Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.552
Filter
1.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734811

ABSTRACT

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Subject(s)
Apoptosis , Capsaicin , Cell Proliferation , HSP70 Heat-Shock Proteins , Melanocytes , Mitochondria , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Vitiligo , Toll-Like Receptor 4/metabolism , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Vitiligo/metabolism , Vitiligo/drug therapy , Capsaicin/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Melanocytes/metabolism , Melanocytes/drug effects , Cell Line , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Membrane Potential, Mitochondrial/drug effects , Autophagy/drug effects
2.
PLoS One ; 19(5): e0300702, 2024.
Article in English | MEDLINE | ID: mdl-38696377

ABSTRACT

The objective of the current investigation was to evaluate the induction of heat shock proteins (HSPs) in SP2/0 transgenic cells and the effect of these proteins on the production of monoclonal antibodies (mAbs). The SP2/0 cell line expressing the PSG-026 antibody, a biosimilar candidate of golimumab, the culture parameters, and the target protein expression were not justified for industrial production and were used for the experiments. Paracetamol and heat shock were used as chemical and physical inducers of HSPs, respectively. The results showed that paracetamol and heat shock increased the expression of HSP70 and HSP27 at the mRNA and protein levels. The expression of HSPs was greater in paracetamol-treated cells than in heat shock-treated cells. Paracetamol treatment at concentrations above 0.5 mM significantly reduced cell viability and mAb expression. However, treatment with 0.25 mM paracetamol results in delayed cell death and increased mAb production. Heat shock treatment at 45°C for 30 minutes after enhanced mAb expression was applied after pre-treatment with paracetamol. In bioreactor cultures, pretreatment of cells with paracetamol improved cell viability and shortened the lag phase, resulting in increased cell density. The production of mAbs in paracetamol-treated cultures was markedly greater than that in the control. Analysis of protein quality and charge variants revealed no significant differences between paracetamol-treated and control cultures, indicating that the induction of HSPs did not affect protein aggregation or charge variants. These findings suggest that inducing and manipulating HSP expression can be a valuable strategy for improving recombinant protein production in biopharmaceutical processes.


Subject(s)
Acetaminophen , Antibodies, Monoclonal , Cell Survival , Antibodies, Monoclonal/pharmacology , Animals , Acetaminophen/pharmacology , Cell Survival/drug effects , Mice , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Bioreactors , Heat-Shock Response/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Cell Line
3.
J Cell Mol Med ; 28(10): e18409, 2024 May.
Article in English | MEDLINE | ID: mdl-38769917

ABSTRACT

Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.


Subject(s)
Kidney Medulla , NF-kappa B , Signal Transduction , Animals , NF-kappa B/metabolism , Mice , Kidney Medulla/metabolism , Kidney Medulla/cytology , Osmotic Pressure , Aquaporin 2/metabolism , Aquaporin 2/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Mice, Inbred C57BL , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Promoter Regions, Genetic , Cells, Cultured , Gene Expression Regulation , Symporters/metabolism , Symporters/genetics , Receptors, Cytoplasmic and Nuclear
4.
Parasit Vectors ; 17(1): 214, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730303

ABSTRACT

BACKGROUND: Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS: The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS: Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS: Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.


Subject(s)
Insect Vectors , Phylogeny , RNA, Ribosomal, 18S , Triatoma , Trypanosoma , Animals , China/epidemiology , Rats , Mice , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Triatoma/parasitology , RNA, Ribosomal, 18S/genetics , Insect Vectors/parasitology , Trypanosomiasis/parasitology , Trypanosomiasis/transmission , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Feces/parasitology , HSP70 Heat-Shock Proteins/genetics , DNA, Protozoan/genetics , Female , Male
5.
PLoS One ; 19(5): e0302677, 2024.
Article in English | MEDLINE | ID: mdl-38696463

ABSTRACT

The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-ß-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds.


Subject(s)
ATP-Binding Cassette Transporters , Anopheles , Antioxidants , HSP70 Heat-Shock Proteins , Ocimum , Plant Extracts , Animals , Anopheles/drug effects , Anopheles/genetics , Anopheles/metabolism , Plant Extracts/pharmacology , Antioxidants/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Larva/drug effects , Larva/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Stress, Physiological/drug effects
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731838

ABSTRACT

The effect of dietary supplementation with sodium butyrate, ß-glucan and vitamins (A, D3, E, K, C) on breeding indicators and immune parameters of juvenile African catfish was examined. The fish were fed with unenriched (group C) and enriched feed with a variable proportion of sodium butyrate/ß-glucan, and constant content of vitamins (W1-W3). After the experiment, blood and the middle gut were collected. The microbiome of the gut was determined using Next Generation Sequencing (NGS). Liver tissue was collected for determination of expression of immune-related genes (HSP70, IL-1ß, TNFα). W2 and W3 were characterized by the most favorable values of breeding indicators (p < 0.05). The highest blood cortisol concentration was in group C (71.25 ± 10.45 ng/mL), and significantly the lowest in W1 (46.03 ± 7.01 ng/ mL) (p < 0.05). The dominance of Cetobacterium was observed in all study groups, with the largest share in W3 (65.25%) and W1 (61.44%). Gene expression showed an increased number of HSP70 genes in W1. IL-1ß and TNFα genes peaked at W3. The W3 variant turns out to be the most beneficial supplementation, due to the improvement of breeding and immunological parameters. The data obtained can be used to create a preparation for commercial use in the breeding of this species.


Subject(s)
Butyric Acid , Catfishes , Dietary Supplements , Gastrointestinal Microbiome , Hydrocortisone , Vitamins , beta-Glucans , Animals , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Gastrointestinal Microbiome/drug effects , Butyric Acid/pharmacology , Catfishes/immunology , Catfishes/genetics , Catfishes/microbiology , Hydrocortisone/blood , Vitamins/pharmacology , Vitamins/administration & dosage , Animal Feed , HSP70 Heat-Shock Proteins/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism
7.
Vet Res ; 55(1): 63, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760810

ABSTRACT

The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.


Subject(s)
HSP70 Heat-Shock Proteins , Hepatitis Virus, Duck , Internal Ribosome Entry Sites , Virus Replication , Hepatitis Virus, Duck/physiology , Hepatitis Virus, Duck/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Animals , Viral Structural Proteins/metabolism , Viral Structural Proteins/genetics , Ducks , Poultry Diseases/virology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/metabolism , Protein Biosynthesis
8.
Sci Rep ; 14(1): 11375, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762524

ABSTRACT

Coldwater species are challenged with increasing water temperatures and fluctuations over their upper thermal limits. This study evaluated the potential of acclimation to higher temperature and dietary antioxidants capacity to mitigate the adverse effects of heat shocks in rainbow trout. To this end, rainbow trout fingerlings were acclimated at optimal (14 °C) and high (20 °C) temperatures and fed on selenium (5 mg/kg) and polyphenol (2 g/kg) supplemented diets for 60 days and then were exposed to heat shocks by increasing water temperature up to 30 °C. Growth performance, survival rate, haemato-immunological parameters, and expression of HSP70α, HSP70ß, HSP90ß, and IL-1ß genes were measured to evaluate the hypothesises. The rainbow trout acclimated to 20 °C and fed on antioxidants supplemented diets showed a significantly higher aftershock survival rate. Moreover, fish acclimated to higher temperature showed higher red blood cell counts as well as serum total protein and albumin during the acclimation trial and heat shocks phase. Acclimation to higher temperature and feeding on antioxidants remarkably enhanced fish immune and antioxidant capacity in comparison to fish adapted to cold water and fed on the basal diet measured by improved respiratory burst and lysozyme activities and upregulation of IL-1ß expression during exposure of fish to heat shocks. Furthermore, fish acclimated to higher temperature, especially those fed on antioxidant supplemented diets, showed lower expression levels of HSPs genes during the heat shock phase, indicating that high heat shocks were less stressful for these fish in comparison to cold water acclimated fish. This finding was also supported by lower cortisol levels during heat shocks in fish acclimated to higher temperature. In conclusion, the results of this study indicated that acclimation to higher temperature and/or fed on diets supplemented by selenium and polyphenol, can help to mitigate the adverse effects of the heat shock in rainbow trout.


Subject(s)
Acclimatization , Antioxidants , Dietary Supplements , Hot Temperature , Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/physiology , Antioxidants/metabolism , Heat-Shock Response , Animal Feed , Diet/veterinary , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Selenium/pharmacology , Selenium/administration & dosage , Polyphenols/pharmacology , Polyphenols/administration & dosage
9.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648719

ABSTRACT

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Subject(s)
Drosophila Proteins , HSP40 Heat-Shock Proteins , Memory, Long-Term , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Memory, Long-Term/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mushroom Bodies/metabolism , Protein Multimerization , Transcription Factors/metabolism , Transcription Factors/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
10.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677072

ABSTRACT

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Subject(s)
Chlorpyrifos , HSP70 Heat-Shock Proteins , Nitriles , Oligochaeta , Oxidative Stress , Pyrethrins , Soil Pollutants , Superoxide Dismutase , Animals , Oligochaeta/drug effects , Chlorpyrifos/toxicity , Pyrethrins/toxicity , Nitriles/toxicity , Superoxide Dismutase/metabolism , Soil Pollutants/toxicity , Oxidative Stress/drug effects , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Carboxylesterase/metabolism , Insecticides/toxicity , Caspase 3/metabolism , Caspase 3/genetics , Calreticulin/genetics , Calreticulin/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics
11.
Res Vet Sci ; 172: 105258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615473

ABSTRACT

This study aimed to assess how heat stress, specifically within the range of 35-38 °C, affects the populations of culturable intestinal lactobacilli, enterococci, and Escherichia coli, as well as the expression of Heat Shock Proteins (HSP70), in Lohmann Brown chickens. It also explored the influence of the chickens' blood transferrin and ceruloplasmin genotypes on these responses. Thirty chickens underwent eight hours of heat stress, maintained at an average temperature of 37 °C and a relative humidity of 75-80%, with continuous access to food and water. Behavioral monitoring was conducted throughout to prevent excessive heat-related mortality. The Lohmann Brown chickens from the Yerevan "Arax" poultry farm were initially classified based on their blood transferrin and ceruloplasmin genotypes to investigate potential correlations between intestinal bacterial composition and variations in these polymorphisms. A significant correlation was found between heat stress and the abundance of culturable enterococci within the intestinal microbiota, regardless of chicken TfAB, TfBC, CpAB, CpCC and TfAB, TfBC, CpAB, CpCD genotypes. Heat stress led to nearly double the HSP70 levels in chicken blood, along with a reduction in the culturable enterococci population by at least 10,000-fold in the intestinal microbiota. These findings are significant for targeted management strategies to mitigate heat stress in chicken populations.


Subject(s)
Chickens , Gastrointestinal Microbiome , Animals , Chickens/microbiology , Heat-Shock Response , Escherichia coli/physiology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Enterococcus/physiology , Enterococcus/genetics , Ceruloplasmin/metabolism , Ceruloplasmin/genetics , Genotype , Lactobacillus/genetics , Transferrin/metabolism , Transferrin/genetics , Hot Temperature
12.
Sci Rep ; 14(1): 8241, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589452

ABSTRACT

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Subject(s)
Aminopyridines , Hyperthermia, Induced , Indazoles , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Female , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Cell Line, Tumor , Disease Models, Animal , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , RNA, Messenger , Heat Shock Transcription Factors/genetics
13.
Pestic Biochem Physiol ; 201: 105892, 2024 May.
Article in English | MEDLINE | ID: mdl-38685254

ABSTRACT

As an agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda, poses a severe threat to agriculture in China. Chlorantraniliprole has been widely used to control this pest. In our previous studies, we discovered that LD10, LD20, and LD30 chlorantraniliprole promoted encapsulation in the 4th instar larvae of the FAW, with LD30 chlorantraniliprole having the most significant effect. To further investigate the molecular mechanism underlying the sublethal effects of chlorantraniliprole on encapsulation in the FAW, this study conducted the effects of encapsulation in 4th instar larvae of the FAW exposed to LD30 chlorantraniliprole. Then, we analyzed the transcriptome of the FAW hemolymph treated with LD30 chlorantraniliprole and identified genes related to encapsulation using RNAi. Our results showed that the encapsulation in the FAW was enhanced at 6, 12, 18, 24, and 48 h after exposure to LD30 chlorantraniliprole. Additionally, LD30 chlorantraniliprole significantly affected the expression of certain immune-related genes, with the heat shock protein 70 family gene SfHSP68.1 showing the most significant upregulation. Subsequent interference with SfHSP68.1 resulted in a significant inhibition of encapsulation in FAW. These findings suggested that LD30 chlorantraniliprole can promote encapsulation in the FAW by upregulating SfHSP68.1 expression. This study provides valuable insights into the sublethal effects of chlorantraniliprole on encapsulation in the FAW and the interaction between encapsulation and heat shock proteins (HSPs).


Subject(s)
HSP70 Heat-Shock Proteins , Insect Proteins , Insecticides , Larva , Spodoptera , ortho-Aminobenzoates , Animals , ortho-Aminobenzoates/toxicity , ortho-Aminobenzoates/pharmacology , Spodoptera/drug effects , Spodoptera/genetics , Insecticides/toxicity , Insecticides/pharmacology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Larva/drug effects , Insect Proteins/genetics , Insect Proteins/metabolism , Up-Regulation/drug effects
14.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1102-1119, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658152

ABSTRACT

HSP70 protein, as an important member of the heat shock protein (HSP) family, plays an important role in plant growth, development, and response to biotic and abiotic stresses. In order to explore the role of HSP70 gene family members in Litchi chinensis under low temperature, high temperature, drought, and salt stress, bioinformatics methods were used to identify the HSP70 gene family members within the entire L. chinensis genome. The expression of these genes under various abiotic stresses was then detected using quantitative real-time PCR (qRT-PCR). The results showed that the LcHSP70 gene family consisted of 18 members, which were unevenly distributed across ten L. chinensis chromosomes. The LcHSP70 protein contained 479-851 amino acids, with isoelectric points ranging from 5.07 to 6.95, and molecular weights from 52.44 kDa to 94.07 kDa. The predicted subcellular localization showed that LcHSP70 protein was present in the nucleus, cytoplasm, endoplasmic reticulum, mitochondria, and chloroplast. Phylogenetic analysis divided the LcHSP70 proteins into five subgroups, namely Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅵ. The promoter regions of the LcHSP70 genes contained various cis-acting elements related to plant growth, development, hormone response, and stress response. Moreover, the expression of LcHSP70 genes displayed distint tissue-specific expression level, categorized into universal expression and specific expression. From the selected 6 LcHSP70 genes (i.e., LcHSP70-1, LcHSP70-5, LcHSP70-10, LcHSP70-14, LcHSP70-16, and LcHSP70-18), their relative expression levels were assessed under different abiotic stresses using qRT-PCR. The results indicated that the gene family members exhibited diverse responses to low temperature, high temperature, drought, and salt stress, with significant variations in their expression levels across different time periods. These results provide a foundation for further exploration of the function of the LcHSP70 gene family.


Subject(s)
Droughts , Gene Expression Regulation, Plant , HSP70 Heat-Shock Proteins , Litchi , Phylogeny , Plant Proteins , Stress, Physiological , Litchi/genetics , Litchi/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/biosynthesis , Multigene Family , Salt Stress/genetics
15.
Cell Stress Chaperones ; 29(2): 300-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508444

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by abnormal hematopoietic cell maturation, increased apoptosis of bone marrow cells, and anemia. They are the most common myeloid blood cancers in American adults. The full complement of gene mutations that contribute to the phenotypes or clinical symptoms in MDS is not fully understood. Around 10%-25% of MDS patients harbor an interstitial heterozygous deletion on the long arm of chromosome 5 [del(5q)], creating haploinsufficiency for a large set of genes, including HSPA9. The HSPA9 gene encodes for the protein mortalin, a highly conserved heat shock protein predominantly localized in mitochondria. Our prior study showed that knockdown of HSPA9 induces TP53-dependent apoptosis in human CD34+ hematopoietic progenitor cells. In this study, we explored the role of HSPA9 in regulating erythroid maturation using human CD34+ cells. We inhibited the expression of HSPA9 using gene knockdown and pharmacological inhibition and found that inhibition of HSPA9 disrupted erythroid maturation as well as increased expression of p53 in CD34+ cells. To test whether the molecular mechanism of HSPA9 regulating erythroid maturation is TP53-dependent, we knocked down HSPA9 and TP53 individually or in combination in human CD34+ cells. We found that the knockdown of TP53 partially rescued the erythroid maturation defect induced by HSPA9 knockdown, suggesting that the defect in cells with reduced HSPA9 expression is TP53-dependent. Collectively, these findings indicate that reduced levels of HSPA9 may contribute to the anemia observed in del(5q)-associated MDS patients due to the activation of TP53.


Subject(s)
Anemia , Myelodysplastic Syndromes , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Anemia/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
16.
J Mol Med (Berl) ; 102(5): 693-707, 2024 05.
Article in English | MEDLINE | ID: mdl-38492027

ABSTRACT

Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points. KEY MESSAGES: In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation. Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice. Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture. Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.


Subject(s)
Bone Morphogenetic Protein 4 , HSP70 Heat-Shock Proteins , Mice, Transgenic , Promoter Regions, Genetic , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mice , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Heat-Shock Response/genetics , Skull/metabolism , Gene Expression Regulation , Integrases/metabolism , Integrases/genetics
17.
J Vis Exp ; (205)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38526131

ABSTRACT

Heat shock protein 70 (Hsp70) is a conserved protein that facilitates the folding of other proteins within the cell, making it a molecular chaperone. While Hsp70 is not essential for E. coli cells growing under normal conditions, this chaperone becomes indispensable for growth at elevated temperatures. Since Hsp70 is highly conserved, one way to study the chaperone function of Hsp70 genes from various species is to heterologously express them in E. coli strains that are either deficient in Hsp70 or express a native Hsp70 that is functionally compromised. E. coli dnaK756 cells are unable to support λ bacteriophage DNA. Furthermore, their native Hsp70 (DnaK) exhibits elevated ATPase activity while demonstrating reduced affinity for GrpE (Hsp70 nucleotide exchange factor). As a result, E. coli dnaK756 cells grow adequately at temperatures ranging from 30 °C to 37 °C, but they die at elevated temperatures (>40 °C). For this reason, these cells serve as a model for studying the chaperone activity of Hsp70. Here, we describe a detailed protocol for the application of these cells to conduct a complementation assay, enabling the study of the in cellulo chaperone function of Hsp70.


Subject(s)
Escherichia coli Proteins , HSP70 Heat-Shock Proteins , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Heat-Shock Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Molecular Chaperones/metabolism , Protein Folding , Bacterial Proteins/metabolism
18.
Genes (Basel) ; 15(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38540349

ABSTRACT

For marine invertebrates, the disruption of organismal physiology and behavior by nanoplastics (NPs) has been extensively reported. Heat shock proteins (Hsps) are important for redundant protein breakdown, environmental changes, and intracellular protein transport. An exhaustive identification of Hsp70 genes and an experiment where different concentrations of NPs were stressed were performed to study how Hsp70 genes respond to NPs stress in Monodonta labio. Our results identified 15 members of Hsp70 within the genome of M. labio and provided insights into their responses to different concentrations of acute NP stress. Phylogenetic analyses revealed extensive amplification of the Hsp70 genes from the Hsc70 subfamily, with gene duplication events. As a result of NP stress, five of fifteen genes showed significant upregulation or downregulation. Three Hsp70 genes were highly expressed at an NP concentration of 0.1 mg/L, and no genes were downregulated. At 10 mg/L, they showed significant upregulation of two genes and significant downregulation of two genes. At 1 mg/L treatment, three genes were significantly downregulated, and no genes were significantly upregulated. Moreover, a purifying selection was revealed using a selection test conducted on duplicate gene pairs, indicating functional redundancy. This work is the first thorough examination of the Hsp70s in Archaeogastropoda. The findings improve knowledge of Hsp70s in molluscan adaptation to NP stress and intertidal living and offer essential data for the biological study of M. labio.


Subject(s)
Gastropoda , Microplastics , Animals , Phylogeny , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Gastropoda/genetics , Gastropoda/metabolism , Gene Expression Profiling
19.
Reprod Domest Anim ; 59(3): e14548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459830

ABSTRACT

The in vivo fertilization process occurs in the presence of follicular fluid (FF). The aim of this study was to evaluate the effect of in vitro fertilization medium supplementation with 5% or 10% bovine follicular fluid (BFF) on the production of in vitro bovine embryos. FF was collected from ovarian follicles with a diameter of 8-10 mm, and cumulus-oocyte complexes (COCs) were co-incubated with sperm for 24 h in the commercial medium BotuFIV® (BotuPharma©), being distributed among the experimental groups: oocytes fertilized in a control medium; oocytes fertilized in a medium supplemented with 5% BFF; and oocytes fertilized in a medium supplemented with 10% BFF. After fertilization, the zygotes were cultured in vitro for 8 days. Embryo development was assessed through cleavage rates (day 2) and blastocyst formation rates (day 8). The relative expression of the genes OCT4, IFNT2, BAX, HSP70 and SOD2 was measured using the real-time polymerase chain reaction method. There was no difference (p > .05) among the different experimental groups in terms of cleavage rates and blastocyst formation rates. Regarding the gene expression results, only the blastocysts from oocytes fertilized with 10% BFF showed significantly lower expression of IFNT2 (p = .003) and SOD2 (p = .01) genes compared to blastocysts from oocytes fertilized in control medium alone, while there was no difference between blastocyst from oocytes fertilized in control medium and the ones from oocytes fertilized with 5% BFF. In addition to this, the blastocysts from oocytes fertilized with 5% BFF showed significantly reduced levels of expression of the heat shock protein HSP70 (p < .001) and the pro-apoptotic protein BAX (p = .015) compared to blastocysts from oocytes fertilized with control medium. This may indicate that lower supplementation of BFF to the IVF medium creates a more suitable environment for fertilization and is less stressful for the zygote.


Subject(s)
Fertilization in Vitro , Follicular Fluid , Female , Male , Cattle , Animals , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Fertilization in Vitro/veterinary , Semen , Oocytes , Embryonic Development , Blastocyst/metabolism , HSP70 Heat-Shock Proteins/genetics , Fertilization
20.
mSystems ; 9(4): e0115423, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38530057

ABSTRACT

The chaperone 70 kDa heat shock protein (Hsp70) is important for cells from bacteria to humans to maintain proteostasis, and all eukaryotes and several prokaryotes encode Hsp70 paralogs. Although the mechanisms of Hsp70 function have been clearly illuminated, the function and evolution of Hsp70 paralogs is not well studied. DnaK is a highly conserved bacterial Hsp70 family. Here, we show that dnaK is present in 98.9% of bacterial genomes, and 6.4% of them possess two or more DnaK paralogs. We found that the duplication of dnaK is positively correlated with an increase in proteomic complexity (proteome size, number of domains). We identified the interactomes of the two DnaK paralogs of Myxococcus xanthus DK1622 (MxDnaKs), which revealed that they are mostly nonoverlapping, although both prefer α and ß domain proteins. Consistent with the entire M. xanthus proteome, MxDnaK substrates have both significantly more multi-domain proteins and a higher isoelectric point than that of Escherichia coli, which encodes a single DnaK homolog. MxDnaK1 is transcriptionally upregulated in response to heat shock and prefers to bind cytosolic proteins, while MxDnaK2 is downregulated by heat shock and is more associated with membrane proteins. Using domain swapping, we show that the nucleotide-binding domain and the substrate-binding ß domain are responsible for the significant differences in DnaK interactomes, and the nucleotide binding domain also determines the dimerization of MxDnaK2, but not MxDnaK1. Our work suggests that bacterial DnaK has been duplicated in order to deal with a more complex proteome, and that this allows evolution of distinct domains to deal with different subsets of target proteins.IMPORTANCEAll eukaryotic and ~40% of prokaryotic species encode multiple 70 kDa heat shock protein (Hsp70) homologs with similar but diversified functions. Here, we show that duplication of canonical Hsp70 (DnaK in prokaryotes) correlates with increasing proteomic complexity and evolution of particular regions of the protein. Using the Myxococcus xanthus DnaK duplicates as a case, we found that their substrate spectrums are mostly nonoverlapping, and are both consistent to that of Escherichia coli DnaK in structural and molecular characteristics, but show differential enrichment of membrane proteins. Domain/region swapping demonstrated that the nucleotide-binding domain and the ß substrate-binding domain (SBDß), but not the SBDα or disordered C-terminal tail region, are responsible for this functional divergence. This work provides the first direct evidence for regional evolution of DnaK paralogs.


Subject(s)
Escherichia coli Proteins , Proteome , Humans , Proteome/genetics , Escherichia coli Proteins/genetics , Proteomics , HSP70 Heat-Shock Proteins/genetics , Escherichia coli/genetics , Bacteria/metabolism , Membrane Proteins/metabolism , Nucleotides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...