Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 392
Filter
1.
Biol Psychiatry ; 95(10): 912-913, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692797
2.
Nat Commun ; 15(1): 4013, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740778

ABSTRACT

Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.


Subject(s)
Basal Forebrain , Fear , Habenula , Neurons , Animals , Habenula/physiology , Male , Fear/physiology , Basal Forebrain/physiology , Basal Forebrain/metabolism , Mice , Neurons/physiology , Neurons/metabolism , Optogenetics , Mice, Inbred C57BL , Social Behavior , Behavior, Animal/physiology , Neural Pathways/physiology , Glutamic Acid/metabolism , Conditioning, Classical/physiology
3.
BMC Neurosci ; 25(Suppl 1): 22, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627616

ABSTRACT

BACKGROUND: The habenula is a major regulator of serotonergic neurons in the dorsal raphe, and thus of brain state. The functional connectivity between these regions is incompletely characterized. Here, we use the ability of changes in irradiance to trigger reproducible changes in activity in the habenula and dorsal raphe of zebrafish larvae, combined with two-photon laser ablation of specific neurons, to establish causal relationships. RESULTS: Neurons in the habenula can show an excitatory response to the onset or offset of light, while neurons in the anterior dorsal raphe display an inhibitory response to light, as assessed by calcium imaging. The raphe response changed in a complex way following ablations in the dorsal habenula (dHb) and ventral habenula (vHb). After ablation of the ON cells in the vHb (V-ON), the raphe displayed no response to light. After ablation of the OFF cells in the vHb (V-OFF), the raphe displayed an excitatory response to darkness. After ablation of the ON cells in the dHb (D-ON), the raphe displayed an excitatory response to light. We sought to develop in silico models that could recapitulate the response of raphe neurons as a function of the ON and OFF cells of the habenula. Early attempts at mechanistic modeling using ordinary differential equation (ODE) failed to capture observed raphe responses accurately. However, a simple two-layer fully connected neural network (NN) model was successful at recapitulating the diversity of observed phenotypes with root-mean-squared error values ranging from 0.012 to 0.043. The NN model also estimated the raphe response to ablation of D-off cells, which can be verified via future experiments. CONCLUSION: Lesioning specific cells in different regions of habenula led to qualitatively different responses to light in the dorsal raphe. A simple neural network is capable of mimicking experimental observations. This work illustrates the ability of computational modeling to integrate complex observations into a simple compact formalism for generating testable hypotheses, and for guiding the design of biological experiments.


Subject(s)
Habenula , Laser Therapy , Animals , Dorsal Raphe Nucleus , Zebrafish , Habenula/surgery , Habenula/physiology , Computer Simulation
4.
Biol Sex Differ ; 15(1): 37, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654275

ABSTRACT

BACKGROUND: The lateral habenula (LHb) is an epithalamus nucleus that is evolutionarily conserved and involved in various physiological functions, such as encoding value signals, integrating emotional information, and regulating related behaviors. The cells in the LHb are predominantly glutamatergic and have heterogeneous functions in response to different stimuli. The circuitry connections of the LHb glutamatergic neurons play a crucial role in integrating a wide range of events. However, the circuitry connections of LHb glutamatergic neurons in both sexes have not been thoroughly investigated. METHODS: In this study, we injected Cre-dependent retrograde trace virus and anterograde synaptophysin-labeling virus into the LHb of adult male and female Vglut2-ires-Cre mice, respectively. We then quantitatively analyzed the input and output of the LHb glutamatergic connections in both the ipsilateral and contralateral whole brain. RESULTS: Our findings showed that the inputs to LHbvGlut2 neurons come from more than 30 brain subregions, including the cortex, striatum, pallidum, thalamus, hypothalamus, midbrain, pons, medulla, and cerebellum with no significant differences between males and females. The outputs of LHbvGlut2 neurons targeted eight large brain regions, primarily focusing on the midbrain and pons nuclei, with distinct features in presynaptic bouton across different brain subregions. While correlation and cluster analysis revealed differences in input and collateral projection features, the input-output connection pattern of LHbvGlut2 neurons in both sexes was highly similar. CONCLUSIONS: This study provides a systematic and comprehensive analysis of the input and output connections of LHbvGlut2 neurons in male and female mice, shedding light on the anatomical architecture of these specific cell types in the mouse LHb. This structural understanding can help guide further investigations into the complex functions of the LHb.


Subject(s)
Glutamic Acid , Habenula , Neurons , Sex Characteristics , Animals , Female , Male , Habenula/physiology , Glutamic Acid/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Neural Pathways/physiology , Mice
5.
Neuroscience ; 547: 56-73, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38636897

ABSTRACT

Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area generally respond to aversive stimuli or the absence of expected rewards with transient inhibition of firing rates, which can be recapitulated with activation of the lateral habenula (LHb) and eliminated by lesioning the intermediating rostromedial tegmental nucleus (RMTg). However, a minority of DA neurons respond to aversive stimuli, such as foot shock, with a transient increase in firing rate, an outcome that rarely occurs with LHb stimulation. The degree to which individual neurons respond to these two stimulation modalities with the same response phenotype and the role of the RMTg is not known. Here, we record responses from single SN DA neurons to alternating activation of the LHb and foot shock in male rats. Lesions of the RMTg resulted in a shift away from inhibition to no response during both foot shock and LHb stimulation. Furthermore, lesions unmasked an excitatory response during LHb stimulation. The response correspondence within the same neuron between the two activation sources was no different from chance in sham controls, suggesting that external inputs rather than intrinsic DA neuronal properties are more important to response outcome. These findings contribute to a literature that shows a complex neurocircuitry underlies the regulation of DA activity and, by extension, behaviors related to learning, anhedonia, and cognition.


Subject(s)
Dopaminergic Neurons , Habenula , Substantia Nigra , Animals , Male , Habenula/physiology , Dopaminergic Neurons/physiology , Substantia Nigra/physiology , Electroshock , Action Potentials/physiology , Rats , Electric Stimulation , Rats, Sprague-Dawley , Ventral Tegmental Area/physiology
6.
Brain Res ; 1835: 148914, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38580047

ABSTRACT

Closed-loop deep brain stimulation (DBS) system offers a promising approach for treatment-resistant depression, but identifying universally accepted electrophysiological biomarkers for closed-loop DBS systems targeting depression is challenging. There is growing evidence suggesting a strong association between the lateral habenula (LHb) and depression. Here, we took LHb as a key target, utilizing multi-site local field potentials (LFPs) to study the acute and chronic changes in electrophysiology, functional connectivity, and brain network characteristics during the formation of a chronic restraint stress (CRS) model. Furthermore, our model combining the electrophysiological changes of LHb and interactions between LHb and other potential targets of depression can effectively distinguish depressive states, offering a new way for developing effective closed-loop DBS strategies.


Subject(s)
Depression , Habenula , Restraint, Physical , Stress, Psychological , Habenula/physiology , Habenula/physiopathology , Animals , Stress, Psychological/physiopathology , Depression/physiopathology , Restraint, Physical/methods , Male , Disease Models, Animal , Deep Brain Stimulation/methods , Rats , Rats, Sprague-Dawley
7.
Cell Rep ; 43(4): 113968, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38522071

ABSTRACT

The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.


Subject(s)
Habenula , Habenula/physiology , Animals , Humans , Neurons/physiology , Decision Making/physiology
8.
Cell Rep ; 43(3): 113956, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38489267

ABSTRACT

Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of relapse.


Subject(s)
Cocaine , Habenula , Mice , Animals , Habenula/physiology , Cocaine/pharmacology , Memory , Gene Expression Regulation , Recurrence
9.
J Psychiatr Res ; 171: 185-196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301534

ABSTRACT

Anxiety disorders, common symptoms during morphine withdrawal, are important negative reinforcement factors leading to relapse. Lateral habenula serves as a negative reinforcement center, however its role in morphine withdrawal-induced anxiety remains uncovered. The hyperpolarization activated cyclic nucleotide-gated (HCN) channels have been reported to be important in emotion processing and addiction, but the role of HCN in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, Western blot, immunofluorescence, electrophysiology and virus-mediated regulation of HCN, we found that: (1) Intra-LHb injection of selective HCN blocker ZD7288 alleviated anxiety-like behaviors in morphine protracted abstinent male mice. (2) The LHb neuronal activity was increased by morphine protracted abstinence. (3) LHb neurons were inhibited by ZD7288 and activated by 8-Br-cAMP respectively, which were enhanced by morphine withdrawal. (4) HCN1 in the LHb was upregulated by morphine withdrawal. (5) Virus-mediated overexpression of HCN1 in the LHb was sufficient to produce anxiety-like behaviors in male mice and virus-mediated knockdown of HCN1 in the LHb prevented the anxiety-like behaviors in male mice. The findings reveal that selective blockade of HCN1 channels in the LHb may represent a therapeutic approach to morphine withdrawal-induced anxiety.


Subject(s)
Habenula , Morphine , Mice , Male , Animals , Morphine/pharmacology , Habenula/physiology , Neurons , Anxiety/chemically induced , Anxiety/drug therapy , Anxiety Disorders
10.
Eur Arch Psychiatry Clin Neurosci ; 274(4): 867-878, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38236282

ABSTRACT

A number of different receptors are distributed in glutamatergic neurons of the lateral habenula (LHb). These glutamatergic neurons are involved in different neural pathways, which may identify how the LHb regulates various physiological functions. However, the role of dopamine D1 receptor (D1R)-expressing habenular neurons projecting to the ventral tegmental area (VTA) (LHbD1R-VTA) remains not well understood. In the current study, to determine the activity of D1R-expressing neurons in LHb, D1R-Cre mice were used to establish the chronic restraint stress (CRS) depression model. Adeno-associated virus was injected into bilateral LHb in D1R-Cre mice to examine whether optogenetic activation of the LHb D1R-expressing neurons and their projections could induce depression-like behavior. Optical fibers were implanted in the LHb and VTA, respectively. To investigate whether optogenetic inhibition of the LHbD1R-VTA circuit could produce antidepressant-like effects, the adeno-associated virus was injected into the bilateral LHb in the D1R-Cre CRS model, and optical fibers were implanted in the bilateral VTA. The D1R-expressing neuronal activity in the LHb was increased in the CRS depression model. Optogenetic activation of the D1R-expressing neurons in LHb induced behavioral despair and anhedonia, which could also be induced by activation of the LHbD1R-VTA axons. Conversely, optogenetic inhibition of the LHbD1R-VTA circuit improved behavioral despair and anhedonia in the CRS depression model. D1R-expressing glutamatergic neurons in the LHb and their projections to the VTA are involved in the occurrence and regulation of depressive-like behavior.


Subject(s)
Depression , Disease Models, Animal , Habenula , Neural Pathways , Optogenetics , Receptors, Dopamine D1 , Ventral Tegmental Area , Animals , Ventral Tegmental Area/physiopathology , Ventral Tegmental Area/physiology , Habenula/physiology , Mice , Male , Receptors, Dopamine D1/metabolism , Depression/physiopathology , Depression/etiology , Neural Pathways/physiopathology , Mice, Transgenic , Stress, Psychological/physiopathology , Mice, Inbred C57BL , Restraint, Physical , Neurons/physiology
11.
Curr Biol ; 34(3): 489-504.e7, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38211586

ABSTRACT

Animals must maintain physiological processes within an optimal temperature range despite changes in their environment. Through behavioral assays, whole-brain functional imaging, and neural ablations, we show that larval zebrafish, an ectothermic vertebrate, achieves thermoregulation through homeostatic navigation-non-directional and directional movements toward the temperature closest to its physiological setpoint. A brain-wide circuit encompassing several brain regions enables this behavior. We identified the preoptic area of the hypothalamus (PoA) as a key brain structure in triggering non-directional reorientation when thermal conditions are worsening. This result shows an evolutionary conserved role of the PoA as principal thermoregulator of the brain also in ectotherms. We further show that the habenula (Hb)-interpeduncular nucleus (IPN) circuit retains a short-term memory of the sensory history to support the generation of coherent directed movements even in the absence of continuous sensory cues. We finally provide evidence that this circuit may not be exclusive for temperature but may convey a more abstract representation of relative valence of physiologically meaningful stimuli regardless of their specific identity to enable homeostatic navigation.


Subject(s)
Habenula , Zebrafish , Animals , Zebrafish/physiology , Preoptic Area , Habenula/physiology , Larva/physiology , Body Temperature Regulation
12.
Nat Neurosci ; 27(1): 159-175, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177339

ABSTRACT

Behavioral and economic theory dictate that we decide between options based on their values. However, humans and animals eagerly seek information about uncertain future rewards, even when this does not provide any objective value. This implies that decisions are made by endowing information with subjective value and integrating it with the value of extrinsic rewards, but the mechanism is unknown. Here, we show that human and monkey value judgements obey strikingly conserved computational principles during multi-attribute decisions trading off information and extrinsic reward. We then identify a neural substrate in a highly conserved ancient structure, the lateral habenula (LHb). LHb neurons signal subjective value, integrating information's value with extrinsic rewards, and the LHb predicts and causally influences ongoing decisions. Neurons in key input areas to the LHb largely signal components of these computations, not integrated value signals. Thus, our data uncover neural mechanisms of conserved computations underlying decisions to seek information about the future.


Subject(s)
Habenula , Neurons , Animals , Humans , Neurons/physiology , Reward , Habenula/physiology , Uncertainty , Neural Pathways/physiology
13.
Neurochem Res ; 49(3): 771-784, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38102342

ABSTRACT

The aversion to cold is a fundamental motivated behavior that contributes to the body temperature homeostasis. However, the involvement of the lateral habenula (LHb) as a regulatory hub for negative emotions in this physiological process remains uninvestigated. In this study, we demonstrate an elevation in the population activity of LHb neurons following exposure to cold stimuli. Additionally, we establish the necessity of Vglut2-expressing neurons within the LHb for the encoding of cold aversion behaviors. Furthermore, we have elucidated a neural circuit from excitatory neurons of the dorsomedial hypothalamus (DMH) to LHb that plays a crucial role in this progress. Manipulation of the DMH-LHb circuit has a significant impact on cold aversion behavior in mice. It is worth noting that this circuit does not exhibit any noticeable effects on autonomic thermoregulation or depression-like behavior. The identification of these neural mechanisms involved in behavioral thermoregulation provides a promising avenue for future research.


Subject(s)
Habenula , Mice , Animals , Habenula/physiology , Avoidance Learning/physiology , Neurons/physiology
14.
Cell Rep ; 42(10): 113170, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37738124

ABSTRACT

Chronic stress and chronic pain are two major predisposing factors to trigger depression. Enhanced excitatory input to the lateral habenula (LHb) has been implicated in the pathophysiology of depression. However, the contribution of inhibitory transmission remains unclear. Here, we dissect an inhibitory projection from the sensory thalamic reticular nucleus (sTRN) to the LHb, which is activated by acute aversive stimuli. However, chronic restraint stress (CRS) weakens sTRN-LHb synaptic strength, and this synaptic attenuation is indispensable for CRS-induced LHb neural hyperactivity and depression onset. Moreover, artificially inhibiting the sTRN-LHb circuit induces depressive-like behaviors in healthy mice, while enhancing this circuit relieves depression induced by both chronic stress and chronic pain. Intriguingly, neither neuropathic pain nor comorbid mechanical hypersensitivity in chronic stress is affected by this pathway. Altogether, our study demonstrates an sTRN-LHb circuit in establishing and modulating depression, thus shedding light on potential therapeutic targets for preventing or managing depression.


Subject(s)
Chronic Pain , Habenula , Mice , Animals , Depression/metabolism , Neurons/metabolism , Habenula/physiology , Thalamic Nuclei
15.
Brain Res Bull ; 202: 110745, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37598800

ABSTRACT

Depression is a series of symptoms that influence mood, thinking, and behavior and create unpleasant emotions like hopelessness and apathy. Treatment-resistant depression (TRD) affects 30 % of depression patients despite the availability of several non-invasive therapies. Deep brain stimulation (DBS) is a novel therapy for TRD. The aim of the current study was to evaluate the effect of LHb-DBS by recording local field potentials (LFP) and conducting behavioral experiments. Thirty-two mature male Wistar rats were randomly divided into four groups: control, chronic mild stress (CMS), CMS+DBS, and DBS. After surgery and electrode placement in the lateral habenula (LHb), nucleus accumbens (NAc), and prelimbic cortex (PrL), the CMS protocol was applied for 3 weeks to create depression-like models. The open field test (OFT), sucrose preference test (SPT), and forced swim test (FST) were also performed. In the DBS groups, the LHb area was stimulated for four consecutive days. Finally, on the 22nd day, LFP was recorded from the NAc and PrL and analyzed using MATLAB software. Analyzing the findings using ANOVA and P-values ≤ 0.05 was considered. LHb-DBS alleviated depression-like behaviors in chronic moderate stress model rats (P ≤ 0.05). Three weeks of CMS enhanced almost all band powers in the NAc, while LHb-DBS decreased the power of the theta, alpha, beta, and gamma bands in the NAc (P ≤ 0.05), and the low-gamma band in the PrL. CMS also boosted the NAc-PrL coherence in low-frequency bands, while LHb-DBS increased beta and low gamma band coherence (P ≤ 0.05). In sum, the results of the present study showed that depression enhances low-frequency coherence between NAc and PrL cortex. Depression also potentiates many brain oscillations in the NAc, which can be mainly reversed by LHb-DBS.


Subject(s)
Deep Brain Stimulation , Habenula , Humans , Rats , Male , Animals , Depression/therapy , Nucleus Accumbens , Rats, Wistar , Deep Brain Stimulation/methods , Habenula/physiology , Disease Models, Animal
16.
Brain Connect ; 13(9): 541-552, 2023 11.
Article in English | MEDLINE | ID: mdl-37578129

ABSTRACT

Introduction: The habenula, a brain region involved in aversion, might negatively modulate caloric intake. Functional magnetic resonance imaging (fMRI) studies reported associations between weight loss and habenula functional connectivity. However, whether habenula resting-state functional connectivity (rsFC) and reward-related activity are altered in obesity is yet unknown. Methods: Using data from the Human Connectome Project, we included 300 subjects with various body mass indexes (BMIs) and a healthy long-term blood glucose (hemoglobin A1c [HbA1c]). In addition, we investigated a potential BMI × HbA1c interaction in a separate cohort including subjects with prediabetes (n = 72). Habenula rsFC was assessed using a region of interest (ROI)-to-ROI analysis. Furthermore, a separate analysis using gambling task fMRI data focused on reward-related habenula activity. Results: We did not find an association between BMI and habenula rsFC for any of the ROIs. For the exploratory analysis of the BMI × HbA1c effect, a significant interaction effect was found for the habenula-ventral tegmental area (VTA) connection, but this did not survive multiple comparisons correction. Monetary punishment compared with reward activated the bilateral habenula in the BMI sample, but this activity was not associated with BMI. Discussion: In conclusion, we did not find evidence for an association between BMI and habenula rsFC or reward-related activity. However, there might be an interaction between BMI and HbA1c for the habenula-VTA rsFC, suggestive of a role of the habenula in glucose regulation. Future studies should focus on metabolic parameters in their experimental design to confirm our findings and explore the precise role of the habenula in metabolism.


Subject(s)
Connectome , Habenula , Humans , Connectome/methods , Habenula/diagnostic imaging , Habenula/physiology , Glycated Hemoglobin , Magnetic Resonance Imaging , Obesity/diagnostic imaging , Reward
17.
Neuroscience ; 529: 172-182, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37572877

ABSTRACT

While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.


Subject(s)
Acetylcholine , Habenula , Mice , Animals , Acetylcholine/pharmacology , Habenula/physiology , Acetylcholinesterase , Cholinergic Neurons/physiology , Cholinergic Agents/pharmacology
18.
Cell Rep ; 42(7): 112695, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37402169

ABSTRACT

The lateral habenula (LHb) has been considered a moderator of social behaviors. However, it remains unknown how LHb regulates social interaction. Here, we show that the hydroxymethylase Tet2 is highly expressed in the LHb. Tet2 conditional knockout (cKO) mice exhibit impaired social preference; however, replenishing Tet2 in the LHb rescues social preference impairment in Tet2 cKO mice. Tet2 cKO alters DNA hydroxymethylation (5hmC) modifications in genes that are related to neuronal functions, as is confirmed by miniature two-photon microscopy data. Further, Tet2 knockdown in the glutamatergic neurons of LHb causes impaired social behaviors, but the inhibition of glutamatergic excitability restores social preference. Mechanistically, we identify that Tet2 deficiency reduces 5hmC modifications on the Sh3rf2 promoter and Sh3rf2 mRNA expression. Interestingly, Sh3rf2 overexpression in the LHb rescues social preference in Tet2 cKO mice. Therefore, Tet2 in the LHb may be a potential therapeutic target for social behavior deficit-related disorders such as autism.


Subject(s)
Dioxygenases , Habenula , Mice , Animals , Depression/metabolism , Habenula/physiology , Neurons/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism
19.
J Comp Neurol ; 531(15): 1582-1605, 2023 10.
Article in English | MEDLINE | ID: mdl-37507852

ABSTRACT

The epithalamus, an area of the dorsal diencephalon found in all vertebrates, consists of the habenula, the subhabenular nuclei, and associated tracts. The habenula is itself divisible into two parts-a medial and a lateral nucleus differing in their inputs, outputs, and cellular morphology. The medial component is related to the limbic system and serotonergic raphe, while the lateral nucleus is more interconnected with the basal ganglia and midbrain dopamine systems. These findings, which come from experiments mainly done on mammals, serve as a basis for comparison with other vertebrates. However, similar studies in other amniotes, such as reptiles, are few. To fill this gap in knowledge, two species of crocodiles were examined utilizing a variety of histological methods in various planes of section. The following results were obtained. First, the habenula was divided into medial and lateral parts based on its cytoarchitecture. Neurons in the medial habenula were small, were closely packed, and had a limited dendritic arbor characterized by unusual distal dendritic appendages, whereas neurons in the lateral habenula were larger, were more loosely packed, and had longer dendritic processes that were commonly beaded. Second, the stria medullaris, the major input to the habenula, was identified by its immunoreactivity to parvalbumin. Third, the fasciculus retroflexus (habenulointerpeduncular tract), the primary output of the habenula, was visualized by staining with acetylcholinesterase. Fourth, nuclei associated with the habenula, the subhabenular nuclei, have been identified and characterized. These features provide a means to recognize the major nuclei and tracts in the epithalamus in crocodiles and are likely applicable to other reptiles.


Subject(s)
Alligators and Crocodiles , Epithalamus , Habenula , Animals , Acetylcholinesterase , Diencephalon , Neurons , Habenula/physiology , Vertebrates , Mammals
20.
Neuron ; 111(16): 2583-2600.e6, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37295418

ABSTRACT

Chronic stress fuels the consumption of palatable food and can enhance obesity development. While stress- and feeding-controlling pathways have been identified, how stress-induced feeding is orchestrated remains unknown. Here, we identify lateral habenula (LHb) Npy1r-expressing neurons as the critical node for promoting hedonic feeding under stress, since lack of Npy1r in these neurons alleviates the obesifying effects caused by combined stress and high fat feeding (HFDS) in mice. Mechanistically, this is due to a circuit originating from central amygdala NPY neurons, with the upregulation of NPY induced by HFDS initiating a dual inhibitory effect via Npy1r signaling onto LHb and lateral hypothalamus neurons, thereby reducing the homeostatic satiety effect through action on the downstream ventral tegmental area. Together, these results identify LHb-Npy1r neurons as a critical node to adapt the response to chronic stress by driving palatable food intake in an attempt to overcome the negative valence of stress.


Subject(s)
Habenula , Mice , Animals , Neural Pathways/physiology , Habenula/physiology , Hypothalamic Area, Lateral , Ventral Tegmental Area , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...