Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 8067, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147565

ABSTRACT

The determination of null- or low-expressed HLA alleles is clinically relevant in both hematopoietic stem cell transplantation and solid organ transplantation. We studied the expression level of a questionable (Q) HLA-B*38:68Q allele, which carries a 9-nucleotide (nt) deletion at codon 230-232 in exon 4 of HLA-B*38:01:01:01 using CRISPR/Cas9 gene editing technology. CRISPR/Cas9 gene editing of HLA-B*38:01:01:01 homozygous EBV B cell line resulted in one HLA-B*38:68Q/B*38:01:01:01 heterozygous and one HLA-B*38:68Q homozygous clone. Flow cytometric analysis of monoclonal anti-Bw4 antibody showed the protein expression of HLA-B*38:01:01:01 in homozygous cells was 2.2 fold higher than HLA-B*38:68Q/B*38:01:01:01 heterozygous cells, and the expression of HLA-B*38:68Q/B*38:01:01:01 heterozygous cells was over 2.0 fold higher than HLA-B*38:68Q homozygous cells. The HLA-B*38:68Q expression was further confirmed using anti-B38 polyclonal antibody. Similarly, the expression of the HLA-B*38:01:01:01 homozygous cells was 1.5 fold higher than that of HLA-B*38:68Q/B*38:01:01:01 heterozygous cells, and the HLA-B*38:68Q/B*38:01:01:01 heterozygous cells was over 1.6 fold higher than that of HLA-B*38:68Q homozygous cells. The treatment of HLA-B*38:68Q homozygous cells with IFN-γ significantly increased its expression. In conclusion, we demonstrate that HLA-B*38:68Q is a low-expressing HLA allele. The CRISPR/Cas9 technology is a useful tool to induce precise gene editing in HLA genes to enable the characterization of HLA gene variants on expression and function.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , HLA-B38 Antigen/genetics , Histocompatibility Testing/methods , Alleles , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line , Exons/genetics , Feasibility Studies , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , HLA-B38 Antigen/immunology , HLA-B38 Antigen/metabolism , Herpesvirus 4, Human/genetics , Heterozygote , Homozygote , Humans , Polymorphism, Genetic/immunology , Sequence Deletion , Transfection
3.
Immunogenetics ; 68(3): 231-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26754738

ABSTRACT

B*38:01 and B*39:06 are present with phenotypic frequencies <2% in the general population, but are of interest as B*39:06 is the B allele most associated with type 1 diabetes susceptibility and 38:01 is most protective. A previous study derived putative main anchor motifs for both alleles based on peptide elution data. The present study has utilized panels of single amino acid substitution peptide libraries to derive detailed quantitative motifs accounting for both primary and secondary influences on peptide binding. From these analyses, both alleles were confirmed to utilize the canonical position 2/C-terminus main anchor spacing. B*38:01 preferentially bound peptides with the positively charged or polar residues H, R, and Q in position 2 and the large hydrophobic residues I, F, L, W, and M at the C-terminus. B*39:06 had a similar preference for R in position 2, but also well-tolerated M, Q, and K. A more dramatic contrast between the two alleles was noted at the C-terminus, where the specificity of B*39:06 was clearly for small residues, with A as most preferred, followed by G, V, S, T, and I. Detailed position-by-position and residue-by-residue coefficient values were generated from the panels to provide detailed quantitative B*38:01 and B*39:06 motifs. It is hoped that these detailed motifs will facilitate the identification of T cell epitopes recognized in the context of two class I alleles associated with dramatically different dispositions towards type 1 diabetes, offering potential avenues for the investigation of the role of CD8 T cells in this disease.


Subject(s)
HLA-B38 Antigen/genetics , HLA-B38 Antigen/metabolism , HLA-B39 Antigen/genetics , HLA-B39 Antigen/metabolism , Peptides/metabolism , Amino Acid Sequence , HLA-B38 Antigen/immunology , HLA-B39 Antigen/immunology , Humans , Peptides/chemistry , Peptides/immunology , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...