Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.543
Filter
1.
Clin Immunol ; 264: 110259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768856

ABSTRACT

The gluten-free diet for celiac disease (CeD) is restrictive and often fails to induce complete symptom and/or mucosal disease remission. Central to CeD pathogenesis is the gluten-specific CD4+ T cell that is restricted by HLA-DQ2.5 in over 85% of CeD patients, making HLA-DQ2.5 an attractive target for suppressing gluten-dependent immunity. Recently, a novel anti-HLA-DQ2.5 antibody that specifically recognizes the complexes of HLA-DQ2.5 and multiple gluten epitopes was developed (DONQ52). OBJECTIVE: To assess the ability of DONQ52 to inhibit CeD patient-derived T-cell responses to the most immunogenic gluten peptides that encompass immunodominant T cell epitopes. METHODS: We employed an in vivo gluten challenge model in patients with CeD that affords a quantitative readout of disease-relevant gluten-specific T-cell responses. HLA-DQ2.5+ CeD patients consumed food containing wheat, barley, or rye for 3 days with collection of blood before (D1) and 6 days after (D6) commencing the challenge. Peripheral blood mononuclear cells were isolated and assessed in an interferon (IFN)-γ enzyme-linked immunosorbent spot assay (ELISpot) testing responses to gluten peptides encompassing a series of immunodominant T cell epitopes. The inhibitory effect of DONQ52 (4 or 40 µg/mL) was assessed and compared to pan-HLA-DQ blockade (SPVL3 antibody). RESULTS: In HLA-DQ2.5+ CeD patients, DONQ52 reduced T cell responses to all wheat gluten peptides to an equivalent or more effective degree than pan-HLA-DQ antibody blockade. It reduced T cell responses to a cocktail of the most immunodominant wheat epitopes by a median of 87% (IQR 72-92). Notably, DONQ52 also substantially reduced T-cell responses to dominant barley hordein and rye secalin derived peptides. DONQ52 had no effect on T-cell responses to non-gluten antigens. CONCLUSION: DONQ52 can significantly block HLA-DQ2.5-restricted T cell responses to the most highly immunogenic gluten peptides in CeD. Our findings support in vitro data that DONQ52 displays selectivity and broad cross-reactivity against multiple gluten peptide:HLA-DQ2.5 complexes. This work provides proof-of-concept multi-specific antibody blockade has the potential to meaningfully inhibit pathogenic gluten-specific T-cell responses in CeD and supports ongoing therapeutic development.


Subject(s)
Antibodies, Bispecific , Celiac Disease , Glutens , HLA-DQ Antigens , Humans , Celiac Disease/immunology , Glutens/immunology , HLA-DQ Antigens/immunology , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Female , Epitopes, T-Lymphocyte/immunology , Adult , Male , CD4-Positive T-Lymphocytes/immunology , Peptides/immunology , Middle Aged , T-Lymphocytes/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Immunodominant Epitopes/immunology , Diet, Gluten-Free
2.
Medicina (Kaunas) ; 60(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792991

ABSTRACT

Background and Objectives: Chlamydia trachomatis (C. trachomatis) represents one of the most prevalent bacterial sexually transmitted diseases. This study aims to explore the relationship between HLA alleles/genotypes/haplotypes and C. trachomatis infection to better understand high-risk individuals and potential complications. Materials and Methods: This prospective study recruited participants from Transylvania, Romania. Patients with positive NAAT tests for C. trachomatis from cervical/urethral secretion or urine were compared with controls regarding HLA-DR and -DQ alleles. DNA extraction for HLA typing was performed using venous blood samples. Results: Our analysis revealed that the presence of the DRB1*13 allele significantly heightened the likelihood of C. trachomatis infection (p = 0.017). Additionally, we observed that individuals carrying the DRB1*01/DRB1*13 and DQB1*03/DQB1*06 genotype had increased odds of C. trachomatis infection. Upon adjustment, the association between the DRB1*01/DRB1*13 genotype and C. trachomatis remained statistically significant. Conclusions: Our findings underscore the importance of specific HLA alleles and genotypes in influencing susceptibility to C. trachomatis infection. These results highlight the intricate relationship between host genetics and disease susceptibility, offering valuable insights for targeted prevention efforts and personalized healthcare strategies.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Polymorphism, Genetic , Humans , Chlamydia trachomatis/genetics , Female , Prospective Studies , Male , Adult , Chlamydia Infections/genetics , Romania , HLA-DR Antigens/genetics , HLA-DQ Antigens/genetics , Genetic Predisposition to Disease , Genotype , Sexually Transmitted Diseases/genetics , Middle Aged , Alleles , Adolescent
4.
J Immunol ; 212(12): 1981-1991, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38647382

ABSTRACT

In transplantation, anti-HLA Abs, especially targeting the DQ locus, are well-known to lead to rejection. These Abs identified by Luminex single Ag assays recognize polymorphic amino acids on HLA, named eplets. The HLA Eplet Registry included 83 DQ eplets, mainly deduced from amino acid sequence alignments, among which 66 have not been experimentally verified. Because eplet mismatch load may improve organ allocation and transplant outcomes, it is imperative to confirm the genuine reactivity of eplets to validate this approach. Our study aimed to confirm 29 nonverified eplets, using adsorption of eplet-positive patients' sera on human spleen mononuclear cells and on transfected murine cell clones expressing a unique DQα- and DQß-chain combination. In addition, we compared the positive beads patterns obtained in the two commercially available Luminex single Ag assays. Among the 29 nonverified DQ eplets studied, 24 were confirmed by this strategy, including the 7 DQα eplets 40E, 40ERV, 75I, 76 V, 129H, 129QS, and 130A and the 17 DQß eplets 3P, 23L, 45G, 56L, 57 V, 66DR, 66ER, 67VG, 70GT, 74EL, 86A, 87F, 125G, 130R, 135D, 167R, and 185I. However, adsorption results did not allow us to conclude for the five eplets 66IT, 75S, 160D, 175E, and 185T.


Subject(s)
HLA-DQ Antigens , Humans , Animals , Mice , HLA-DQ Antigens/immunology , Histocompatibility Testing/methods , Graft Rejection/immunology , Leukocytes, Mononuclear/immunology , Amino Acid Sequence
5.
HLA ; 103(4): e15455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575370

ABSTRACT

Prolonging the lifespan of transplanted organs is critical to combat the shortage of this life-saving resource. Chronic rejection, with irreversible demise of the allograft, is often caused by the development of donor-specific HLA antibodies. Currently, enumerating molecular (amino acid) mismatches between recipient and donor is promoted to identify patients at higher risk of developing HLA antibodies, for use in organ allocation, and immunosuppression-minimization strategies. We have counseled against the incorporation of such approaches into clinical use and hypothesized that not all molecular mismatches equally contribute to generation of donor-specific immune responses. Herein, we document statistical shortcomings in previous study design: for example, use of individuals who lack the ability to generate donor-specific-antibodies (HLA identical) as part of the negative cohort. We provide experimental evidence, using CRISPR-Cas9-edited cells, to rebut the claim that the HLAMatchmaker eplets represent "functional epitopes." We further used unique sub-cohorts of patients, those receiving an allograft with two HLA-DQ mismatches yet developing antibodies only to one mismatch (2MM1DSA), to interrogate differential immunogenicity. Our results demonstrate that mismatches of DQα05-heterodimers exhibit the highest immunogenicity. Additionally, we demonstrate that the DQα chain critically contributes to the overall qualities of DQ molecules. Lastly, our data proposes that an augmented risk to develop donor-specific HLA-DQ antibodies is dependent on qualitative (evolutionary and functional) divergence between recipient and donor, rather than the mere number of molecular mismatches. Overall, we propose an immunological mechanistic rationale to explain differential HLA-DQ immunogenicity, with potential ramifications for other pathological processes such as autoimmunity and infections.


Subject(s)
Isoantibodies , Organ Transplantation , Humans , Alleles , Histocompatibility Testing , HLA-DQ Antigens/genetics , Graft Rejection/genetics
6.
Proc Natl Acad Sci U S A ; 121(19): e2403031121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687785

ABSTRACT

The loading of processed peptides on to major histocompatibility complex II (MHC-II) molecules for recognition by T cells is vital to cell-mediated adaptive immunity. As part of this process, MHC-II associates with the invariant chain (Ii) during biosynthesis in the endoplasmic reticulum to prevent premature peptide loading and to serve as a scaffold for subsequent proteolytic processing into MHC-II-CLIP. Cryo-electron microscopy structures of full-length Human Leukocyte Antigen-DR (HLA-DR) and HLA-DQ complexes associated with Ii, resolved at 3.0 to 3.1 Å, elucidate the trimeric assembly of the HLA/Ii complex and define atomic-level interactions between HLA, Ii transmembrane domains, loop domains, and class II-associated invariant chain peptides (CLIP). Together with previous structures of MHC-II peptide loading intermediates DO and DM, our findings complete the structural path governing class II antigen presentation.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Cryoelectron Microscopy , Histocompatibility Antigens Class II , Humans , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/chemistry , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , HLA-DR Antigens/chemistry , HLA-DR Antigens/metabolism , HLA-DR Antigens/immunology , Antigen Presentation , HLA-DQ Antigens/chemistry , HLA-DQ Antigens/metabolism , HLA-DQ Antigens/immunology , Models, Molecular , Endoplasmic Reticulum/metabolism , Protein Conformation , Protein Binding
7.
J Cancer Res Ther ; 20(1): 204-210, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38554322

ABSTRACT

BACKGROUND AND OBJECTIVES: Despite recent advances in understanding the gastric cancer (GC) biology, the precise molecular mechanism of gastric carcinogenesis and role of deregulated immune responses in GC progression are still not well understood. In this study, mRNA levels of human leukocyte antigen (HLA)-DRA and -DQA1 were assessed in GC patients to find a potential association between expression of these HLA-II molecules and gastric carcinogenesis. METHODS: Using quantitative real-time (qRT)-PCR, mRNA levels of HLA-DRA and -DQA1 were assessed in 20 pairs of matched GC and normal tissues. RESULTS: Our results showed that overall mRNA level of HLA-DRA was decreased in the tumor samples relative to control tissues (median fold change [FC] = 0.693; P = 0.445). Overall HLA-DQA1 level was increased in the tumor samples relative to control tissues (median FC = 1.659; P = 0.5117). However, the mentioned data were not statistically significant. Meanwhile, using a ≥ 2.5 FC as the cutoff to determine upregulation or downregulation, 35% of patients showed a downregulated expression of HLA-DRA, while 10% of those showed upregulation in HLA-DRA expression. Upregulation and downregulation of HLA-DQA1 expression were detected, respectively, in 35% and 25% of samples. A strong positive correlation was determined between HLA-DRA and HLA-DQA1 levels in tumor tissues (r = 0.7298; P = 0.0003). CONCLUSION: The results reported here along with future studies can be useful to understand the interplay between immune system and GC, therefore, may be helpful to design an effective immune-based therapy.


Subject(s)
Stomach Neoplasms , Humans , HLA-DR alpha-Chains , Stomach Neoplasms/genetics , HLA-DR Antigens/genetics , HLA-DQ Antigens/genetics , RNA, Messenger , Carcinogenesis
8.
Clinics (Sao Paulo) ; 79: 100317, 2024.
Article in English | MEDLINE | ID: mdl-38432123

ABSTRACT

OBJECTIVE: To evaluate the relationship between genetic haplotypes associated with celiac disease (Human Leucocyte Antigen [HLA] DQ2 and DQ8) with the diagnosis, clinical presentation, and location of endometriosis in Brazilian women. METHOD: A retrospective cross-sectional study, was conducted in a Tertiary hospital. PATIENTS: Women aged 18-50 years who underwent HLA-DQ2 and HLA-DQ8 haplotype analysis. INTERVENTION: The patients were divided into endometriosis and control groups and evaluated for symptoms; endometriosis location, American Society for Reproductive Medicine (ASRM) stage, and the presence of anti-tissue transglutaminase IgA (anti-TgA), HLA-DQ2, and HLA-DQ8 markers. RESULTS: A total of 434 consecutive patients with (n = 315) and without (n = 119) endometriosis were included. Pain and infertility were more frequent in the endometriosis group than in the control group. The presence of HLA-DQ2, HLA-DQ8, and anti-TgA was similar between both groups. The presence of HLA-DQ2 and HLA-DQ8 markers did not differ based on age, pain symptoms, ASRM stage, or endometriosis location. CONCLUSION: Although there are similarities in inflammatory markers and pathophysiology between celiac disease and endometriosis, this study found no significant associations in the presence of HLA-DQ2 or HLA-DQ8 haplotypes and endometriosis.


Subject(s)
Celiac Disease , Endometriosis , HLA-DQ Antigens , Humans , Female , Endometriosis/genetics , Case-Control Studies , Retrospective Studies , Haplotypes , Celiac Disease/genetics , Cross-Sectional Studies , Pain
9.
J Immunol ; 212(8): 1287-1306, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38426910

ABSTRACT

Myocarditis has emerged as an immune-related adverse event of immune checkpoint inhibitor (ICI) cancer therapy associated with significant mortality. To ensure patients continue to safely benefit from life-saving cancer therapy, an understanding of fundamental immunological phenomena underlying ICI myocarditis is essential. We recently developed the NOD-cMHCI/II-/-.DQ8 mouse model that spontaneously develops myocarditis with lower mortality than observed in previous HLA-DQ8 NOD mouse strains. Our strain was rendered murine MHC class I and II deficient using CRISPR/Cas9 technology, making it a genetically clean platform for dissecting CD4+ T cell-mediated myocarditis in the absence of classically selected CD8+ T cells. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, anti-PD-1 administration accelerates skeletal muscle myositis. Using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses, we performed a thorough characterization of cardiac and skeletal muscle T cells, identifying shared and unique characteristics of both populations. Taken together, this report details a mouse model with features of a rare, but highly lethal clinical presentation of overlapping myocarditis and myositis following ICI therapy. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies.


Subject(s)
Diabetes Mellitus, Experimental , HLA-DQ Antigens , Myocarditis , Myositis , Neoplasms , Humans , Mice , Animals , Mice, Inbred NOD , Immune Checkpoint Inhibitors/therapeutic use , Myositis/chemically induced , Myositis/pathology
10.
J Pediatr Gastroenterol Nutr ; 78(5): 1143-1148, 2024 May.
Article in English | MEDLINE | ID: mdl-38477348

ABSTRACT

OBJECTIVES: Autoantibodies against tissue transglutaminase (tTG) are serological markers of celiac disease. The aim was to study the applicability of human leukocyte antigen (HLA)-genotyping and tTG autoantibodies in the screening of celiac disease in a longitudinal birth cohort followed to age 15 years. METHODS: Included were 13,860 HLA-DQ-genotyped children at birth and previously invited to a screening at age 3 and 9 years, respectively. HLA-DQB1*02 and/or DQB1*03:02 (HLA-risk) children were compared with non-HLA-DQB1*02 and non-DQB1*03:02 (HLA-nonrisk) children. The present study reinvited 12,948/13,860 (93.4%) children at age 15 years of whom 1056/2374 (44.5%) participated in screening at both age 3 and 9 years. Both immunoglobulin A (IgA) and G (IgG) autoantibodies against tTG were analyzed separately in radiobinding assays. Persistently tTG autoantibody-positive children were examined with intestinal biopsy to confirm the diagnosis of celiac disease. RESULTS: At age 3 years, celiac disease was diagnosed in 56/1635 (3.4%) HLA-risk children compared with 0/1824 HLA-nonrisk children (p < 0.001). By age 9 years, celiac disease was diagnosed in 72/1910 (3.8%) HLA-risk children compared with 0/2167 HLA-nonrisk children (p < 0.001). Screening at age 15 years detected 14/1071 (1.3%) HLA-risk children positive for IgA-tTG and/or IgG-tTG of whom 12/1071 (1.1%) remained persistently positive. Among those, 10/1071 (0.9%, 95% confidence interval: 0.4%-1.7%) HLA-risk children were diagnosed with celiac disease compared with 0/1303 HLA-nonrisk children (p < 0.001) and 5/491 (1.0%) were negative in screenings at both 3 and 9 years of age. CONCLUSIONS: Screening for celiac disease needs to be performed at multiple timepoints to detect all cases but can be restricted to children at HLA-risk.


Subject(s)
Autoantibodies , Celiac Disease , GTP-Binding Proteins , Immunoglobulin A , Transglutaminases , Humans , Celiac Disease/diagnosis , Celiac Disease/immunology , Celiac Disease/genetics , Child , Child, Preschool , Transglutaminases/immunology , Longitudinal Studies , Autoantibodies/blood , Adolescent , Female , Male , Immunoglobulin A/blood , GTP-Binding Proteins/immunology , Immunoglobulin G/blood , Protein Glutamine gamma Glutamyltransferase 2 , HLA-DQ Antigens/genetics , Mass Screening/methods , Genotype , HLA-DQ beta-Chains/genetics , Risk Factors , Genetic Predisposition to Disease
11.
J Pediatr Gastroenterol Nutr ; 78(2): 295-303, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38374560

ABSTRACT

OBJECTIVES: Infections in early childhood have been associated with risk of celiac disease (CD) and type 1 diabetes (T1D). We investigated whether this is driven by susceptibility genes for autoimmune disease by comparing infection frequency by genetic susceptibility variants for CD or T1D. METHODS: We genotyped 373 controls and 384 children who developed CD or T1D in the population-based Norwegian Mother, Father and Child Cohort study (MoBa) study for human leukocyte antigen (HLA)-DQ, FUT2, SH2B3, and PTPN22, and calculated a weighted non-HLA genetic risk score (GRS) for CD and T1D based on over 40 SNPs. Parents reported infections in questionnaires when children were 6 and 18 months old. We used negative binomial regression to estimate incidence rate ratio (IRR) for infections by genotype. RESULTS: HLA genotypes for CD and T1D or non-HLA GRS for T1D were not associated with infections. The non-HLA GRS for CD was associated with a nonsignificantly lower frequency of infections (aIRR: 0.95, 95% CI: 0.87-1.03 per weighted allele score), and significantly so when restricting to healthy controls (aIRR: 0.89, 0.81-0.99). Participants homozygous for rs601338(A;A) at FUT2, often referred to as nonsecretors, had a nonsignificantly lower risk of infections (aIRR: 0.91, 95% CI: 0.83-1.01). SH2B3 and PTPN22 genotypes were not associated with infections. The association between infections and risk of CD (OR: 1.15 per five infections) was strengthened after adjustment for HLA genotype and non-HLA GRS (OR: 1.24). CONCLUSIONS: HLA variants and non-HLA GRS conferring susceptibility for CD were not associated with increased risk of infections in early childhood and is unlikely to drive the observed association between infections and risk of CD or T1D in many studies.


Subject(s)
Celiac Disease , Diabetes Mellitus, Type 1 , Child , Female , Humans , Child, Preschool , Infant , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Celiac Disease/complications , Cohort Studies , Genotype , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , Genetic Risk Score , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
12.
Genome Biol Evol ; 16(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302106

ABSTRACT

Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.


Subject(s)
HLA-DQ Antigens , Polymorphism, Single Nucleotide , Gene Frequency , Linkage Disequilibrium , Bayes Theorem , Haplotypes , HLA-DQ Antigens/genetics
13.
Transplant Proc ; 56(3): 515-520, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368130

ABSTRACT

BACKGROUND: HLA eplet mismatching is an alternative approach to assess the risk of developing de novo donor-specific antibodies (dnDSA) in kidney transplantation. This strategy may offer more precise risk stratification than conventional approaches. This study aimed to find the association between HLA eplet mismatches and dnDSA formation in Thai kidney transplant recipients. METHODS: A retrospective cohort study of kidney transplant recipients transplanted between 2000 and 2021 at Ramathibodi Hospital was performed. Recipients with pretransplant panel reactive antibody >0% or without DSA testing post-transplant were excluded. One hundred fifty recipients were included in the final study. High-resolution HLA typing was imputed by the HaploStat application. HLA eplet mismatch analysis was conducted using HLAMatchmaker. The association between the number of eplet mismatches and the risk of dnDSA formation was assessed by Cox regression analysis. RESULTS: Of 150 recipients, 43 were dnDSA-positive, and 107 were dnDSA-negative patients. Compared with the dnDSA-negative group, patients with class II dnDSA had significantly more HLA-DR/DQ antibody (Ab)-verified eplet mismatches (6 [IQR 4-8] vs 4 [IQR 1-7], P = .045). The receiver operating characteristics analysis showed that the HLA-DQ Ab-verified eplet mismatches ≥2 were the best predictive of HLA class II dnDSA development. The number of HLA-DQ Ab-verified eplet mismatches ≥2 had the highest hazard rate of HLA class II dnDSA occurrence (adjusted HR, 3.74; 95%CI, 1.24-11.24, P = .019). CONCLUSIONS: HLA-DQ Ab-verified eplet mismatches are significantly associated with class II dnDSA development. Our data supports the utility of HLA eplet mismatching for donor-recipient risk assessment.


Subject(s)
Histocompatibility Testing , Kidney Transplantation , Humans , Retrospective Studies , Male , Female , Middle Aged , Adult , HLA Antigens/immunology , Isoantibodies/blood , Isoantibodies/immunology , Tissue Donors , Antibody Formation , Graft Rejection/immunology , HLA-DQ Antigens/immunology
14.
Nat Rev Gastroenterol Hepatol ; 21(5): 335-347, 2024 May.
Article in English | MEDLINE | ID: mdl-38336920

ABSTRACT

Coeliac disease is an autoinflammatory condition caused by immune reactions to cereal gluten proteins. Currently, the only available treatment for the condition is a lifelong avoidance of gluten proteins in the diet. There is an unmet need for alternative therapies. Coeliac disease has a strong association with certain HLA-DQ allotypes (DQ2.5, DQ2.2 and DQ8), and these disease-associated HLA-DQ molecules present deamidated gluten peptides to gluten-specific CD4+ T cells. The gluten-specific CD4+ T cells are the drivers of the immune reactions leading to coeliac disease. Once established, the clonotypes of gluten-specific CD4+ T cells persist for decades, explaining why patients must adhere to a gluten-free diet for life. Given the key pathogenic role of gluten-specific CD4+ T cells, tolerance-inducing therapies that target these T cells are attractive for treatment of the disorder. Lessons learned from coeliac disease might provide clues for treatment of other HLA-associated diseases for which the disease-driving antigens are unknown. Thus, intensive efforts have been and are currently implemented to bring an effective tolerance-inducing therapy for coeliac disease. This Review discusses mechanisms of the various approaches taken, summarizing the progress made, and highlights future directions in this field.


Subject(s)
Celiac Disease , Celiac Disease/immunology , Celiac Disease/therapy , Humans , Immune Tolerance/immunology , Glutens/immunology , Glutens/adverse effects , Diet, Gluten-Free , HLA-DQ Antigens/immunology , CD4-Positive T-Lymphocytes/immunology
16.
Gastroenterology ; 167(1): 104-115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38286391

ABSTRACT

In its conventional form, celiac disease (CeD) is characterized by both positive serology and flat villi in the duodenum, and is well known by gastroenterologists and general practitioners. The aim of this review was to shed light on 2 neglected and not yet well-defined celiac phenotypes, that is, seronegative and ultrashort CeD. Seronegative CeD can be suspected in the presence of flat villi, positive HLA-DQ2 and/or HLA-DQ8, and the absence of CeD antibodies. After ruling out other seronegative enteropathies, the diagnosis can be confirmed by both clinical and histologic improvements after 1 year of a gluten-free diet. Ultrashort CeD is characterized by the finding of flat villi in the duodenal bulb in the absence of mucosal damage in the distal duodenum and with serologic positivity. Data on the prevalence, clinical manifestations, histologic lesions, genetic features, and outcome of seronegative and ultrashort CeD are inconclusive due to the few studies available and the small number of patients diagnosed. Some additional diagnostic tools have been developed recently, such as assessing intestinal transglutaminase 2 deposits, flow cytometry technique, microRNA detection, or proteomic analysis, and they seem to be useful in the identification of complex cases. Further cooperative studies are highly desirable to improve the knowledge of these 2 still-obscure variants of CeD.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Duodenum , HLA-DQ Antigens , Celiac Disease/diagnosis , Celiac Disease/immunology , Celiac Disease/blood , Humans , HLA-DQ Antigens/genetics , HLA-DQ Antigens/blood , HLA-DQ Antigens/immunology , Duodenum/pathology , Duodenum/immunology , Phenotype , Transglutaminases/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Protein Glutamine gamma Glutamyltransferase 2 , Biopsy , GTP-Binding Proteins/immunology , Biomarkers/blood , Autoantibodies/blood , Serologic Tests , Predictive Value of Tests
17.
Diabetes ; 73(2): 306-311, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37934957

ABSTRACT

HLA-DR/DQ haplotypes largely define genetic susceptibility to type 1 diabetes (T1D). The DQB1*06:02-positive haplotype (DR15-DQ602) common in individuals of European ancestry is very rare among children with T1D. Among 4,490 children with T1D in the Finnish Pediatric Diabetes Register, 57 (1.3%) case patients with DQB1*06:02 were identified, in comparison with 26.1% of affected family-based association control participants. There were no differences between DQB1*06:02-positive and -negative children with T1D regarding sex, age, islet autoantibody distribution, or autoantibody levels, but significant differences were seen in the frequency of second class II HLA haplotypes. The most prevalent haplotype present with DQB1*06:02 was DRB1*04:04-DQA1*03-DQB1*03:02, which was found in 27 (47.4%) of 57 children, compared with only 797 (18.0%) of 4,433 among DQB1*06:02-negative case patients (P < 0.001 by χ2 test). The other common risk-associated haplotypes, DRB1*04:01-DQA1*03-DQB1*03:02 and (DR3)-DQA1*05-DQB1*02, were less prevalent in DQB1*06:02-positive versus DQB1*06:02-negative children (P < 0.001). HLA-B allele frequencies did not differ by DQB1*06:02 haplotype between children with T1D and control participants or by DRB1*04:04-DQA1*03-DQB1*03:02 haplotype between DQB1*06:02-positive and -negative children with T1D. The increased frequency of the DRB1*04:04 allele among DQB1*06:02-positive case patients may indicate a preferential ability of the DR404 molecule to present islet antigen epitopes despite competition by DQ602.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Child , Diabetes Mellitus, Type 1/genetics , Haplotypes , HLA-DQ Antigens/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Genetic Predisposition to Disease , Alleles , Autoantibodies , Gene Frequency , HLA-DQ alpha-Chains/genetics
18.
Hepatol Int ; 18(2): 517-528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37950809

ABSTRACT

BACKGROUND: Primary sclerosing cholangitis (PSC) is a kind of cholestatic liver disease without effective therapies and its pathogenesis is largely unknown. METHODS: We performed the proteome-wide Mendelian randomization (MR) design to estimate the causal associations of protein levels with PSC risk. Therein, genetic associations with 4,907 plasma protein levels were extracted from a proteome-wide genome-wide association study (GWAS) with 35,559 individuals and those with PSC were obtained from the International PSC Study Group (2,871 cases and 12,019 controls) and the FinnGen study (1,491 cases and 301,383 controls). The colocalization analysis was performed to detect causal variants shared by proteins and PSC. The identified proteins were further enriched in pathways and diseases. A phenome-wide association screening was performed and potential drugs were assessed as well. RESULTS: The results indicated that genetically predicted plasma levels of 14 proteins were positively associated with an increased risk of PSC and 8 proteins were inversely associated with PSC risk in both PSC GWAS data sets, and they all survived in sensitivity analyses. The colocalization indicated that AIF1 (allograft inflammatory factor 1) and HLA-DQA2 (major histocompatibility complex, class II, DQ alpha 2) were shared proteins with PSC, and they should be direct targets for PSC. The phenome-wide screening suggested that variants located at AIF1 or HLA-DQA2 region were closely associated with several autoimmune diseases, such as rheumatoid arthritis, implicating the shared pathogenesis among them. CONCLUSIONS: Our study highly pinpointed two candidate targets (AIF1 and HLA-DQA2) for PSC.


Subject(s)
Cholangitis, Sclerosing , HLA-DQ Antigens , Proteome , Humans , Cholangitis, Sclerosing/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Proteome/genetics
20.
Immunogenetics ; 76(1): 1-13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37979046

ABSTRACT

Helicobacter pylori was reported as an important cause of gastritis, and gastric ulcers and CagA oncoprotein-producing H. pylori subgroups were blamed to increase the severity of gastritis. Disparities were reported in that the presence of serum anti-CagA IgA was not parallel with CagA-positive H. pylori cohabitation. We hypothesized that the HLA-DQA1 ~ DQB1 haplotypes in human populations include protective haplotypes that more effectively present immunogenic CagA peptides and susceptible haplotypes with an impaired capacity to present CagA peptides. We recruited patients (n = 201) admitted for gastroendoscopy procedures and performed high-resolution HLA-DQA1 and DQB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.0% positive), and H. pylori was classified as positive or negative in gastric mucosal tissue slides (72.6% positive). The HLA DQA1*05:05 allele (29.1%) and HLA DQB1*03:01 allele (32.8%) were found at the highest frequency among gastritis patients of Turkish descent. In HLA DQA1*05:05 ~ DQB1*03:01 double homozygous (7.3%) and heterozygous (40.7%) haplotype carriers, the presence of anti-CagA IgA decreased dramatically, the presence of H. pylori increased, and the presence of metaplasia followed a decreasing trend. The DQ protein encoded by HLA DQA1*05:05-DQ*03:01 showed a low binding affinity to the CagA peptide when binding capacity was analyzed by the NetMHCIIPan 4.0 prediction method. In conclusion, HLA DQA1 ~ DQB1 polymorphisms are crucial as host defense mechanisms against CagA H. pylori since antigen binding capacity plays a crucial role in anti-CagA IgA production.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Humans , Haplotypes , HLA-DQ Antigens/genetics , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , Gastritis/genetics , Helicobacter Infections/complications , Helicobacter Infections/genetics , Alleles , Peptides , Metaplasia , Immunoglobulin A/genetics , Gene Frequency , HLA-DRB1 Chains
SELECTION OF CITATIONS
SEARCH DETAIL
...