Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.028
Filter
1.
Nat Commun ; 15(1): 4013, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740778

ABSTRACT

Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.


Subject(s)
Basal Forebrain , Fear , Habenula , Neurons , Animals , Habenula/physiology , Male , Fear/physiology , Basal Forebrain/physiology , Basal Forebrain/metabolism , Mice , Neurons/physiology , Neurons/metabolism , Optogenetics , Mice, Inbred C57BL , Social Behavior , Behavior, Animal/physiology , Neural Pathways/physiology , Glutamic Acid/metabolism , Conditioning, Classical/physiology
2.
Biol Psychiatry ; 95(10): 912-913, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692797
3.
Science ; 384(6695): 573-579, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696577

ABSTRACT

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Subject(s)
Calcium Channels , Habenula , Neurogenesis , Neurons , Wnt Signaling Pathway , Zebrafish Proteins , Zebrafish , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Habenula/metabolism , Habenula/embryology , Loss of Function Mutation , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neurons/metabolism , Receptors, Wnt/metabolism , Receptors, Wnt/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Calcium Channels/genetics , Calcium Channels/metabolism
4.
Neuroscience ; 547: 56-73, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38636897

ABSTRACT

Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area generally respond to aversive stimuli or the absence of expected rewards with transient inhibition of firing rates, which can be recapitulated with activation of the lateral habenula (LHb) and eliminated by lesioning the intermediating rostromedial tegmental nucleus (RMTg). However, a minority of DA neurons respond to aversive stimuli, such as foot shock, with a transient increase in firing rate, an outcome that rarely occurs with LHb stimulation. The degree to which individual neurons respond to these two stimulation modalities with the same response phenotype and the role of the RMTg is not known. Here, we record responses from single SN DA neurons to alternating activation of the LHb and foot shock in male rats. Lesions of the RMTg resulted in a shift away from inhibition to no response during both foot shock and LHb stimulation. Furthermore, lesions unmasked an excitatory response during LHb stimulation. The response correspondence within the same neuron between the two activation sources was no different from chance in sham controls, suggesting that external inputs rather than intrinsic DA neuronal properties are more important to response outcome. These findings contribute to a literature that shows a complex neurocircuitry underlies the regulation of DA activity and, by extension, behaviors related to learning, anhedonia, and cognition.


Subject(s)
Dopaminergic Neurons , Habenula , Substantia Nigra , Animals , Male , Habenula/physiology , Dopaminergic Neurons/physiology , Substantia Nigra/physiology , Electroshock , Action Potentials/physiology , Rats , Electric Stimulation , Rats, Sprague-Dawley , Ventral Tegmental Area/physiology
5.
Brain Res ; 1835: 148914, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38580047

ABSTRACT

Closed-loop deep brain stimulation (DBS) system offers a promising approach for treatment-resistant depression, but identifying universally accepted electrophysiological biomarkers for closed-loop DBS systems targeting depression is challenging. There is growing evidence suggesting a strong association between the lateral habenula (LHb) and depression. Here, we took LHb as a key target, utilizing multi-site local field potentials (LFPs) to study the acute and chronic changes in electrophysiology, functional connectivity, and brain network characteristics during the formation of a chronic restraint stress (CRS) model. Furthermore, our model combining the electrophysiological changes of LHb and interactions between LHb and other potential targets of depression can effectively distinguish depressive states, offering a new way for developing effective closed-loop DBS strategies.


Subject(s)
Depression , Habenula , Restraint, Physical , Stress, Psychological , Habenula/physiology , Habenula/physiopathology , Animals , Stress, Psychological/physiopathology , Depression/physiopathology , Restraint, Physical/methods , Male , Disease Models, Animal , Deep Brain Stimulation/methods , Rats , Rats, Sprague-Dawley
6.
Brain Res ; 1835: 148918, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588847

ABSTRACT

The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.


Subject(s)
Dopamine , Dopaminergic Neurons , Dorsal Raphe Nucleus , Habenula , Rats, Sprague-Dawley , Serotonergic Neurons , Serotonin , Ventral Tegmental Area , Animals , Ventral Tegmental Area/metabolism , Habenula/metabolism , Male , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dorsal Raphe Nucleus/metabolism , Serotonergic Neurons/metabolism , Serotonergic Neurons/physiology , Rats , Serotonin/metabolism , Dopamine/metabolism , Oxidopamine/toxicity , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Prefrontal Cortex/metabolism , Neural Pathways/metabolism , Neural Pathways/physiopathology
7.
BMC Neurosci ; 25(Suppl 1): 22, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627616

ABSTRACT

BACKGROUND: The habenula is a major regulator of serotonergic neurons in the dorsal raphe, and thus of brain state. The functional connectivity between these regions is incompletely characterized. Here, we use the ability of changes in irradiance to trigger reproducible changes in activity in the habenula and dorsal raphe of zebrafish larvae, combined with two-photon laser ablation of specific neurons, to establish causal relationships. RESULTS: Neurons in the habenula can show an excitatory response to the onset or offset of light, while neurons in the anterior dorsal raphe display an inhibitory response to light, as assessed by calcium imaging. The raphe response changed in a complex way following ablations in the dorsal habenula (dHb) and ventral habenula (vHb). After ablation of the ON cells in the vHb (V-ON), the raphe displayed no response to light. After ablation of the OFF cells in the vHb (V-OFF), the raphe displayed an excitatory response to darkness. After ablation of the ON cells in the dHb (D-ON), the raphe displayed an excitatory response to light. We sought to develop in silico models that could recapitulate the response of raphe neurons as a function of the ON and OFF cells of the habenula. Early attempts at mechanistic modeling using ordinary differential equation (ODE) failed to capture observed raphe responses accurately. However, a simple two-layer fully connected neural network (NN) model was successful at recapitulating the diversity of observed phenotypes with root-mean-squared error values ranging from 0.012 to 0.043. The NN model also estimated the raphe response to ablation of D-off cells, which can be verified via future experiments. CONCLUSION: Lesioning specific cells in different regions of habenula led to qualitatively different responses to light in the dorsal raphe. A simple neural network is capable of mimicking experimental observations. This work illustrates the ability of computational modeling to integrate complex observations into a simple compact formalism for generating testable hypotheses, and for guiding the design of biological experiments.


Subject(s)
Habenula , Laser Therapy , Animals , Dorsal Raphe Nucleus , Zebrafish , Habenula/surgery , Habenula/physiology , Computer Simulation
8.
Biol Sex Differ ; 15(1): 37, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654275

ABSTRACT

BACKGROUND: The lateral habenula (LHb) is an epithalamus nucleus that is evolutionarily conserved and involved in various physiological functions, such as encoding value signals, integrating emotional information, and regulating related behaviors. The cells in the LHb are predominantly glutamatergic and have heterogeneous functions in response to different stimuli. The circuitry connections of the LHb glutamatergic neurons play a crucial role in integrating a wide range of events. However, the circuitry connections of LHb glutamatergic neurons in both sexes have not been thoroughly investigated. METHODS: In this study, we injected Cre-dependent retrograde trace virus and anterograde synaptophysin-labeling virus into the LHb of adult male and female Vglut2-ires-Cre mice, respectively. We then quantitatively analyzed the input and output of the LHb glutamatergic connections in both the ipsilateral and contralateral whole brain. RESULTS: Our findings showed that the inputs to LHbvGlut2 neurons come from more than 30 brain subregions, including the cortex, striatum, pallidum, thalamus, hypothalamus, midbrain, pons, medulla, and cerebellum with no significant differences between males and females. The outputs of LHbvGlut2 neurons targeted eight large brain regions, primarily focusing on the midbrain and pons nuclei, with distinct features in presynaptic bouton across different brain subregions. While correlation and cluster analysis revealed differences in input and collateral projection features, the input-output connection pattern of LHbvGlut2 neurons in both sexes was highly similar. CONCLUSIONS: This study provides a systematic and comprehensive analysis of the input and output connections of LHbvGlut2 neurons in male and female mice, shedding light on the anatomical architecture of these specific cell types in the mouse LHb. This structural understanding can help guide further investigations into the complex functions of the LHb.


Subject(s)
Glutamic Acid , Habenula , Neurons , Sex Characteristics , Animals , Female , Male , Habenula/physiology , Glutamic Acid/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Neural Pathways/physiology , Mice
9.
J Affect Disord ; 356: 499-506, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574869

ABSTRACT

BACKGROUND: Suicide is one of the most lethal complications of late-life depression (LLD), and habenular dysfunction may be involved in depression-related suicidality and may serve as a potential target for alleviating suicidal ideation. This study aimed to investigate abnormal functional connectivity of the habenula in LLD patients with suicidal ideation. METHODS: One hundred twenty-seven patients with LLD (51 with suicidal ideation (LLD-S) and 76 without suicidal ideation (LLD-NS)) and 75 healthy controls (HCs) were recruited. The static functional connectivity (sFC) and dynamic functional connectivity (dFC) between the habenula and the whole brain were compared among the three groups, and correlation and moderation analyses were applied to investigate whether suicidal ideation moderated the relationships of habenular FC with depressive symptoms and cognitive impairment. RESULTS: The dFC between the right habenula and the left orbitofrontal cortex (OFC) increased in the following order: LLD-S > LLD-NS > control. No significant difference in the habenular sFC was found among the LLD-S, LLD-NS and control groups. The dFC between the right habenula and the left OFC was positively associated with global cognitive function and visuospatial skills, and the association between this dFC and visuospatial skills was moderated by suicidal ideation in patients with LLD. CONCLUSION: The increased variability in dFC between the right habenula and left OFC was more pronounced in the LLD-S group than in the LLD-NS group, and the association between habenular-OFC dFC and visuospatial skills was moderated by suicidal ideation in patients with LLD.


Subject(s)
Habenula , Magnetic Resonance Imaging , Suicidal Ideation , Humans , Habenula/physiopathology , Female , Male , Aged , Middle Aged , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Depression/physiopathology , Depression/psychology , Case-Control Studies , Depressive Disorder/physiopathology , Depressive Disorder/psychology
10.
Sci Rep ; 14(1): 8258, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38589409

ABSTRACT

Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR < 0.01). Specifically, SNORA69 showed increased expression in MDD and was technically validated via RT-qPCR. We further investigated the expression of Snora69 in the LHb and peripheral blood of an unpredicted chronic mild stress (UCMS) mouse model of depression. Snora69 was specifically up-regulated in mice that underwent the UCMS paradigm. SNORA69 is known to guide pseudouridylation onto 5.8S and 18S rRNAs. We quantified the relative abundance of pseudouridines on 5.8S and 18S rRNA in human post-mortem LHb samples and found increased abundance of pseudouridines in the MDD group. Overall, our findings indicate the importance of brain snoRNAs in the pathology of MDD. Future studies characterizing SNORA69's role in MDD pathology is warranted.


Subject(s)
Depressive Disorder, Major , Habenula , Humans , Animals , Mice , Depressive Disorder, Major/genetics , Habenula/metabolism , Base Sequence , RNA, Ribosomal, 18S , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism
11.
Cell Rep ; 43(3): 113956, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38489267

ABSTRACT

Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of relapse.


Subject(s)
Cocaine , Habenula , Mice , Animals , Habenula/physiology , Cocaine/pharmacology , Memory , Gene Expression Regulation , Recurrence
12.
AJNR Am J Neuroradiol ; 45(4): 504-510, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38453416

ABSTRACT

BACKGROUND AND PURPOSE: The habenula is a key node in the regulation of emotion-related behavior. Accurate visualization of the habenula and its reliable quantitative analysis is vital for the assessment of psychiatric disorders. To obtain high-contrast habenula images and allow them to be compatible with clinical applications, this preliminary study compared 3T MP2RAGE and quantitative susceptibility mapping with MPRAGE by evaluating the habenula segmentation performance. MATERIALS AND METHODS: Ten healthy volunteers were scanned twice with 3T MPRAGE and MP2RAGE and once with quantitative susceptibility mapping. Image quality and visibility of habenula anatomic features were analyzed by 3 radiologists using a 5-point scale. Contrast assessments of the habenula and thalamus were also performed. The reproducibility of the habenula volume from MPRAGE and MP2RAGE was evaluated by manual segmentation and the Multiple Automatically Generated Template brain segmentation algorithm (MAGeTbrain). T1 values and susceptibility were measured in the whole habenula and habenula geometric subregion using MP2RAGE T1-mapping and quantitative susceptibility mapping. RESULTS: The 3T MP2RAGE and quantitative susceptibility mapping demonstrated clear boundaries and anatomic features of the habenula compared with MPRAGE, with a higher SNR and contrast-to-noise ratio (all P < .05). Additionally, 3T MP2RAGE provided reliable habenula manual and MAGeTbrain segmentation volume estimates with greater reproducibility. T1-mapping derived from MP2RAGE was highly reliable, and susceptibility contrast was highly nonuniform within the habenula. CONCLUSIONS: We identified an optimized sequence combination (3T MP2RAGE combined with quantitative susceptibility mapping) that may be useful for enhancing habenula visualization and yielding more reliable quantitative data.


Subject(s)
Habenula , Humans , Habenula/diagnostic imaging , Reproducibility of Results , Algorithms , Magnetic Resonance Imaging/methods , Healthy Volunteers , Brain
13.
Neuroreport ; 35(6): 380-386, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526956

ABSTRACT

This study aims to investigate the functional connectivity (FC) changes of the habenula (Hb) among patients with major depressive disorder (MDD) after 12 weeks of duloxetine treatment (MDD12). Patients who were diagnosed with MDD for the first time and were drug-naïve were recruited at baseline as cases. Healthy controls (HCs) matched for sex, age, and education level were also recruited at the same time. At baseline, all participants underwent resting-state functional MRI. FC analyses were performed using the Hb seed region of interest, and three groups including HCs, MDD group and MDD12 group were compared using whole-brain voxel-wise comparisons. Compared to the HCs, the MDD group had decreased FC between the Hb and the right anterior cingulate cortex at baseline. Compared to the HCs, the FC between the Hb and the left medial superior frontal gyrus decreased in the MDD12 group. Additionally, the FC between the left precuneus, bilateral cuneus and Hb increased in the MDD12 group than that in the MDD group. No significant correlation was found between HDRS-17 and the FC between the Hb, bilateral cuneus, and the left precuneus in the MDD12 group. Our study suggests that the FC between the post-default mode network and Hb may be the treatment mechanism of duloxetine and the treatment mechanisms and the pathogenesis of depression may be independent of each other.


Subject(s)
Depressive Disorder, Major , Habenula , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Duloxetine Hydrochloride/pharmacology , Duloxetine Hydrochloride/therapeutic use , Default Mode Network , Magnetic Resonance Imaging , Rest/physiology
14.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509283

ABSTRACT

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Subject(s)
Corticotropin-Releasing Hormone , Habenula , Animals , Male , Mice , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Corticotropin-Releasing Hormone/metabolism , Endocannabinoids , Habenula/metabolism , Neuronal Plasticity/physiology , Neurons/physiology , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, GABA-A/metabolism , Synaptic Transmission/physiology
15.
Cell Rep ; 43(4): 113968, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38522071

ABSTRACT

The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.


Subject(s)
Habenula , Habenula/physiology , Animals , Humans , Neurons/physiology , Decision Making/physiology
16.
Sci Rep ; 14(1): 4474, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38395997

ABSTRACT

Cerebral asymmetry is critical for typical brain function and development; at the same time, altered brain lateralization seems to be associated with neuropsychiatric disorders. Zebrafish are increasingly emerging as model species to study brain lateralization, using asymmetric development of the habenula, a phylogenetically old brain structure associated with social and emotional processing, to investigate the relationship between brain asymmetry and social behavior. We exposed 5-h post-fertilization zebrafish embryos to valproic acid (VPA), a compound used to model the core signs of ASD in many vertebrate species, and assessed social interaction, visual lateralization and gene expression in the thalamus and the telencephalon. VPA-exposed zebrafish exhibit social deficits and a deconstruction of social visual laterality to the mirror. We also observe changes in the asymmetric expression of the epithalamic marker leftover and in the size of the dorsolateral part of the habenula in adult zebrafish. Our data indicate that VPA exposure neutralizes the animals' visual field bias, with a complete loss of the left-eye use bias in front of their own mirror image, and alters brain asymmetric gene expression and morphology, opening new perspectives to investigate brain lateralization and its link to atypical social cognitive development.


Subject(s)
Habenula , Perciformes , Animals , Valproic Acid/adverse effects , Zebrafish/genetics , Behavior, Animal , Larva , Social Behavior , Gene Expression
17.
J Psychiatr Res ; 171: 185-196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301534

ABSTRACT

Anxiety disorders, common symptoms during morphine withdrawal, are important negative reinforcement factors leading to relapse. Lateral habenula serves as a negative reinforcement center, however its role in morphine withdrawal-induced anxiety remains uncovered. The hyperpolarization activated cyclic nucleotide-gated (HCN) channels have been reported to be important in emotion processing and addiction, but the role of HCN in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, Western blot, immunofluorescence, electrophysiology and virus-mediated regulation of HCN, we found that: (1) Intra-LHb injection of selective HCN blocker ZD7288 alleviated anxiety-like behaviors in morphine protracted abstinent male mice. (2) The LHb neuronal activity was increased by morphine protracted abstinence. (3) LHb neurons were inhibited by ZD7288 and activated by 8-Br-cAMP respectively, which were enhanced by morphine withdrawal. (4) HCN1 in the LHb was upregulated by morphine withdrawal. (5) Virus-mediated overexpression of HCN1 in the LHb was sufficient to produce anxiety-like behaviors in male mice and virus-mediated knockdown of HCN1 in the LHb prevented the anxiety-like behaviors in male mice. The findings reveal that selective blockade of HCN1 channels in the LHb may represent a therapeutic approach to morphine withdrawal-induced anxiety.


Subject(s)
Habenula , Morphine , Mice , Male , Animals , Morphine/pharmacology , Habenula/physiology , Neurons , Anxiety/chemically induced , Anxiety/drug therapy , Anxiety Disorders
19.
Acta Pharmacol Sin ; 45(5): 945-958, 2024 May.
Article in English | MEDLINE | ID: mdl-38326624

ABSTRACT

Glutamatergic neurons in ventral pallidum (VPGlu) were recently reported to mediate motivational and emotional behavior, but its role in opioid addiction still remains to be elucidated. In this study we investigated the function of VPGlu in the context-dependent heroin taking and seeking behavior in male rats under the ABA renewal paradigm. By use of cell-type-specific fiber photometry, we showed that the calcium activity of VPGlu were inhibited during heroin self-administration and context-induced relapse, but activated after extinction in a new context. The drug seeking behavior was accompanied by the decreased calcium signal of VPGlu. Chemogenetic manipulation of VPGlu bidirectionally regulated heroin taking and seeking behavior. Anterograde tracing showed that the lateral habenula, one of the epithalamic structures, was the major output region of VPGlu, and its neuronal activity was consistent with VPGlu in different phases of heroin addiction and contributed to the motivation for heroin. VPGlu axon terminals in LHb exhibited dynamic activity in different phases of heroin addiction. Activation of VPGlu-LHb circuit reduced heroin seeking behavior during context-induced relapse. Furthermore, the balance of excitation/inhibition from VP to LHb was shifted to enhanced glutamate transmission after extinction of heroin seeking motivation. Overall, the present study demonstrated that the activity of VPGlu was involved in the regulation of heroin addiction and identified the VPGlu-LHb pathway as a potential intervention to reduce heroin seeking motivation.


Subject(s)
Basal Forebrain , Glutamic Acid , Heroin Dependence , Neurons , Rats, Sprague-Dawley , Animals , Male , Heroin Dependence/metabolism , Heroin Dependence/psychology , Basal Forebrain/metabolism , Glutamic Acid/metabolism , Neurons/metabolism , Drug-Seeking Behavior , Heroin , Rats , Self Administration , Habenula/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...