antigens/immunology , Polycystic Kidney, Autosomal Dominant/immunology , Tissue Donors
19.
Transpl Immunol ; 84: 102054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750972

ABSTRACT

BACKGROUND: Immune-mediated rejection is the most common cause of allograft failure in kidney transplant (KT) patients. Exposure to alloantigen, including human leukocyte antigen (HLA), results in the production of donor-specific antibodies (DSA). There are limited data about low levels of mean fluorescence intensity (MFI) DSA, especially post-transplantation. This study evaluated allograft outcomes in KT patients with low MFI DSA. METHODS: From January 2007 to December 2021, KT patients who were tested for post-transplant DSA at Ramathibodi Hospital, Bangkok, Thailand, with the DSA MFI ≤ 1000 were evaluated. These KT patients were categorized into two groups: very low DSA (VLL; MFI = 1-500) and low DSA (LL; MFI = 501-1000). All KT patients were evaluated for the primary outcomes, such as the incidence of acute rejection, serum creatinine levels at one and five years after transplantation as well as allograft and patient survivals. RESULTS: Among 36 KT patients 25 were included as those with VLL and 11 as those with LL. The LL group had significantly higher T-cell mediated allograft rejection (TCMR) than the VLL group (45% vs. 12%, P = 0.04). In addition, 10 patients, 5 in the VLL group and 5 in the LL group developed antibody-mediated allograft rejection (ABMR). Both TCMR and ABMR were confirmed by biopsy results. There was a trend toward higher MFI in KT patients with ABMR than without ABMR (P = 0.22). At 5 post-transplant years, serum creatinine, allograft and patient survivals were comparable between these two groups. Furthermore, the univariate and multivariate analyzes revealed that the LL group was a high risk for rejection. CONCLUSION: Low MFI DSA values after transplantation may be associated with a higher incidence of rejection, but this finding did not show differences in allograft and patient survival in this study's analysis.


Subject(s)
Graft Rejection , Graft Survival , HLA Antigens , Isoantibodies , Kidney Transplantation , Tissue Donors , Humans , Graft Rejection/immunology , Graft Rejection/diagnosis , Male , Female , Isoantibodies/blood , Middle Aged , Adult , HLA Antigens/immunology , Graft Survival/immunology , Allografts/immunology , Transplantation, Homologous , Retrospective Studies
20.
Nat Commun ; 15(1): 4031, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740772

ABSTRACT

The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.


Subject(s)
Alleles , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , HLA Antigens , Polymorphism, Single Nucleotide , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , COVID-19/genetics , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , HLA Antigens/genetics , HLA Antigens/immunology , Antibody Formation/genetics , Antibody Formation/immunology , Male , Female , Genotype , Vaccination , Middle Aged , Adult , Genetic Variation , HLA-DQ beta-Chains/genetics , HLA-DQ beta-Chains/immunology , Breakthrough Infections
SELECTION OF CITATIONS
SEARCH DETAIL
...