Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.956
Filter
1.
Int J Immunopathol Pharmacol ; 38: 3946320241260635, 2024.
Article in English | MEDLINE | ID: mdl-38831558

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder mainly affecting joints, yet the systemic inflammation can influence other organs and tissues. The objective of this study was to unravel the ameliorative capability of Ondansetron (O) or ß-sitosterol (BS) against inflammatory reactions and oxidative stress that complicates Extra-articular manifestations (EAM) in liver, kidney, lung, and heart of arthritic and arthritic irradiated rats. METHODS: This was accomplished by exposing adjuvant-induced arthritis (AIA) rats to successive weekly fractions of total body γ-irradiation (2 Gray (Gy)/fraction once per week for four weeks, up to a total dose of 8 Gy). Arthritic and/or arthritic irradiated rats were either treated with BS (40 mg/kg b.wt. /day, orally) or O (2 mg/kg) was given ip) or were kept untreated as model groups. RESULTS: Body weight changes, paw circumference, oxidative stress indices, inflammatory response biomarkers, expression of Janus kinase-2 (JAK-2), Signal transducer and activator of transcription 3 (STAT3), high mobility group box1 (HMGB1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as pro- and anti-inflammatory mediators in the target organs, besides histopathological examination of ankle joints and extra-articular tissues. Treatment of arthritic and/or arthritic irradiated rats with BS or O powerfully alleviated changes in body weight gain, paw swelling, oxidative stress, inflammatory reactions, and histopathological degenerative alterations in articular and non-articular tissues. CONCLUSION: The obtained data imply that BS or O improved the articular and EAM by regulating oxidative and inflammatory indices in arthritic and arthritic irradiated rats.


Subject(s)
Arthritis, Experimental , Kidney , Liver , Lung , Ondansetron , Oxidative Stress , Sitosterols , Animals , Sitosterols/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/radiation effects , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney/radiation effects , Oxidative Stress/drug effects , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver/radiation effects , Male , Ondansetron/pharmacology , HMGB1 Protein/metabolism , Heart/drug effects , Heart/radiation effects , Myocardium/pathology , Myocardium/metabolism , Inflammation/pathology , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/metabolism , Rats, Wistar
2.
J Cancer Res Clin Oncol ; 150(5): 231, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703241

ABSTRACT

PURPOSE: Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS: We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS: BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION: Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.


Subject(s)
ARNTL Transcription Factors , Drug Resistance, Neoplasm , Ferroptosis , HMGB1 Protein , Leukemia, Myeloid, Acute , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Animals , Female , Humans , Male , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Mice, Nude , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Prognosis , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
3.
J Affect Disord ; 358: 211-221, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705530

ABSTRACT

BACKGROUND: Neuroinflammation is involved in the advancement of depression. Du-moxibustion can treat depression. Here, we explored whether Du-moxibustion could alleviate neuroglia-associated neuro-inflammatory process in chronic unpredictable mild stress (CUMS) mice. METHODS: C57BL/6J mice were distributed into five groups. Except for the CON group, other four groups underwent CUMS for four consecutive weeks, and Du-moxibustion was given simultaneously after modeling. Behavioral tests were then carried out. Additionally, Western blot was conducted to measure the relative expression levels of high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB). Immunofluorescence was employed to evaluate the positive cells of ionized calcium binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP). Furthermore, interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) were analyzed using an ELISA assay. RESULTS: We found that CUMS induced depression-like behaviors, such as reduced sucrose preference ratio, decreased locomotor and exploratory activity, decreased the time in open arms and prolonged immobility. Furthermore, versus the CON group, the expression of HMGB1, TLR4, MyD88, NF-κB, positive cells of Iba-1, IL-1ß and TNF-α were increased but positive cells of GFAP were decreased in CUMS group. However, the detrimental effects were ameliorated by treatment with CUMS+FLU and CUMS+DM. LIMITATIONS: A shortage of this study is that only CUMS model of depression were used, while other depression model were not included. CONCLUSIONS: Du-moxibustion alleviates depression-like behaviors in CUMS mice mainly by reducing neuroinflammation, which offers novel insights into the potential treatment of depression.


Subject(s)
Depression , Disease Models, Animal , HMGB1 Protein , Mice, Inbred C57BL , Moxibustion , Myeloid Differentiation Factor 88 , Neuroinflammatory Diseases , Stress, Psychological , Animals , Mice , Stress, Psychological/complications , Depression/drug therapy , Male , HMGB1 Protein/metabolism , Myeloid Differentiation Factor 88/metabolism , Neuroinflammatory Diseases/drug therapy , Toll-Like Receptor 4/metabolism , Behavior, Animal/drug effects , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism
4.
Commun Biol ; 7(1): 562, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734709

ABSTRACT

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Subject(s)
Cognitive Dysfunction , Exosomes , HMGB1 Protein , Mesenchymal Stem Cells , MicroRNAs , Sepsis-Associated Encephalopathy , MicroRNAs/genetics , MicroRNAs/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/genetics , Mice , Exosomes/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Male , Mesenchymal Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Sepsis/genetics , Sepsis/metabolism , Sepsis/complications , Disease Models, Animal
5.
J Am Chem Soc ; 146(19): 13126-13132, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696488

ABSTRACT

Cisplatin, a cornerstone in cancer chemotherapy, is known for its DNA-binding capacity and forms lesions that lead to cancer cell death. However, the repair of these lesions compromises cisplatin's effectiveness. This study investigates how phosphorylation of HMGB1, a nuclear protein, modifies its binding to cisplatin-modified DNA (CP-DNA) and thus protects it from repair. Despite numerous methods for detecting protein-DNA interactions, quantitative approaches for understanding their molecular mechanism remain limited. Here, we applied click chemistry-based single-molecule force spectroscopy, achieving high-precision quantification of the interaction between phosphorylated HMGB1 and CP-DNA. This method utilizes a synergy of click chemistry and enzymatic ligation for precise DNA-protein immobilization and interaction in the system. Our results revealed that HMGB1 binds to CP-DNA with a significantly high rupture force of ∼130 pN, stronger than most natural DNA-protein interactions and varying across different DNA sequences. Moreover, Ser14 is identified as the key phosphorylation site, enhancing the interaction's kinetic stability by 35-fold. This increase in stability is attributed to additional hydrogen bonding suggested by molecular dynamics (MD) simulations. Our findings not only reveal the important role of phosphorylated HMGB1 in potentially improving cisplatin's therapeutic efficacy but also provide a precise method for quantifying protein-DNA interactions.


Subject(s)
Cisplatin , Click Chemistry , DNA , HMGB1 Protein , Molecular Dynamics Simulation , HMGB1 Protein/metabolism , HMGB1 Protein/chemistry , Cisplatin/chemistry , Cisplatin/pharmacology , Cisplatin/metabolism , Phosphorylation , DNA/chemistry , DNA/metabolism , Humans , Protein Binding , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
6.
J Neuroimmune Pharmacol ; 19(1): 21, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771510

ABSTRACT

The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1ß), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.


Subject(s)
Glycyrrhizic Acid , HMGB1 Protein , Rats, Sprague-Dawley , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Rats , Male , Phosphorylation/drug effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism
7.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189105, 2024 May.
Article in English | MEDLINE | ID: mdl-38701938

ABSTRACT

The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.


Subject(s)
Central Nervous System Neoplasms , Glioblastoma , HMGB1 Protein , Tumor Microenvironment , Humans , HMGB1 Protein/metabolism , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/immunology , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/drug therapy , Animals , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Signal Transduction , Cell Proliferation
8.
Rev Int Androl ; 22(1): 1-7, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38735871

ABSTRACT

It was aimed to evaluate whether gallic acid (GA) have a beneficial effect in the testicular ischemia/reperfusion injury (IRI) model in rats for the first time. Testicular malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, high mobility group box 1 protein, nuclear factor kappa B, tumor necrosis factoralpha, interleukin-6, myeloperoxidase, 78-kDa glucose-regulated protein, activating transcription factor 6, CCAAT-enhancer-binding protein homologous protein and caspase-3 levels were determined using colorimetric methods. The oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis levels increased statistically significantly in the IRI group compared with the sham operated group (p < 0.05). GA application improved these damage significantly (p < 0.05). Moreover, it was found that the results of histological examinations supported the biochemical results to a statistically significant extent. Our findings suggested that GA may be evaluated as a protective agent against testicular IRI.


Subject(s)
Endoplasmic Reticulum Stress , Gallic Acid , HMGB1 Protein , NF-kappa B , Oxidative Stress , Reperfusion Injury , Spermatic Cord Torsion , Testis , Male , Animals , Gallic Acid/pharmacology , Gallic Acid/administration & dosage , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Apoptosis/drug effects , Rats, Sprague-Dawley
9.
Rev Int Androl ; 22(1): 44-52, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38735877

ABSTRACT

Whether chronic inflammation in the genital tract induced by obesity shares in spermatogenic dysfunction is not clearly known. We aimed to study the effect of high fat diet (HFD) on spermatogenesis, seminal oxidative stress (malondialdehyde (MDA)) and inflammatory markers (high mobility group box 1 (HMGB1), nucleotide-binding oligomerization domain, leucine rich repeat and pyrin-3 domain containing (NLRP3)) in the rat testes and the role of zinc on testicular dysfunction and chronic inflammation in high fat diet (HFD) fed rat testes. This parallel group comparative experimental study included 36 male wistar rats divided into 3 groups: group A (fed on normal control diet); group B (fed on high fat diet (HFD) only); and group C (fed on HFD with zinc supplementation 3.2 mg/kg/day orally). At the end of the 12th week, sperm count, viability and motility were assessed by computer-assisted seemen analysis (CASA), seminal malondialdehyde measured by calorimetry and histopathological examination of testicular sections was done. Immunohistochemical staining was done for HMGB1 and NLRP3 evaluation. Sperm count was lowest in group B. Groups A and C showed statistically significant higher mean sperm vitality, total and progressive motility scores (p < 0.001), while no difference was found between the groups A and C (p > 0.05). Seminal malondialdehyde level was significantly highest in group B. Tubular diameter, epithelial height and Johnsen score were significantly lowest in group B. Significantly higher HMGB1 and NLRP3 levels were demonstrated in group B (p < 0.001). Obesity is associated with testicular dysfunction, testicular oxidative stress and increased testicular HMGB1 and NLRP3. We suggest a beneficial effect of zinc on testicular function in HFD-rats.


Subject(s)
Diet, High-Fat , HMGB1 Protein , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Rats, Wistar , Spermatogenesis , Testis , Zinc , Animals , Male , HMGB1 Protein/metabolism , Oxidative Stress/drug effects , Diet, High-Fat/adverse effects , Rats , Spermatogenesis/drug effects , Zinc/administration & dosage , Testis/drug effects , Testis/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sperm Count , Sperm Motility/drug effects , Malondialdehyde/metabolism , Malondialdehyde/analysis , Inflammation/etiology , Inflammation/metabolism , Spermatozoa/drug effects , Obesity/metabolism
10.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710550

ABSTRACT

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


Subject(s)
HMGB1 Protein , NF-kappa B , Non-alcoholic Fatty Liver Disease , Pectins , Rosa , Signal Transduction , Toll-Like Receptor 4 , Animals , Rosa/chemistry , Toll-Like Receptor 4/metabolism , HMGB1 Protein/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/drug effects , Mice , Pectins/pharmacology , Pectins/chemistry , Pectins/isolation & purification , Male , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Oxidative Stress/drug effects
11.
Int Immunopharmacol ; 134: 112272, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38761780

ABSTRACT

BACKGROUND: A subset of neutrophils isolated from the peripheral blood mononuclear cells (PBMC) layer has recently been described in cancer patients. METHODS: Double-gradient centrifugation was used to separate the neutrophil subsets. Western blotting and immunohistochemical assays were performed to assess CCDC25 expression levels. RESULTS: In this study, we found that low-density neutrophils (LDNs) were more highly enriched in metastatic hepatocellular carcinoma (HCC) patients than in non-metastatic HCC patients. We then showed a CD61+ LDNs subset, which displayed distinct functions and gene expression, when compared with high-density neutrophils (HDNs) and CD61- LDNs. Transcriptomic analysis revealed that the CD61+ LDNs were predominantly enhanced in the transcription of glycolysis and angiogenesis associated gene, HMGB1 associated gene and granulation protein gene. These CD61+ LDNs displayed a prominent ability to trigger metastasis, compared with HDNs and CD61- LDNs. Specifically, CD61+ LDN-derived HMGB1 protein increased the invasion of HCC cells by upregulating CCDC25. Mechanistically, the CD61+ LDN-derived HMGB1 protein enhanced the invasiveness of HCC cells and triggered their metastatic potential, which was mediated by TLR9-NF-κB-CCDC25 signaling. Blocking this signaling pathway reversed the invasion of the CD61+ LDN-induced HCC cells. In vivo, we consistently showed that CD61+ LDN-derived HMGB1 enhances HCC metastasis to the lungs. CONCLUSIONS: Overall, our findings showed that a subset of CD61+ LDNs has pro-metastatic effects on HCC, and may be used to target HCC in the clinical setting.


Subject(s)
Carcinoma, Hepatocellular , HMGB1 Protein , Liver Neoplasms , Neutrophils , Up-Regulation , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Neutrophils/immunology , Neutrophils/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Cell Line, Tumor , Male , Gene Expression Regulation, Neoplastic , Mice , Neoplasm Metastasis , Female , Integrin beta3
12.
Turk J Med Sci ; 54(1): 33-41, 2024.
Article in English | MEDLINE | ID: mdl-38812640

ABSTRACT

Background/aim: Medication overuse is common among chronic migraine patients and nonsteroidal antiinflammatory drugs (NSAIDs) are the most frequently overused drugs. The pathophysiological mechanisms underlying medication overuse headache (MOH) are not completely understood. Intestinal hyperpermeability and leaky gut are reported in patients using NSAIDs. The aim of the study is to investigate the role of leaky gut and inflammation in an MOH model MOH model in male rats. Methods: The study was conducted in male Sprague Dawley rats. There were two experimental groups. The first group was the chronic NSAID group in which the rats received mefenamic acid (n = 8) for four weeks intraperitoneally (ip) and the second group was the vehicle group (n = 8) that received 5% dimethyl sulfoxide+sesame oil (ip) for 4 weeks. We assessed spontaneous pain-like behavior, periorbital mechanical withdrawal thresholds, and anxiety-like behavior using an elevated plus maze test. After behavioral testing, serum levels of occludin and lipopolysaccharide-binding protein (LBP) and brain levels of IL-17, IL-6, and high mobility group box 1 protein (HMGB1) were evaluated with ELISA.Results: Serum LBP and occludin levels and brain IL-17 and HMGB1 levels were significantly elevated in the chronic NSAID group compared to its vehicle (p = 0.006, p = 0.016, p = 0.016 and p = 0.016 respectively) while brain IL-6 levels were comparable (p = 0.67) between the groups. The chronic NSAID group showed pain-like and anxiety-like behavior in behavioral tests. Brain IL-17 level was positively correlated with number of head shakes (r = 0.64, p = 0.045), brain IL-6 level was negatively correlated with periorbital mechanical withdrawal thresholds (r = -0.71, p = 0.049), and serum occludin level was positively correlated with grooming duration (r = 0.73, p = 0.032) in chronic NSAID group. Conclusion: Elevated serum occludin and LBP levels and brain IL-17 and HMGB1 levels indicate a possible role of leaky gut and inflammation in an MOH model in male rats. Additionally, a significant correlation between pain behavior and markers of inflammation and intestinal hyperpermeability, supports the role of inflammation and leaky gut in MOH pathophysiology.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Biomarkers , Carrier Proteins , Disease Models, Animal , Headache Disorders, Secondary , Interleukin-17 , Rats, Sprague-Dawley , Animals , Male , Rats , Biomarkers/blood , Headache Disorders, Secondary/blood , Interleukin-17/blood , Interleukin-17/metabolism , Carrier Proteins/blood , Carrier Proteins/metabolism , Occludin/metabolism , Membrane Glycoproteins/blood , Membrane Glycoproteins/metabolism , HMGB1 Protein/blood , HMGB1 Protein/metabolism , Interleukin-6/blood , Inflammation/blood , Inflammation/metabolism , Brain/metabolism , Brain/drug effects , Acute-Phase Proteins
13.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791199

ABSTRACT

Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy.


Subject(s)
Extraembryonic Membranes , HMGB1 Protein , Inflammation , Humans , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Female , Pregnancy , Inflammation/metabolism , Inflammation/pathology , Extraembryonic Membranes/metabolism , Cell-Free Nucleic Acids/metabolism , Male , Amnion/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Cells, Cultured , Alarmins/metabolism
14.
Aging (Albany NY) ; 16(9): 7961-7978, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38709282

ABSTRACT

BACKGROUND: This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.


Subject(s)
Butyrates , HMGB1 Protein , Myeloid Differentiation Factor 88 , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/drug effects , Mice , Signal Transduction/drug effects , Butyrates/pharmacology , Male , Molecular Docking Simulation , Intestines/drug effects , Intestines/pathology , Disease Models, Animal , Mice, Inbred C57BL , Protein Interaction Maps
15.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731953

ABSTRACT

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Subject(s)
Apoptosis , Berberine , Cachexia , HMGB1 Protein , Animals , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Berberine/pharmacology , Rats , Cachexia/metabolism , Cachexia/drug therapy , Cachexia/etiology , Cachexia/pathology , Apoptosis/drug effects , Cell Line, Tumor , Autophagy/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Male , Disease Models, Animal , Signal Transduction/drug effects , Oxidative Stress/drug effects , Toll-Like Receptor 4/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor for Advanced Glycation End Products/metabolism , Rats, Sprague-Dawley , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism
16.
Front Immunol ; 15: 1358800, 2024.
Article in English | MEDLINE | ID: mdl-38803493

ABSTRACT

During inflammation and tissue regeneration, the alarmin High Mobility Group Box 1 (HMGB1), in its reduced isoform, enhances the activity of the chemokine CXCL12, forming a heterocomplex that acts via the chemokine receptor CXCR4. Despite the established roles of both HMGB1 and CXCL12 in tumor progression and metastatic spread to distal sites, the role of the CXCL12/HMGB1 heterocomplex in cancer has never been investigated. By employing a newly established mass spectrometry protocol that allows an unambiguous distinction between reduced (red-HMGB1) and oxidized (ox-HMGB1) HMGB1 isoforms in cell lysates, we demonstrate that human epithelial cells derived from breast (MCF-7 and MDA-MB-231) and prostate (PC-3) cancer predominantly express red-HMGB1, while primary CD3+ T lymphocytes from peripheral blood express both HMGB1 isoforms. All these cancer cells release HMGB1 in the extracellular microenvironment together with varying concentrations of thioredoxin and thioredoxin reductase. The CXCL12/HMGB1 heterocomplex enhances, via CXCR4, the directional migration and invasiveness of cancer cells characterized by high metastatic potential that possess a fully active thioredoxin system, contributing to maintain red-HMGB1. On the contrary, cancer cells with low metastatic potential, lack thioredoxin reductase, promptly uptake CXCL12 and fail to respond to the heterocomplex. Our study demonstrates that the responsiveness of cancer cells to the CXCL12/HMGB1 heterocomplex, resulting in enhanced cell migration and invasiveness, depends on the maintenance of HMGB1 in its reduced isoform, and suggests disruption of the heterocomplex as a potential therapeutic target to inhibit invasion and metastatic spread in cancer therapies.


Subject(s)
Cell Movement , Chemokine CXCL12 , HMGB1 Protein , Protein Isoforms , Receptors, CXCR4 , Humans , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Chemokine CXCL12/metabolism , Cell Line, Tumor , Female , Tumor Microenvironment , Male , Neoplasms/metabolism , Neoplasms/pathology
17.
BMC Genomics ; 25(1): 345, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580917

ABSTRACT

BACKGROUND: High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS: Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION: Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.


Subject(s)
HMGB1 Protein , RNA Methylation , Humans , HeLa Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Methylation , RNA, Ribosomal, 28S/metabolism , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA Methylation/genetics
18.
J Neuroinflammation ; 21(1): 87, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589917

ABSTRACT

BACKGROUND: Microglial isolation and culturing methods continue to be explored to maximize cellular yield, purity, responsiveness to stimulation and similarity to in vivo microglia. This study aims to evaluate five different microglia isolation methods-three variants of microglia isolation from neonatal mice and two variants of microglia isolation from adult mice-on transcriptional profile and response to HMGB1. METHODS: Microglia from neonatal mice, age 0-3 days (P0-P3) were isolated from mixed glial cultures (MGC). We included three variations of this protocol that differed by use of GM-CSF in culture (No GM-CSF or 500 pg/mL GM-CSF), and days of culture in MGC before microglial separation (10 or 21). Protocols for studying microglia from adult mice age 6-8 weeks included isolation by adherence properties followed by 7 days of culture with 100 ng/mL GM-CSF and 100 ng/mL M-CSF (Vijaya et al. in Front Cell Neurosci 17:1082180, 2023), or acute isolation using CD11b beads (Bordt et al. in STAR Protoc 1:100035, 2020. https://doi.org/10.1016/j.xpro.2020.100035 ). Purity, yield, and RNA quality of the isolated microglia were assessed by flow cytometry, hemocytometer counting, and Bioanalyzer, respectively. Microglial responsiveness to an inflammatory stimulus, HMGB1, was evaluated by measuring TNFα, IL1ß, and IFNß concentration in supernatant by ELISA and assessing gene expression patterns using bulk mRNA sequencing. RESULTS: All five methods demonstrated greater than 90% purity. Microglia from all cultures increased transcription and secretion of TNFα, IL1ß, and IFNß in response to HMGB1. RNA sequencing showed a larger number of differentially expressed genes in response to HMGB1 treatment in microglia cultured from neonates than from adult mice, with sparse changes among the three MGC culturing conditions. Additionally, cultured microglia derived from adult and microglia derived from MGCs from neonates display transcriptional signatures corresponding to an earlier developmental stage. CONCLUSION: These findings suggest that while all methods provided high purity, the choice of protocol may significantly influence yield, RNA quality, baseline transcriptional profile and response to stimulation. This comparative study provides valuable insights to inform the choice of microglial isolation and culture method.


Subject(s)
HMGB1 Protein , Microglia , Animals , Mice , Microglia/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor , HMGB1 Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cells, Cultured , RNA/metabolism
19.
J Exp Clin Cancer Res ; 43(1): 105, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576043

ABSTRACT

BACKGROUND: Lactate has emerged as a critical regulator within the tumor microenvironment, including glioma. However, the precise mechanisms underlying how lactate influences the communication between tumor cells and tumor-associated macrophages (TAMs), the most abundant immune cells in glioma, remain poorly understood. This study aims to elucidate the impact of tumor-derived lactate on TAMs and investigate the regulatory pathways governing TAM-mediated tumor-promotion in glioma. METHODS: Bioinformatic analysis was conducted using datasets from TCGA and CGGA. Single-cell RNA-seq datasets were analyzed by using UCSC Cell Browser and Single Cell Portal. Cell proliferation and mobility were evaluated through CCK8, colony formation, wound healing, and transwell assays. Western blot and immunofluorescence staining were applied to assess protein expression and cell distribution. RT-PCR and ELISA were employed to identify the potential secretory factors. Mechanistic pathways were explored by western blotting, ELISA, shRNA knockdown, and specific inhibitors and activators. The effects of pathway blockades were further assessed using subcutaneous and intracranial xenograft tumor models in vivo. RESULTS: Elevated expressions of LDHA and MCT1 were observed in glioma and exhibited a positive correlation with M2-type TAM infiltration. Lactate derived from glioma cells induced TAMs towards M2-subtype polarization, subsequently promoting glioma cells proliferation, migration, invasion, and mesenchymal transition. GPR65, highly expressed on TAMs, sensed lactate-stimulation in the TME, fueling glioma cells malignant progression through the secretion of HMGB1. GPR65 on TAMs triggered HMGB1 release in response to lactate stimulation via the cAMP/PKA/CREB signaling pathway. Disrupting this feedback loop by GPR65-knockdown or HMGB1 inhibition mitigated glioma progression in vivo. CONCLUSION: These findings unveil the intricate interplay between TAMs and tumor cells mediated by lactate and HMGB1, driving tumor progression in glioma. GPR65, selectively highly expressed on TAMs in glioma, sensed lactate stimulation and fostered HMGB1 secretion via the cAMP/PKA/CREB signaling pathway. Blocking this feedback loop presents a promising therapeutic strategy for GBM.


Subject(s)
Brain Neoplasms , Glioma , HMGB1 Protein , Humans , Lactic Acid/metabolism , HMGB1 Protein/metabolism , Cell Line, Tumor , Macrophages/metabolism , Glioma/pathology , Brain Neoplasms/pathology , Tumor Microenvironment
20.
J Transl Med ; 22(1): 352, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622667

ABSTRACT

BACKGROUND: Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS: HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS: QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS: QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , HMGB1 Protein , Methylamines , Mice , Animals , Proprotein Convertase 9 , HMGB1 Protein/metabolism , Quinic Acid , Sterol Regulatory Element Binding Protein 1/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Lipid Metabolism , Mice, Knockout, ApoE , Atherosclerosis/pathology , Inflammation , Cholesterol , Apolipoproteins E/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...