Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946824

ABSTRACT

Red blood cells (RBCs) serve a variety of functions beyond mere oxygen transport both in health and pathology. Notably, RRx-001, a minimally toxic pleiotropic anticancer agent with macrophage activating and vascular normalization properties currently in Phase III trials, induces modification to RBCs which could promote vascular adhesion similar to sickle cells. This study assessed whether RBCs exposed to RRx-001 adhere to the tumor microvasculature and whether this adhesion alters tumor viability. We next investigated the biomechanics of RBC adhesion in the context of local inflammatory cytokines after treatment with RRx-001 as a potential mechanism for preferential tumor aggregation. Human HEP-G2 and HT-29 tumor cells were subcutaneously implanted into nu/nu mice and were infused with RRx-001-treated and Technetium-99m (99mTc)-labeled blood. RBC adhesion was quantified in an in vitro human umbilical vein endothelial cell (HUVEC) assay under both normoxic and hypoxic conditions with administration of either lipopolysaccharide (LPS) or Tumor necrosis alpha (TNFα) to mimic the known inflammation in the tumor microenvironment. One hour following administration of 99mTc labeled RBCs treated with 10 mg/kg RRx-001, we observed an approximate 2.0-fold and 1.5-fold increase in 99mTc-labeled RBCs compared to vehicle control in HEPG2 and HT-29 tumor models, respectively. Furthermore, we observed an approximate 40% and 36% decrease in HEP-G2 and HT-29 tumor weight, respectively, following treatment with RRx-001. To quantify RBC adhesive potential, we determined τ50, or the shear stress required for 50% disassociation of RBCs from HUVECs. After administration of TNF-α under normoxia, τ50 was determined to be 4.5 dynes/cm2 (95% CI: 4.3-4.7 dynes/cm2) for RBCs treated with 10 µM RRx-001, which was significantly different (p < 0.05) from τ50 in the absence of treatment. Under hypoxic conditions, the difference of τ50 with (4.8 dynes/cm2; 95% CI: 4.6-5.1 dynes/cm2) and without (2.6 dynes/cm2; 95% CI: 2.4-2.8 dynes/cm2) 10 µM RRx-001 treatment was exacerbated (p = 0.05). In conclusion, we demonstrated that RBCs treated with RRx-001 preferentially aggregate in HEP-G2 and HT-29 tumors, likely due to interactions between RRx-001 and cysteine residues within RBCs. Furthermore, RRx-001 treated RBCs demonstrated increased adhesive potential to endothelial cells upon introduction of TNF-α and hypoxia suggesting that RRx-001 may induce preferential adhesion in the tumor but not in other tissues with endothelial dysfunction due to conditions prevalent in older cancer patients such as heart disease or diabetic vasculopathy.


Subject(s)
Antineoplastic Agents/pharmacology , Azetidines/pharmacology , Endothelial Cells/cytology , Erythrocyte Membrane/drug effects , Nitro Compounds/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Azetidines/therapeutic use , Cell Adhesion/drug effects , Cell Hypoxia , Cysteine/chemistry , Cytokines/metabolism , Endothelial Cells/chemistry , Erythrocyte Aggregation/drug effects , Erythrocyte Membrane/chemistry , HT29 Cells/transplantation , Hep G2 Cells/transplantation , Human Umbilical Vein Endothelial Cells , Humans , Lipopolysaccharides/pharmacology , Membrane Lipids/biosynthesis , Mice , Mice, Nude , Neoplasms/blood supply , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/drug therapy , Nitro Compounds/therapeutic use , Phosphatidylserines/biosynthesis , Receptors, Cell Surface/biosynthesis , Shear Strength , Tumor Microenvironment , Tumor Necrosis Factor-alpha/pharmacology
2.
PLoS One ; 10(10): e0139978, 2015.
Article in English | MEDLINE | ID: mdl-26444281

ABSTRACT

Metastasis to the liver is a main factor in colorectal cancer mortality. Previous studies suggest that chronic psychological stress is important in cancer progression, but its effect on liver metastasis has not been investigated. To address this, we established a liver metastasis model in BALB/c nude mice to investigate the role of chronic stress in liver metastasis. Our data suggest that chronic stress elevates catecholamine levels and promotes liver metastasis. Chronic stress was also associated with increased tumor associated macrophages infiltration into the primary tumor and increased the expression of metastatic genes. Interestingly, ß-blocker treatment reversed the effects of chronic stress on liver metastasis. Our results suggest the ß-adrenergic signaling pathway is involved in regulating colorectal cancer progression and liver metastasis. Additionally, we submit that adjunctive therapy with a ß-blocker may complement existing colorectal cancer therapies.


Subject(s)
Colonic Neoplasms/pathology , Liver Neoplasms/secondary , Stress, Psychological/complications , Animals , Blotting, Western , Colonic Neoplasms/psychology , Disease Models, Animal , Flow Cytometry , HT29 Cells/transplantation , Humans , Liver Neoplasms/pathology , Liver Neoplasms/psychology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Real-Time Polymerase Chain Reaction , Receptors, Adrenergic, beta/physiology
3.
Mol Pharm ; 12(10): 3527-34, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26288060

ABSTRACT

Delta-like ligand 4 (Dll4) expressed in tumor cells plays a key role to promote tumor growth of numerous cancer types. Based on a novel antihuman Dll4 monoclonal antibody (61B), we developed a (64)Cu-labeled probe for positron emission tomography (PET) imaging of tumor Dll4 expression. In this study, 61B was conjugated with the (64)Cu-chelator DOTA through lysine on the antibody. Human IgG (hIgG)-DOTA, which did not bind to Dll4, was also prepared as a control. The Dll4 binding activity of the probes was evaluated through the bead-based binding assay with Dll4-alkaline phosphatase. The resulting PET probes were evaluated in U87MG glioblastoma and HT29 colorectal cancer xenografts in athymic nude mice. Our results demonstrated that the 61B-DOTA retained (77.2 ± 3.7) % Dll4 binding activity of the unmodified 61B, which is significantly higher than that of hIgG-DOTA (0.06 ± 0.03) %. Confocal microscopy analysis confirmed that 61B-Cy5.5, but not IgG-Cy5.5, predominantly located within the U87MG and HT29 cells cytoplasm. U87MG cells showed higher 61B-Cy5.5 binding as compared to HT29 cells. In U87MG xenografts, 61B-DOTA-(64)Cu demonstrated remarkable tumor accumulation (10.5 ± 1.7 and 10.2 ± 1.2%ID/g at 24 and 48 h postinjection, respectively). In HT29 xenografts, tumor accumulation of 61B-DOTA-(64)Cu was significantly lower than that of U87MG (7.3 ± 1.3 and 6.6 ± 1.3%ID/g at 24 and 48 h postinjection, respectively). The tumor accumulation of 61B-DOTA-(64)Cu was significantly higher than that of hIgG-DOTA-(64)Cu in both xenografts models. Immunofluorescence staining of the tumor tissues further confirmed that tumor accumulation of 61B-Cy5.5 was correlated well with in vivo PET imaging data using 61B-DOTA-(64)Cu. In conclusion, 61B-DOTA-(64)Cu PET probe was successfully synthesized and demonstrated prominent tumor uptake by targeting Dll4. 61B-DOTA-(64)Cu has great potential to be used for noninvasive Dll4 imaging, which could be valuable for tumor detection, Dll4 expression level evaluation, and Dll4-based treatment monitoring.


Subject(s)
Colorectal Neoplasms/metabolism , Glioblastoma/metabolism , Intercellular Signaling Peptides and Proteins/biosynthesis , Adaptor Proteins, Signal Transducing , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Calcium-Binding Proteins , Cell Line, Tumor/transplantation , Copper Radioisotopes/therapeutic use , Female , HT29 Cells/transplantation , Heterocyclic Compounds, 1-Ring/metabolism , Humans , Intercellular Signaling Peptides and Proteins/immunology , Mice , Mice, Nude , Microscopy, Confocal , Neoplasm Transplantation , Positron-Emission Tomography
4.
Ann Surg Oncol ; 14(10): 2838-46, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17653802

ABSTRACT

BACKGROUND: Colorectal carcinomas (CRC) express high levels of insulin-like growth factor-I/II (IGF-I/II) and the receptor (IGF-IR). We hypothesized that selective inhibition of IGF-IR would inhibit hepatic growth of human CRC in mice. METHODS: Human CRC cells were treated in vitro with anti-IGF-IR monoclonal antibody (MoAB) with and without oxaliplatin to assess cytotoxicity. The effect of anti-IGF-IR MoAB on IGF-I-induced vascular endothelial growth factor (VEGF) production in human CRC cells was assessed by Northern blot and ELISA. We injected human CRC cells intrahepatically in nude mice, and then administered anti-IGF-IR MoAB with and without oxaliplatin. We delayed treatment in one group until large hepatic tumors were present. We assessed tumors for apoptosis, proliferation, and angiogenesis. RESULTS: Anti-IGF-IR MoAB and oxaliplatin inhibited CRC cell growth in vitro and combination treatment was even more effective. IGF-I stimulation of CRC cells resulted in significant upregulation of VEGF and this was completely inhibited by pretreatment with anti-IGF-IR MoAB. Anti-IGF-IR MoAB significantly inhibited hepatic growth of tumors in mice. Anti-IGF-IR MoAB plus oxaliplatin led to a significantly greater inhibition of tumor growth. Anti-IGF-IR MoAB plus oxaliplatin was just as effective at inhibiting growth of larger, more advanced liver tumors. Anti-IGF-IR MoAB, alone and in combination with oxaliplatin, led to a significant increase in tumor cell apoptosis, and a significant inhibition of tumor cell proliferation and angiogenesis. CONCLUSIONS: These findings suggest that IGF-IR is a potential target for therapy in patients with advanced CRC.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cell Division/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/pathology , Liver Neoplasms, Experimental/secondary , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blotting, Northern , Enzyme-Linked Immunosorbent Assay , HT29 Cells/drug effects , HT29 Cells/pathology , HT29 Cells/transplantation , Humans , In Situ Nick-End Labeling , In Vitro Techniques , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Nude , Neoplasm Transplantation , Neovascularization, Pathologic/pathology , Organoplatinum Compounds/pharmacology , Oxaliplatin , Vascular Endothelial Growth Factor A/metabolism
5.
Life Sci ; 79(12): 1170-7, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16643955

ABSTRACT

Human thioredoxin (TRX) is a multifunctional redox-active protein. We previously reported that the intraperitoneal administration of recombinant human thioredoxin (rhTRX) attenuates inflammatory cytokine- or bleomycin-induced lung injury in mice. In this study, the effect of rhTRX injected intravenously after lipopolysaccharide (LPS) injection was analyzed in rats. Rats were injected with LPS followed by treatment with rhTRX. Although the bolus injection exerted no protective effect, continuous intravenous administration of rhTRX significantly suppressed percentage number of neutrophils in bronchoalveolar lavage fluid. Histological examination also showed that rhTRX decreased neutrophil infiltration in the lung tissues. Administered rhTRX was mainly excreted into the urine and the tissue accumulation of rhTRX in the lung was marginal. LPS-induced oxidative stress in the lung was slight in this model. These results demonstrated that continuous intravenous administration of rhTRX suppresses LPS-induced bronchoalveolar neutrophil infiltration by an anti-chemotactic effect. Administration of rhTRX did not promote the tumor growth nor affect chemosensitivity in the xenotransplantation model, suggesting the safety of rhTRX therapy for cancer patients.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Lipopolysaccharides/antagonists & inhibitors , Neutrophil Infiltration/drug effects , Thioredoxins/pharmacology , Animals , Body Weight/drug effects , Body Weight/physiology , Chemokines/metabolism , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , HT29 Cells/transplantation , Humans , Indicators and Reagents , Injections, Intravenous , Intercellular Adhesion Molecule-1/metabolism , Lipopolysaccharides/toxicity , Lung/pathology , Male , Neoplasm Transplantation , Organ Size/drug effects , Organ Size/physiology , Oxidation-Reduction , Rats , Rats, Wistar , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Thioredoxins/administration & dosage , Thioredoxins/pharmacokinetics , Transplantation, Heterologous
6.
J Pharmacokinet Pharmacodyn ; 32(1): 65-83, 2005 Feb.
Article in English | MEDLINE | ID: mdl-16205839

ABSTRACT

The mathematical model structure selected to describe system behavior is at least partially dependent on the proposed use of the model. In this paper, a pharmacokinetic(PK)/pharmacodynamic (PD) model for use in drug delivery algorithm synthesis is developed. The antitumor agent 9-nitrocamptothecin (9NC) was administered orally to severe combined immunodeficient (SCID) mice bearing subcutaneously implanted HT29 human colon xenografts, and the effect of 9NC on those xenografts was characterized. Different PK model structures were considered in characterizing the dynamics of the drug concentration in the plasma. Akaike's Information Criterion (AIC) was used to select the model structure maximizing fit accuracy while simultaneously minimizing the number of model parameters. The resulting PK model was a set of coupled linear ordinary differential equations able to describe the nonlinear dynamic behavior (e.g. plateauing, etc.) of the drug concentrations observed in the plasma. Pharmacodynamics were modeled by characterizing tumor growth in both the untreated and drug-treated animals. The resulting PK/PD model related drug administration to effect, and this model has a structure that facilitates future control algorithm synthesis. Control algorithms in this context would directly utilize PK/PD model predictions. These predictions would be used to determine the amount and frequency of drug administration in order to reduce the tumor burden without violating clinically relevant constraints. This methodology could then be used to aid the clinician in selecting dose levels and schedules, and extension to patient tailored treatment may eventually be feasible with this approach.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Camptothecin/analogs & derivatives , HT29 Cells/transplantation , Algorithms , Animals , Camptothecin/pharmacokinetics , Camptothecin/therapeutic use , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Female , Humans , Mice , Mice, SCID , Models, Statistical , Neoplasm Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...