Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.679
Filter
1.
Biol Pharm Bull ; 47(6): 1079-1086, 2024.
Article in English | MEDLINE | ID: mdl-38825461

ABSTRACT

Idiosyncratic drug toxicities (IDTs) pose a significant challenge; they are marked by life-threatening adverse reactions that emerge aftermarket release and are influenced by intricate genetic and environmental variations. Recent genome-wide association studies have highlighted a strong correlation between specific human leukocyte antigen (HLA) polymorphisms and IDT onset. This review provides an overview of current research on HLA-mediated drug toxicities. In the last six years, HLA-transgenic (Tg) mice have been instrumental in advancing our understanding of these underlying mechanisms, uncovering systemic immune reactions that replicate human drug-induced immune stimulation. Additionally, the potential role of immune tolerance in shaping individual differences in adverse effects highlights its relevance to the interplay between HLA polymorphisms and IDTs. Although HLA-Tg mice offer valuable insights into systemic immune reactions, further exploration is essential to decipher the intricate interactions that lead to organ-specific adverse effects, especially in organs such as the skin or liver. Navigating the intricate interplay of HLA, which may potentially trigger intracellular immune responses, this review emphasizes the need for a holistic approach that integrates findings from both animal models and molecular/cellular investigations. The overarching goal is to enhance our comprehensive understanding of HLA-mediated IDTs and identify factors shaping individual variations in drug reactions. This review aims to facilitate the development of strategies to prevent severe adverse effects, address existing knowledge gaps, and provide guidance for future research initiatives in the field of HLA-mediated IDTs.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , HLA Antigens , Animals , Humans , HLA Antigens/genetics , HLA Antigens/immunology , Mice, Transgenic , Polymorphism, Genetic , Mice
4.
Medicina (Kaunas) ; 60(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792999

ABSTRACT

In recent years, research has intensified in exploring the genetic basis of psoriasis (PsO) and psoriatic arthritis (PsA). Genome-wide association studies (GWASs), including tools like ImmunoChip, have significantly deepened our understanding of disease mechanisms by pinpointing risk-associated genetic loci. These efforts have elucidated biological pathways involved in PsO pathogenesis, particularly those related to the innate immune system, antigen presentation, and adaptive immune responses. Specific genetic loci, such as TRAF3IP2, REL, and FBXL19, have been identified as having a significant impact on disease development. Interestingly, different genetic variants at the same locus can predispose individuals to either PsO or PsA (e.g., IL23R and deletion of LCE3B and LCE3C), with some variants being uniquely linked to PsA (like HLA B27 on chromosome 6). This article aims to summarize known and new data on the genetics of PsO and PsA, their associated genes, and the involvement of the HLA system and cytokines.


Subject(s)
Arthritis, Psoriatic , Cytokines , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA Antigens , Psoriasis , Humans , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/immunology , Psoriasis/genetics , Psoriasis/immunology , HLA Antigens/genetics
5.
Front Immunol ; 15: 1389358, 2024.
Article in English | MEDLINE | ID: mdl-38736873

ABSTRACT

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Genotype , Killer Cells, Natural , Receptors, KIR , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Male , Adult , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus/immunology , Receptors, KIR/genetics , Middle Aged , Sex Factors , Age Factors , CD57 Antigens , Histocompatibility Testing , Young Adult , NK Cell Lectin-Like Receptor Subfamily C/genetics , HLA Antigens/genetics , HLA Antigens/immunology , Aged , Receptors, KIR3DL1/genetics
6.
HLA ; 103(5): e15515, 2024 May.
Article in English | MEDLINE | ID: mdl-38747019

ABSTRACT

Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.


Subject(s)
Alleles , Exome Sequencing , Genetic Predisposition to Disease , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/mortality , Exome Sequencing/methods , Case-Control Studies , Male , Female , Gene Frequency , HLA-DQ beta-Chains/genetics , HLA Antigens/genetics , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Polymorphism, Single Nucleotide
7.
Mol Med Rep ; 30(1)2024 07.
Article in English | MEDLINE | ID: mdl-38757301

ABSTRACT

Psoriasis is a chronic inflammatory dermatological disease, and there is a lack of understanding of the genetic factors involved in psoriasis in Taiwan. To establish associations between genetic variations and psoriasis, a genome­wide association study was performed in a cohort of 2,248 individuals with psoriasis and 67,440 individuals without psoriasis. Using the ingenuity pathway analysis software, biological networks were constructed. Human leukocyte antigen (HLA) diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)­R software and chi­square analysis. The present study aimed to assess the potential risks associated with psoriasis using a polygenic risk score (PRS) analysis. The genetic association between single nucleotide polymorphisms (SNPs) in psoriasis and various human diseases was assessed by phenome­wide association study. METAL software was used to analyze datasets from China Medical University Hospital (CMUH) and BioBank Japan (BBJ). The results of the present study revealed 8,585 SNPs with a significance threshold of P<5x10­8, located within 153 genes strongly associated with the psoriasis phenotype, particularly on chromosomes 5 and 6. This specific genomic region has been identified by analyzing the biological networks associated with numerous pathways, including immune responses and inflammatory signaling. HLA genotype analysis indicated a strong association between HLA­A*02:07 and HLA­C*06:02 in a Taiwanese population. Based on our PRS analysis, the risk of psoriasis associated with the SNPs identified in the present study was quantified. These SNPs are associated with various dermatological, circulatory, endocrine, metabolic, musculoskeletal, hematopoietic and infectious diseases. The meta­analysis results indicated successful replication of a study conducted on psoriasis in the BBJ. Several genetic loci are significantly associated with susceptibility to psoriasis in Taiwanese individuals. The present study contributes to our understanding of the genetic determinants that play a role in susceptibility to psoriasis. Furthermore, it provides valuable insights into the underlying etiology of psoriasis in the Taiwanese community.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Psoriasis , Humans , Psoriasis/genetics , Taiwan/epidemiology , Male , Female , Middle Aged , Adult , Risk Factors , Haplotypes , Genotype , HLA Antigens/genetics , Aged , Genetic Risk Score
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38770719

ABSTRACT

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Subject(s)
Algorithms , Cancer Vaccines , Monte Carlo Method , Humans , Cancer Vaccines/immunology , Cancer Vaccines/genetics , HLA Antigens/immunology , HLA Antigens/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Mutation
9.
Nat Commun ; 15(1): 3956, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730277

ABSTRACT

Immunopeptidomics is crucial for immunotherapy and vaccine development. Because the generation of immunopeptides from their parent proteins does not adhere to clear-cut rules, rather than being able to use known digestion patterns, every possible protein subsequence within human leukocyte antigen (HLA) class-specific length restrictions needs to be considered during sequence database searching. This leads to an inflation of the search space and results in lower spectrum annotation rates. Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching that boosts the spectrum annotation performance. We analyze 302,105 unique synthesized non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847 unique peptides, that is used to fine-tune the deep learning-based fragment ion intensity prediction model Prosit. We demonstrate up to 3-fold improvement in the identification of immunopeptides, as well as increased detection of immunopeptides from low input samples.


Subject(s)
Deep Learning , Peptides , Tandem Mass Spectrometry , Humans , Peptides/chemistry , Peptides/immunology , Tandem Mass Spectrometry/methods , Databases, Protein , Proteomics/methods , HLA Antigens/immunology , HLA Antigens/genetics , Software , Ions
10.
Nat Commun ; 15(1): 4031, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740772

ABSTRACT

The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.


Subject(s)
Alleles , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , HLA Antigens , Polymorphism, Single Nucleotide , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , COVID-19/genetics , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , HLA Antigens/genetics , HLA Antigens/immunology , Antibody Formation/genetics , Antibody Formation/immunology , Male , Female , Genotype , Vaccination , Middle Aged , Adult , Genetic Variation , HLA-DQ beta-Chains/genetics , HLA-DQ beta-Chains/immunology , Breakthrough Infections
11.
Hum Immunol ; 85(3): 110813, 2024 May.
Article in English | MEDLINE | ID: mdl-38749805

ABSTRACT

HLA matching in solid organ transplant is performed with the aim of assessing immunologic compatibility in order to avoid hyperacute rejection and assess the risk of future rejection events. Molecular mismatch algorithms are intended to improve granularity in histocompatibility assessment and risk stratification. PIRCHE-II uses HLA genotyping to predict indirectly presented mismatched donor HLA peptides, though most clinical validation studies rely on imputing high resolution (HR) genotypes from low resolution (LR) typing data. We hypothesized that use of bona fide HR typing could overcome limitations in imputation, improving accuracy and predictive ability for donor-specific antibody development and acute rejection. We performed a retrospective analysis of adult and pediatric kidney transplant donor/recipient pairs (N = 419) with HR typing and compared the use of imputed LR genotyping verses HR genotyping for PIRCHE-II analysis and outcomes. Imputation success was highly dependent on the reference population used, as using historic Caucasian reference populations resulted in 10 % of pairs with unsuccessful imputation while multiethnic reference populations improved successful imputation with only 1 % unable to be imputed. Comparing PIRCHE-II analysis with HR and LR genotyping produced notably different results, with 20 % of patients discrepantly classified to immunologic risk groups. These data emphasize the importance of using multiethnic reference panels when performing imputation and indicate HR HLA genotyping has clinically meaningful benefit for PIRCHE-II analysis compared to imputed LR typing.


Subject(s)
Genotype , Graft Rejection , HLA Antigens , Histocompatibility Testing , Kidney Transplantation , Humans , HLA Antigens/genetics , HLA Antigens/immunology , Histocompatibility Testing/methods , Graft Rejection/genetics , Graft Rejection/immunology , Retrospective Studies , Adult , Female , Male , Child , Middle Aged , Adolescent , Histocompatibility , Genotyping Techniques/methods , Algorithms
12.
PLoS One ; 19(5): e0303446, 2024.
Article in English | MEDLINE | ID: mdl-38820342

ABSTRACT

BACKGROUND: Acute rejection (AR) after kidney transplantation is an important allograft complication. To reduce the risk of post-transplant AR, determination of kidney transplant donor-recipient mismatching focuses on blood type and human leukocyte antigens (HLA), while it remains unclear whether non-HLA genetic mismatching is related to post-transplant complications. METHODS: We carried out a genome-wide scan (HLA and non-HLA regions) on AR with a large kidney transplant cohort of 784 living donor-recipient pairs of European ancestry. An AR polygenic risk score (PRS) was constructed with the non-HLA single nucleotide polymorphisms (SNPs) filtered by independence (r2 < 0.2) and P-value (< 1×10-3) criteria. The PRS was validated in an independent cohort of 352 living donor-recipient pairs. RESULTS: By the genome-wide scan, we identified one significant SNP rs6749137 with HR = 2.49 and P-value = 2.15×10-8. 1,307 non-HLA PRS SNPs passed the clumping plus thresholding and the PRS exhibited significant association with the AR in the validation cohort (HR = 1.54, 95% CI = (1.07, 2.22), p = 0.019). Further pathway analysis attributed the PRS genes into 13 categories, and the over-representation test identified 42 significant biological processes, the most significant of which is the cell morphogenesis (GO:0000902), with 4.08 fold of the percentage from homo species reference and FDR-adjusted P-value = 8.6×10-4. CONCLUSIONS: Our results show the importance of donor-recipient mismatching in non-HLA regions. Additional work will be needed to understand the role of SNPs included in the PRS and to further improve donor-recipient genetic matching algorithms. Trial registry: Deterioration of Kidney Allograft Function Genomics (NCT00270712) and Genomics of Kidney Transplantation (NCT01714440) are registered on ClinicalTrials.gov.


Subject(s)
Genome-Wide Association Study , Genotype , Graft Rejection , Kidney Transplantation , Polymorphism, Single Nucleotide , Humans , Graft Rejection/genetics , Graft Rejection/immunology , Female , Male , Middle Aged , Adult , HLA Antigens/genetics , Multifactorial Inheritance , Risk Factors , Living Donors , Cohort Studies , Genetic Risk Score
14.
HLA ; 103(5): e15523, 2024 May.
Article in English | MEDLINE | ID: mdl-38813591

ABSTRACT

The introduction of Next-Generation Sequencing (NGS) methodology in the histocompatibility testing for both allo-HSCT and solid organ transplantation enables the sequencing of all HLA genes, which in turn leads to the discovery of many new HLA alleles. Over the last 3 years, we have identified 28 novel alleles (HLA-A*02:1079, A*03:01:01:112, A*11:01:01:83, A*11:01:01:87, A*24:595, A*68:01:01:15, B*07:02:01:107, B*08:01:01:67, B*08:01:01:69, B*13:02:01:25, B*15:01:82, B*15:18:08, B*18:01:01:76, B*27:02:06, B*27:05:02:34, B*40:06:01:17, B*40:517, C*04:01:01:173, C*04:477, C*05:276, C*07:01:01:130, C*12:03:80, C*12:03:01:62, DQA1*05:01:01:10, DPB1*13:01:07, DPB1*1146:01, DPB1*1456:01 and DPB1*1514:01) using the NGS method. The presented data emphasises the benefits gained by the utilisation of the NGS-based techniques in HLA genotyping but also provides new insight on the HLA polymorphism in the Croatian population.


Subject(s)
Alleles , HLA Antigens , High-Throughput Nucleotide Sequencing , Histocompatibility Testing , Humans , High-Throughput Nucleotide Sequencing/methods , Croatia , Histocompatibility Testing/methods , HLA Antigens/genetics , Hematopoietic Stem Cell Transplantation
20.
Front Immunol ; 15: 1349030, 2024.
Article in English | MEDLINE | ID: mdl-38590523

ABSTRACT

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Subject(s)
Parkinson Disease , Retroelements , Humans , Retroelements/genetics , Parkinson Disease/genetics , Dopamine , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , HLA Antigens/genetics , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...