Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
1.
Dis Markers ; 2022: 4487435, 2022.
Article in English | MEDLINE | ID: mdl-35280439

ABSTRACT

Background: Receptor for advanced glycation end products (RAGE) is implicated in tumor biology. Released high mobility group box protein 1 (HMGB1) ligand binding to RAGE receptor in tumor cells promotes tumor progression. The mechanisms of HMGB1-RAGE signaling in M2 macrophages involved in lymphangiogenesis in laryngeal carcinoma remain poorly understood. Here, we assessed the effect of HMGB1-RAGE signaling on M2 macrophages in lymphangiogenesis. Methods: HMGB1, CD163, and D2-40 in laryngeal squamous cell carcinoma (LSCC, n = 123), laryngeal precursor lesions (LPLs, n = 102), and vocal polyp (VP, n = 55) were analyzed by immunohistochemistry. THP-1 cell-expressed RAGE gene was knocked down and then polarized to M0 macrophages and M2 macrophages. IL-23, TNF-α, TGF-ß, and IL-10 were measured by ELISA; IL-1ß, IL-12, IL-10, and CCL-13 were evaluated by RT-qPCR, and CD206, CD163, and RAGE were evaluated by western blot to evaluate whether classical M2 macrophages were obtained. Conditioned media from RAGE+/- M0 macrophages and RAGE+/- M2 macrophages incubated in the presence or absence of HMGB1, anti-Toll-like receptor (TLR)2, anti-TLR4 antibodies, and anti-VEGF-C antibodies were collected separately for human dermal lymphatic endothelial cells (HDLEC) for proliferation, migration, lymphangiogenesis assay, and VEGF-C concentration analysis. Results: HMGB1 and M2 macrophage densities were increased in LSCC (P < 0.01). HMGB1 and M2 macrophage densities were significantly correlated with lymphatic vessel density (LVD) in LSCC (P < 0.01). The HMGB1 overexpression and higher M2 macrophage density were involved in lymph node metastasis (P < 0.01) and poor prognosis (P < 0.05). In vitro, conditioned medium from HMGB1-stimulated RAGE+ M2 macrophages activated lymphangiogenesis by upregulating the VEGF compared to controls (P < 0.05). On the contrary, RAGE knockdown obviously decreased the corresponding effects of HMGB1-preconditioned M2 macrophages upon HDLEC (P < 0.05). HMGB1-TLR pathway does not significantly increase HDLEC proliferation, migration, and lymphangiogenesis on M2 macrophages. Conclusions: HMGB1 promotes lymphangiogenesis by activation of RAGE on M2 macrophages. Targeting RAGE may provide an effective therapeutic strategy against M2 macrophages in LSCC patients with lymph node metastasis.


Subject(s)
Carcinoma, Squamous Cell/etiology , HMGB1 Protein/physiology , Laryngeal Neoplasms/etiology , Lymphangiogenesis , Macrophages/physiology , Receptor for Advanced Glycation End Products/physiology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
2.
J Mol Cell Cardiol ; 164: 69-82, 2022 03.
Article in English | MEDLINE | ID: mdl-34838588

ABSTRACT

The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/pathology , SARS-CoV-2 , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Clinical Trials as Topic , Endothelial Cells/pathology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , HMGB1 Protein/physiology , Humans , Macaca mulatta , Mice , Neuropilin-1/physiology , Oxidative Stress , Reactive Oxygen Species , Receptors, Virus/physiology , Scavenger Receptors, Class B/physiology , Severity of Illness Index , Signal Transduction , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/physiopathology , Thrombophilia/etiology , Thrombophilia/physiopathology , Vascular Endothelial Growth Factor A/physiology , Vasculitis/etiology , Vasculitis/immunology , Vasculitis/physiopathology , Young Adult
3.
Front Immunol ; 12: 774807, 2021.
Article in English | MEDLINE | ID: mdl-34925345

ABSTRACT

Radiation-induced lung injury (RILI) is a form of radiation damage to normal lung tissue caused by radiotherapy (RT) for thoracic cancers, which is most commonly comprised of radiation pneumonitis (RP) and radiation pulmonary fibrosis (RPF). Moreover, with the widespread utilization of immunotherapies such as immune checkpoint inhibitors as first- and second-line treatments for various cancers, the incidence of immunotherapy-related lung injury (IRLI), a severe immune-related adverse event (irAE), has rapidly increased. To date, we know relatively little about the underlying mechanisms and signaling pathways of these complications. A better understanding of the signaling pathways may facilitate the prevention of lung injury and exploration of potential therapeutic targets. Therefore, this review provides an overview of the signaling pathways of RILI and IRLI and focuses on their crosstalk in diverse signaling pathways as well as on possible mechanisms of adverse events resulting from combined radiotherapy and immunotherapy. Furthermore, this review proposes potential therapeutic targets and avenues of further research based on signaling pathways. Many new studies on pyroptosis have renewed appreciation for the value and importance of pyroptosis in lung injury. Therefore, the authors posit that pyroptosis may be the common downstream pathway of RILI and IRLI; discussion is also conducted regarding further perspectives on pyroptosis as a crucial signaling pathway in lung injury treatment.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Lung Injury/etiology , Pulmonary Fibrosis/etiology , Radiation Pneumonitis/etiology , HMGB1 Protein/physiology , Humans , NF-E2-Related Factor 2/physiology , Pyroptosis , Signal Transduction/physiology , Transforming Growth Factor beta/physiology
4.
Dis Markers ; 2021: 4933194, 2021.
Article in English | MEDLINE | ID: mdl-34970357

ABSTRACT

Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3'UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.


Subject(s)
Cell Hypoxia/physiology , Endothelial Cells/metabolism , HMGB1 Protein/physiology , Inflammation/etiology , MicroRNAs/physiology , Acidosis , Animals , Cells, Cultured , Mice
5.
Front Immunol ; 12: 697071, 2021.
Article in English | MEDLINE | ID: mdl-34745088

ABSTRACT

Background: High mobility group box 1 (HMGB1) causes microvascular endothelial cell barrier dysfunction during acute lung injury (ALI) in sepsis, but the mechanisms have not been well understood. We studied the roles of RAGE and Rho kinase 1 (ROCK1) in HMGB1-induced human pulmonary endothelial barrier disruption. Methods: In the present study, the recombinant human high mobility group box 1 (rhHMGB1) was used to stimulate human pulmonary microvascular endothelial cells (HPMECs). The endothelial cell (EC) barrier permeability was examined by detecting FITC-dextran flux. CCK-8 assay was used to detect cell viability under rhHMGB1 treatments. The expression of related molecules involved in RhoA/ROCK1 pathway, phosphorylation of myosin light chain (MLC), F-actin, VE-cadherin and ZO-1 of different treated groups were measured by pull-down assay, western blot and immunofluorescence. Furthermore, we studied the effects of Rho kinase inhibitor (Y-27632), ROCK1/2 siRNA, RAGE-specific blocker (FPS-ZM1) and RAGE siRNA on endothelial barrier properties to elucidate the related mechanisms. Results: In the present study, we demonstrated that rhHMGB1 induced EC barrier hyperpermeability in a dose-dependent and time-dependent manner by measuring FITC-dextran flux, a reflection of the loss of EC barrier integrity. Moreover, rhHMGB1 induced a dose-dependent and time-dependent increases in paracellular gap formation accompanied by the development of stress fiber rearrangement and disruption of VE-cadherin and ZO-1, a phenotypic change related to increased endothelial contractility and endothelial barrier permeability. Using inhibitors and siRNAs directed against RAGE and ROCK1/2, we systematically determined that RAGE mediated the rhHMGB1-induced stress fiber reorganization via RhoA/ROCK1 signaling activation and the subsequent MLC phosphorylation in ECs. Conclusion: HMGB1 is capable of disrupting the endothelial barrier integrity. This study demonstrates that HMGB1 activates RhoA/ROCK1 pathway via RAGE, which phosphorylates MLC inducing stress fiber formation at short time, and HMGB1/RAGE reduces AJ/TJ expression at long term independently of RhoA/ROCK1 signaling pathway.


Subject(s)
Capillary Permeability/physiology , Endothelial Cells/metabolism , HMGB1 Protein/physiology , Receptor for Advanced Glycation End Products/physiology , rho-Associated Kinases/physiology , Cells, Cultured , Humans , Myosin Light Chains/physiology , Signal Transduction/physiology
6.
Commun Biol ; 4(1): 1175, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635772

ABSTRACT

DNA damage is increased in Alzheimer's disease (AD), while the underlying mechanisms are unknown. Here, we employ comprehensive phosphoproteome analysis, and identify abnormal phosphorylation of 70 kDa subunit of Ku antigen (Ku70) at Ser77/78, which prevents Ku70-DNA interaction, in human AD postmortem brains. The abnormal phosphorylation inhibits accumulation of Ku70 to the foci of DNA double strand break (DSB), impairs DNA damage repair and eventually causes transcriptional repression-induced atypical cell death (TRIAD). Cells under TRIAD necrosis reveal senescence phenotypes. Extracellular high mobility group box 1 (HMGB1) protein, which is released from necrotic or hyper-activated neurons in AD, binds to toll-like receptor 4 (TLR4) of neighboring neurons, and activates protein kinase C alpha (PKCα) that executes Ku70 phosphorylation at Ser77/78. Administration of human monoclonal anti-HMGB1 antibody to post-symptomatic AD model mice decreases neuronal DSBs, suppresses secondary TRIAD necrosis of neurons, prevents escalation of neurodegeneration, and ameliorates cognitive symptoms. TRIAD shares multiple features with senescence. These results discover the HMGB1-Ku70 axis that accounts for the increase of neuronal DNA damage and secondary enhancement of TRIAD, the cell death phenotype of senescence, in AD.


Subject(s)
Alzheimer Disease/pathology , DNA Damage , DNA Repair , HMGB1 Protein/physiology , Ku Autoantigen/metabolism , Signal Transduction/genetics , Animals , HMGB1 Protein/genetics , Mice , Mice, Transgenic , Phosphorylation
7.
Mediators Inflamm ; 2021: 6259381, 2021.
Article in English | MEDLINE | ID: mdl-34675753

ABSTRACT

OBJECTIVE: To determine the role of sodium butyrate in intestinal inflammation via regulation of high-mobility group box-1 (HMGB1), we analyzed the potential mechanism in necrotizing enterocolitis (NEC) in a neonatal mouse model. METHODS: A NEC model was created with hypoxia and cold exposure and artificial overfeeding. C57BL/6 neonatal mice were randomized into three groups: the control, untreated NEC, and sodium butyrate (150 mM)-pretreated NEC groups. Pathological variations in ileocecal intestinal tissue were observed by HE staining and scored in a double-blind manner. The mRNA expression levels of HMGB1, Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), and inflammatory cytokines in intestinal tissues were determined by quantitative real-time PCR. The protein levels of HMGB1 and associated cytokines in intestinal tissues were evaluated using ELISA. The relative protein expression levels of TLR4 and NF-κB in intestinal tissues were quantified by western blot. RESULTS: Sodium butyrate administration improved the body weight and survival rate of NEC mice; relieved intestinal pathological injury; reduced the intestinal expression of HMGB1, TLR4, NF-κB, interleukin- (IL-) 1ß, IL-6, IL-8, and TNF-α; and increased the intestinal expression of IL-10 (P < 0.05). Treatment with butyrate decreased the proportion of opportunistic Clostridium_sensu_stricto_1 and Enterococcus and increased the proportion of beneficial Firmicutes and Lactobacillus in the NEC model. CONCLUSIONS: Sodium butyrate intervention relieves intestinal inflammation and partially corrects the disrupted intestinal flora in mice with NEC.


Subject(s)
Butyric Acid/therapeutic use , Enterocolitis, Necrotizing/drug therapy , Animals , Butyric Acid/pharmacology , Disease Models, Animal , Enterocolitis, Necrotizing/immunology , Enterocolitis, Necrotizing/pathology , Female , HMGB1 Protein/genetics , HMGB1 Protein/physiology , Intestines/microbiology , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/physiology , Random Allocation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/physiology
8.
Mediators Inflamm ; 2021: 5220226, 2021.
Article in English | MEDLINE | ID: mdl-34616232

ABSTRACT

OBJECTIVE: Acute kidney injury (AKI) usually occurs during sepsis. Inflammation factors, such as high-mobility group box 1 (HMGB1), are dramatically upregulated under septic conditions. In our current work, the functions of HMGB1 in AKI were explored. METHODS: An AKI model was induced by the lipopolysaccharide (LPS) challenge in C57 mice. Podocytes were challenged by LPS for different durations. Subsequently, podocytes transfected with HMGB1 siRNA were exposed to LPS for 24 h. The expressions of supernatant HMGB1 and cellular active caspase-3 were examined by Western blotting analysis. To explore the effect of HMGB1 on tubular epithelial cells (TECs), HK-2 cells were exposed to HMGB1 at various concentrations for 24 h. Epithelial-mesenchymal transition (EMT) of HK-2 cells was evaluated by Western blotting analysis. Mitochondrial division and apoptosis of HK-2 cells were assessed by MitoTracker Red and Western blotting analysis, respectively. RESULTS: Compared with the sham control group, the expression of HMGB1 was increased in the kidney of AKI mice. Moreover, the expression of supernatant HMGB1 was increased in LPS-challenged podocytes compared with the control group. Knockdown of HMGB1 attenuated LPS-induced podocyte injury. Besides, EMT in TECs was triggered by HMGB1. Mitochondrial damage and apoptosis of HK-2 cells exposed to HMGB1 were markedly elevated compared with the control group. CONCLUSIONS: Collectively, HMGB1 release in podocytes was induced by LPS, subsequently leading to exacerbated AKI.


Subject(s)
Acute Kidney Injury/etiology , HMGB1 Protein/physiology , Lipopolysaccharides/pharmacology , Podocytes/physiology , Animals , Apoptosis/drug effects , Cells, Cultured , Epithelial-Mesenchymal Transition , Male , Mice , Mice, Inbred C57BL
10.
Front Immunol ; 12: 705361, 2021.
Article in English | MEDLINE | ID: mdl-34489957

ABSTRACT

Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.


Subject(s)
Immunogenic Cell Death/radiation effects , Alarmins/physiology , Animals , Antigens, Neoplasm/immunology , Biomarkers , Combined Modality Therapy , Cytokines/physiology , Dose-Response Relationship, Radiation , Ferroptosis/radiation effects , HMGB1 Protein/physiology , Humans , Hyperthermia, Induced , Mice , Morpholines/therapeutic use , Necroptosis/radiation effects , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/radiotherapy , Piperazines/therapeutic use , Pyrroles/therapeutic use , Radiation Tolerance , Radiation, Ionizing
11.
Front Immunol ; 12: 675731, 2021.
Article in English | MEDLINE | ID: mdl-34234778

ABSTRACT

High mobility group box 1 (HMGB1) is a non-histone protein which is predominantly localised in the cell nucleus. However, stressed, dying, injured or dead cells can release this protein into the extracellular matrix passively. In addition, HMGB1 release was observed in cancer and immune cells where this process can be triggered by various endogenous as well as exogenous stimuli. Importantly, released HMGB1 acts as a so-called "danger signal" and could impact on the ability of cancer cells to escape host immune surveillance. However, the molecular mechanisms underlying the functional role of HMGB1 in determining the capability of human cancer cells to evade immune attack remain unclear. Here we report that the involvement of HMGB1 in anti-cancer immune evasion is determined by Toll-like receptor (TLR) 4, which recognises HMGB1 as a ligand. We found that HGMB1 induces TLR4-mediated production of transforming growth factor beta type 1 (TGF-ß), displaying autocrine/paracrine activities. TGF-ß induces production of the immunosuppressive protein galectin-9 in cancer cells. In TLR4-positive cancer cells, HMGB1 triggers the formation of an autocrine loop which induces galectin-9 expression. In malignant cells lacking TLR4, the same effect could be triggered by HMGB1 indirectly through TLR4-expressing myeloid cells present in the tumour microenvironment (e. g. tumour-associated macrophages).


Subject(s)
Galectins/biosynthesis , HMGB1 Protein/physiology , Neoplasms/immunology , Toll-Like Receptor 4/physiology , Humans , Immune Tolerance , THP-1 Cells , Transforming Growth Factor beta1/physiology
12.
Front Immunol ; 12: 675822, 2021.
Article in English | MEDLINE | ID: mdl-34122437

ABSTRACT

We have reported that tumor-derived autophagosomes (DRibbles) were efficient carriers of tumor antigens and DRibbles antigens could be present by DRibbles-activated B cells to stimulate effect and naïve T cells in mice. However, the effect of DRibbles on human B cells remains unclear. Herein, we found that DRibbles can also efficiently induce proliferation and activation of human B cells and lead to the production of chemokines, cytokines and hematopoietic growth factors. We further demonstrated human B cells can effectively phagocytose DRibbles directly and cross-present DRibbles antigens to stimulate antigen-specific memory T cells. Furthermore, we found that membrane-bound high-mobility group B1 (HMGB1) on DRibbles was crucial for inducing human B cells activation. Therefore, these findings provide further evidence to promote the clinical application of B-DRibbles vaccines.


Subject(s)
Antigens, Neoplasm/immunology , Autophagosomes/physiology , B-Lymphocytes/immunology , Immunologic Memory , Lymphocyte Activation , T-Lymphocytes/immunology , Cell Line, Tumor , HMGB1 Protein/physiology , Humans
13.
Int J Radiat Oncol Biol Phys ; 111(2): 491-501, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34044094

ABSTRACT

PURPOSE: Radiation therapy, which is vital for the treatment of primary liver cancer, comes with unavoidable liver injury, which limits its implementation. N6-methyladenosine (m6A) methylation is involved in many molecular functions. However, its role in radiation-induced liver diseases (RILD) remains unknown. Herein, we investigate the role of m6A methylation in RILD. METHODS AND MATERIALS: Methylated RNA-immunoprecipitation sequencing and RNA transcriptome sequencing were used to reveal the methylation pattern of human hepatic stellate cells (HSCs) exposed to irradiation. C3H/HeN mice and stimulator of interferon genes (STING)-deficient mice underwent x-ray irradiation of 24 Gy in 3 fractions. The m6A methylation of the high-mobility group box 1 (HMGB1) transcript was validated using methylated RNA immunoprecipitation, RNA immunoprecipitation, luciferase assays, and a messenger RNA decay assay. RESULTS: Human hepatic stellate cells showed significant differences in methylation patterns after 8 Gy of x-ray irradiation. Irradiation recruited AlkB homolog 5 (ALKBH5) to demethylate m6A residues in the 3' untranslated region of HMGB1, which resulted in the activation of STING-interferon regulatory factor 3 signaling. Changes in the transcription of the 3' untranslated region of HMGB1 occurred after the knockdown of ALKBH5, which were eliminated after m6A residue mutation. Strikingly, ALKBH5 deficiency or HMGB1 silencing both attenuated type I interferon production and decreased hepatocyte apoptosis. In vivo depletion of ALKBH5 abolished the upregulation of HMGB1-mediated STING signaling and decreased liver inflammation, which was consistent with STING-/- mice treated with irradiation. Notably, YTHDF2 (m6A reader protein) directly bound to HMGB1 m6A-modified sites and promoted its degradation. CONCLUSIONS: ALKBH5-dependent HMGB1 expression mediates STING-interferon regulatory factor 3 innate immune response in RILD.


Subject(s)
AlkB Homolog 5, RNA Demethylase/physiology , HMGB1 Protein/physiology , Hepatic Stellate Cells/radiation effects , Immunity, Innate/radiation effects , Liver Diseases/etiology , Liver Neoplasms/radiotherapy , Membrane Proteins/physiology , Animals , HMGB1 Protein/genetics , Humans , Interferon Type I/biosynthesis , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , RNA-Binding Proteins/physiology , Signal Transduction/physiology
14.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807275

ABSTRACT

High mobility group box 1 (HMGB1) has been demonstrated to promote the migration and invasion of non-small cell lung cancer (NSCLC). However, the mechanism of action of HMGB1 in regulating tumor mobility remains unclear. Therefore, we aimed to investigate whether HMGB1 affects mitochondria distribution and regulates dynamin-related protein 1 (DRP1)-mediated lamellipodia/filopodia formation to promote NSCLC migration. The regulation of mitochondrial membrane tension, dynamics, polarization, fission process, and cytoskeletal rearrangements in lung cancer cells by HMGB1 was analyzed using confocal microscopy. The HMGB1-mediated regulation of DRP1 phosphorylation and colocalization was determined using immunostaining and co-immunoprecipitation assays. The tumorigenic potential of HMGB1 was assessed in vivo and further confirmed using NSCLC patient samples. Our results showed that HMGB1 increased the polarity and mobility of cells (mainly by regulating the cytoskeletal system actin and microtubule dynamics and distribution), promoted the formation of lamellipodia/filopodia, and enhanced the expression and phosphorylation of DRP1 in both the nucleus and cytoplasm. In addition, HMGB1 and DRP1 expressions were positively correlated and exhibited poor prognosis and survival in patients with lung cancer. Collectively, HMGB1 plays a key role in the formation of lamellipodia and filopodia by regulating cytoskeleton dynamics and DRP1 expression to promote lung cancer migration.


Subject(s)
Dynamins/metabolism , HMGB1 Protein/metabolism , Lung Neoplasms/metabolism , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement/genetics , Dynamins/physiology , Female , Gene Expression Regulation, Neoplastic/genetics , HMGB Proteins/metabolism , HMGB1 Protein/physiology , Humans , Lung Neoplasms/genetics , Male , Mice , Mice, SCID , Microscopy, Confocal/methods , Mitochondria/genetics , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Phosphorylation , Pseudopodia/metabolism
15.
Mediators Inflamm ; 2021: 5597118, 2021.
Article in English | MEDLINE | ID: mdl-33859538

ABSTRACT

Obesity is a well-known public health issue around the world. Sepsis is a lethal clinical syndrome that causes multiorgan failure. Obesity may aggravate inflammation in septic patients. Glutamine (GLN) is a nutrient with immune regulatory and anti-inflammatory properties. Since sepsis is a common contributing factor for acute kidney injury (AKI), this study investigated the effects of GLN administration on sepsis-induced inflammation and AKI in obese mice. A high-fat diet which consists of 60% of calories from fat was provided for 10 weeks to induce obesity in the mice. Then, the obese mice were subdivided into sepsis with saline (SS) or GLN (SG) groups. Cecal ligation and puncture (CLP) was performed to produce sepsis. The SS group was intravenously injected with saline while the SG group was administered GLN one or two doses after CLP. Obese mice with sepsis were sacrificed at 12, 24, or 48 h post-CLP. Results revealed that sepsis resulted in upregulated high-mobility group box protein-1 pathway-associated gene expression in obese mice. Also, expressions of macrophage/neutrophil infiltration markers and inflammatory cytokines in kidneys were elevated. Obese mice treated with GLN after sepsis reversed the depletion of plasma GLN, reduced production of lipid peroxides, and downregulated macrophage/neutrophil infiltration and the inflammatory-associated pathway whereas tight junction gene expression increased in the kidneys. These findings suggest that intravenously administered GLN to obese mice after sepsis alleviated inflammation and attenuated AKI. This model may have clinical application to obese patients with a risk for infection in abdominal surgery.


Subject(s)
Acute Kidney Injury/drug therapy , Glutamine/therapeutic use , Inflammation/drug therapy , Obesity/complications , Sepsis/complications , Acute Kidney Injury/metabolism , Amino Acids/blood , Animals , Diet, High-Fat , HMGB1 Protein/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese
16.
Gene ; 785: 145618, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33775849

ABSTRACT

Fruiting body formation in Agaricomycetes represents the most complex and unclear process in the fungi. Mating type pathways (matA and matB) and transcription factors are important regulators in the process. Here, we report a new High-mobility-group (HMG) box domain protein FvHmg1 that acts as a negative transcription regulator in fruiting body development in Winter Mushroom Flammulina velutipes. However, the expression of Fvhmg1 in dikaryon and primordial stages was significantly lower than that of monokaryon. The Fvhmg1-RNAi mutants had a better ability of fruiting than wild type strain. Overall expression of Fvhmg1 was controlled under compatible matA and matB genes where compatible matA genes could increase its expression level, while compatible matB genes had the opposite effect. It means when two monokaryons with compatible matA and matB genes were crossed, the negatively transcription factor FvHmg1 was inhibited, and normal fully fruiting body could formation and develop. The relationship between FvHmg1 and mating type pathway would advance to understand of sexual reproduction and fruiting body development in edible mushrooms.


Subject(s)
Flammulina/genetics , HMGB1 Protein/physiology , Transcription Factors/physiology , Flammulina/growth & development , Fruiting Bodies, Fungal/genetics , Gene Expression Regulation, Fungal , Genes, Mating Type, Fungal , Phylogeny
17.
Biosci Rep ; 41(2)2021 02 26.
Article in English | MEDLINE | ID: mdl-33565572

ABSTRACT

Ferroptosis, a novel type of programmed cell death, is involved in inflammation and oxidation of various human diseases, including diabetic kidney disease. The present study explored the role of high-mobility group box-1 (HMGB1) on the regulation of ferroptosis in mesangial cells in response to high glucose. Compared with healthy control, levels of serum ferritin, lactate dehydrogenase (LDH), reactive oxygen species (ROS), malonaldehyde (MDA), and HMGB1 were significantly elevated in diabetic nephropathy (DN) patients, accompanied with deregulated ferroptosis-related molecules, including long-chain acyl-CoA synthetase 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), NADPH oxidase 1 (NOX1), and glutathione peroxidase 4 (GPX4). In vitro assay revealed that erastin and high glucose both induced ferroptosis in mesangial cells. Suppression of HMGB1 restored cellular proliferation, prevented ROS and LDH generation, decreased ACSL4, PTGS2, and NOX1, and increased GPX4 levels in mesangial cells. Furthermore, nuclear factor E2-related factor 2 (Nrf2) was decreased in DN patients and high glucose-mediated translocation of HMGB1 in mesangial cells. Knockdown of HMGB1 suppressed high glucose-induced activation of TLR4/NF-κB axis and promoted Nrf2 expression as well as its downstream targets including HO-1, NQO-1, GCLC, and GCLM. Collectively, these findings suggest that HMGB1 regulates glucose-induced ferroptosis via Nrf2 pathway in mesangial cells.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Ferroptosis/physiology , Glomerular Mesangium/metabolism , Glucose/metabolism , HMGB1 Protein/physiology , NF-E2-Related Factor 2/metabolism , Cell Line , Female , Glomerular Mesangium/cytology , Humans , Male , Middle Aged , Oxidative Stress/physiology
18.
J Mol Med (Berl) ; 99(3): 403-414, 2021 03.
Article in English | MEDLINE | ID: mdl-33409553

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with poor prognosis and overall survival. Clinical investigations show that chronic stress is commonly present in the course of AML and associated with adverse outcome. However, the underlying molecular mechanisms are elusive. In the present study, a chronic restraint stress mouse model was established to evaluate the effect of stress on AML. We found that mice under chronic stress exhibited significantly increased liver and spleen infiltration of leukemic cells and poorer overall survival. This was accompanied by elevated cellular NLR family pyrin domain containing 3 (NLRP3) and interleukin-1ß (IL-1ß) in the liver or bone marrow, and secreted IL-1ß in the plasma, indicating the activation of inflammasomes under chronic restraint stress. High mobility group box 1 (HMGB1) expression was markedly increased in newly diagnosed AML patients, but reduced in complete remission AML patients. The expression level of HMGB1 was positively correlated with NLRP3 mRNA in AML patients. Knockdown of HMGB1 significantly decreased NLRP3 and IL-1ß expression in AML cell lines, and secreted IL-1ß in supernatant of AML cell culture, while HMGB1 stimulation caused contrary effects. These results implied that HMGB1 could be involved in the regulation of inflammasome activation in AML development. Mice model showed that chronic restraint stress-facilitated proliferation and infiltration of AML cells were largely abrogated by knocking down HMGB1. Knockdown of HMGB1 also ameliorated overall survival and remarkably neutralized NLRP3 and IL-1ß expression under chronic restraint stress. These findings provide evidences that chronic stress promotes AML progression via HMGB1/NLRP3/IL-1ß dependent mechanism, suggesting that HMGB1 is a potential therapeutic target for AML. KEY MESSAGES: • Chronic restraint stress promoted acute myeloid leukemia (AML) progression and mediated NLRP3 inflammasome activation in xenograft mice. • HMGB1 mediated NLRP3 inflammasome activation in AML cells. • Knockdown of HMGB1 inhibited AML progression under chronic stress in vivo.


Subject(s)
Gene Expression Regulation, Leukemic , HMGB1 Protein/physiology , Interleukin-1beta/physiology , Leukemia, Myeloid, Acute/physiopathology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Neoplasm Proteins/physiology , Signal Transduction/physiology , Animals , Bone Marrow/metabolism , Cell Line, Tumor , Chronic Disease , Disease Progression , Female , Gene Knockdown Techniques , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/biosynthesis , HMGB1 Protein/genetics , Heterografts , Humans , Inflammasomes/metabolism , Inflammation , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Leukemia, Myeloid, Acute/metabolism , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/biosynthesis , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA Interference , Remission Induction , Restraint, Physical , Spleen/metabolism , Spleen/pathology , Stress, Physiological , Toll-Like Receptor 4/physiology
19.
Neuropharmacology ; 183: 108400, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33189765

ABSTRACT

INTRODUCTION: Traumatic brain injury (TBI) is amongst the leading causes of morbidity and mortality worldwide. Despite evidence of neurogenesis post-TBI, survival and integration of newborn neurons remains impaired. High Mobility Group Box protein 1 (HMGB1) is an 'alarmin' released hyper-acutely following TBI and implicated in hosting the neuro-inflammatory response to injury. It is also instrumental in mediating neurogenesis under physiological conditions. Given its dual role in mediating neuro-inflammation and neurogenesis, it serves as a promising putative target for therapeutic modulation. In this review, we discuss neurogenesis post-TBI, neuro-pharmacological aspects of HMGB1, and its potential as a therapeutic target. METHODS: PubMed database was searched with varying combinations of the following search terms: HMGB1, isoforms, neurogenesis, traumatic brain injury, Toll-like receptor (TLR), receptor for advanced glycation end-products (RAGE). RESULTS: Several in vitro and in vivo studies demonstrate evidence of neurogenesis post-injury. The HMGB1-RAGE axis mediates neurogenesis throughout development, whilst interaction with TLR-4 promotes the innate immune response. Studies in the context of injury demonstrate that these receptor effects are not mutually exclusive. Despite recognition of different HMGB1 isoforms based on redox/acetylation status, effects on neurogenesis post-injury remain unexplored. Recent animal in vivo studies examining HMGB1 antagonism post-TBI demonstrate predominantly positive results, but specific effects on neurogenesis and longer-term outcomes remain unclear. CONCLUSION: HMGB1 is a promising therapeutic target but its effects on neurogenesis post-TBI remains unclear. Given the failure of several pharmacological strategies to improve outcomes following TBI, accurate delineation of HMGB1 signalling pathways and effects on post-injury neurogenesis are vital.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , HMGB1 Protein/metabolism , HMGB1 Protein/physiology , Neurogenesis/physiology , Animals , Brain Edema , Brain Injuries , Disease Models, Animal , Humans , Inflammation , Neurons/metabolism , Signal Transduction , Toll-Like Receptor 4
20.
Int J Mol Sci ; 21(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158052

ABSTRACT

The cross-talk between apoptosis and autophagy influences anticancer drug sensitivity and cellular death in various cancer cell lines. However, the fundamental mechanisms behind this phenomenon are still unidentified. We demonstrated anti-cancerous role of cisplatin (CP) and morin hydrate (Mh) as an individual and/or in combination (CP-Mh) in hepatoma cells and tumor model. Exposure of CP resulted in the production of intracellular reactive oxygen species (ROS)-mediated cellular vacuolization, expansion of mitochondria membrane and activation of endoplasmic reticulum (ER)-stress. Consequently, Cyt c translocation led to the increase of Bax/Bcl-2 ratio, which simultaneously triggered caspase-mediated cellular apoptosis. In addition, CP-induced PARP-1 activation led to ADP-ribosylation of HMGB1, which consequently developed autophagy as evident by the LC3I/II ratio. Chemically-induced inhibition of autophagy marked by increased cell death signified a protective role of autophagy against CP treatment. CP-Mh abrogates the PARP-1 expression and significantly reduced HMGB1-cytoplasmic translocation with subsequent inhibition of the HMGB1-Beclin1 complex formation. In the absence of PARP-1, a reduced HMGB1 mediated autophagy was observed followed by induced caspase-dependent apoptosis. To confirm the role of PARP-1-HMGB1 signaling in autophagy, we used the PARP-1 inhibitor, 4-amino-1,8-naphthalimide (ANI), HMGB1 inhibitor, ethyl pyruvate (EP), autophagy inhibitors, 3-methyl adenine (3-MA) and bafilomycin (baf) and small interfering RNAs (siRNA) to target Atg5 in combination of CP and Mh. Exposure to these inhibitors enhanced the sensitivity of HepG2 cells to CP. Collectively, our findings indicate that CP-Mh in combination served as a prominent regulator of autophagy and significant inducer of apoptosis that maintains a homeostatic balance towards HepG2 cells and the subcutaneous tumor model.


Subject(s)
Autophagy/drug effects , Carcinoma, Hepatocellular/pathology , Cisplatin/pharmacology , Flavonoids/pharmacology , Liver Neoplasms/pathology , Animals , Autophagy/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cisplatin/administration & dosage , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Synergism , Drug Therapy, Combination , Flavonoids/administration & dosage , HMGB1 Protein/physiology , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Poly (ADP-Ribose) Polymerase-1/physiology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...