Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.376
Filter
1.
Sci Rep ; 14(1): 12737, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830922

ABSTRACT

The COVID-19 pandemic has altered the infection landscape for many pathogens. This retrospective study aimed to compare Haemophilus influenzae (H. influenzae) infections in pediatric CAP patients hospitalized before (2018-2019) and during (2020-2022) the COVID-19 pandemic. We analyzed the clinical epidemiology and antimicrobial resistance (AMR) patterns of H. influenzae from a tertiary hospital in southwest China. A total of 986 pediatric CAP patients with H. influenzae-associated infections were included. Compared to 2018, the positivity rate increased in 2019 but dropped significantly in 2020. Although it rose in the following 2 years, the rate in 2022 remained significantly lower than in 2019. Patients' age during the pandemic was significantly higher than in 2018 and 2019, while gender composition remained similar across both periods. Notably, there were significant changes in co-infections with several respiratory pathogens during the pandemic. Resistance rates of H. influenzae isolates to antibiotics varied, with the highest resistance observed for ampicillin (85.9%) and the lowest for cefotaxime (0.0%). Resistance profiles to various antibiotics underwent dramatic changes during the COVID-19 pandemic. Resistance to amoxicillin-clavulanate, cefaclor, cefuroxime, trimethoprim-sulfamethoxazole, and the proportion of multi-drug resistant (MDR) isolates significantly decreased. Additionally, MDR isolates, alongside isolates resistant to specific drugs, were notably prevalent in ampicillin-resistant and ß-lactamase-positive isolates. The number of pediatric CAP patients, H. influenzae infections, and isolates resistant to certain antibiotics exhibited seasonal patterns, peaking in the winter of 2018 and 2019. During the COVID-19 pandemic, sharp decreases were observed in February 2020, and there was no resurgence in December 2022. These findings indicate that the COVID-19 pandemic has significantly altered the infection spectrum of H. influenzae in pediatric CAP patients, as evidenced by shifts in positivity rate, demographic characteristics, respiratory co-infections, AMR patterns, and seasonal trends.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Community-Acquired Infections , Haemophilus Infections , Haemophilus influenzae , Humans , COVID-19/epidemiology , COVID-19/complications , Male , Female , Haemophilus influenzae/drug effects , Haemophilus influenzae/isolation & purification , Child , Child, Preschool , Haemophilus Infections/epidemiology , Haemophilus Infections/drug therapy , Haemophilus Infections/microbiology , Retrospective Studies , Community-Acquired Infections/epidemiology , Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology , Infant , China/epidemiology , Anti-Bacterial Agents/therapeutic use , Hospitalization , Adolescent , Pandemics , Coinfection/epidemiology , Coinfection/drug therapy , Coinfection/microbiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/drug effects , Drug Resistance, Bacterial
2.
Front Immunol ; 15: 1380732, 2024.
Article in English | MEDLINE | ID: mdl-38690283

ABSTRACT

Haemophilus parainfluenzae is a Gram-negative opportunist pathogen within the mucus of the nose and mouth without significant symptoms and has an ability to cause various infections ranging from ear, eye, and sinus to pneumonia. A concerning development is the increasing resistance of H. parainfluenzae to beta-lactam antibiotics, with the potential to cause dental infections or abscesses. The principal objective of this investigation is to utilize bioinformatics and immuno-informatic methodologies in the development of a candidate multi-epitope Vaccine. The investigation focuses on identifying potential epitopes for both B cells (B lymphocytes) and T cells (helper T lymphocytes and cytotoxic T lymphocytes) based on high non-toxic and non-allergenic characteristics. The selection process involves identifying human leukocyte antigen alleles demonstrating strong associations with recognized antigenic and overlapping epitopes. Notably, the chosen alleles aim to provide coverage for 90% of the global population. Multi-epitope constructs were designed by using suitable linker sequences. To enhance the immunological potential, an adjuvant sequence was incorporated using the EAAAK linker. The final vaccine construct, comprising 344 amino acids, was achieved after the addition of adjuvants and linkers. This multi-epitope Vaccine demonstrates notable antigenicity and possesses favorable physiochemical characteristics. The three-dimensional conformation underwent modeling and refinement, validated through in-silico methods. Additionally, a protein-protein molecular docking analysis was conducted to predict effective binding poses between the multi-epitope Vaccine and the Toll-like receptor 4 protein. The Molecular Dynamics (MD) investigation of the docked TLR4-vaccine complex demonstrated consistent stability over the simulation period, primarily attributed to electrostatic energy. The docked complex displayed minimal deformation and enhanced rigidity in the motion of residues during the dynamic simulation. Furthermore, codon translational optimization and computational cloning was performed to ensure the reliability and proper expression of the multi-Epitope Vaccine. It is crucial to emphasize that despite these computational validations, experimental research in the laboratory is imperative to demonstrate the immunogenicity and protective efficacy of the developed vaccine. This would involve practical assessments to ascertain the real-world effectiveness of the multi-epitope Vaccine.


Subject(s)
Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Epitopes, T-Lymphocyte/immunology , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , Molecular Docking Simulation , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Vaccine Development
3.
Front Cell Infect Microbiol ; 14: 1397940, 2024.
Article in English | MEDLINE | ID: mdl-38751999

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.


Subject(s)
Biofilms , Haemophilus influenzae , Moraxella catarrhalis , Moraxellaceae Infections , Moraxella catarrhalis/physiology , Humans , Haemophilus influenzae/physiology , Haemophilus influenzae/pathogenicity , Biofilms/growth & development , Moraxellaceae Infections/microbiology , Persistent Infection/microbiology , Host-Pathogen Interactions , Haemophilus Infections/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology , Models, Biological , Respiratory Tract Infections/microbiology , Epithelial Cells/microbiology
4.
Hum Vaccin Immunother ; 20(1): 2352909, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38752802

ABSTRACT

Thailand has incorporated the whole-cell (wP) pertussis vaccine into the expanded program on immunization since 1977 and has offered the acellular pertussis (aP) vaccine as an optional vaccine for infants since 2001. We followed healthy children from a clinical trial (ClinicalTrials.gov NCT02408926) in which children were randomly assigned to receive either pentavalent (DTwP-HB-Hib) or hexavalent (DTaP-IPV-HB-Hib) vaccines for their primary series (administered at 2, 4, and 6 months) and first booster vaccination (18 months). Both groups received Tdap-IPV as a second booster at the age of 4 y. Blood samples were collected for evaluation of antibody persistence to diphtheria toxoid (DT), tetanus toxoid (TT), and Bordetella pertussis (B. pertussis) between 2 and 6 y of age annually, and for the immunogenicity study of Tdap-IPV at 1 month after the second booster. Antibody persistence to Haemophilus influenzae type b (Hib) was followed until 3 y of age. A total of 105 hexavalent-vaccinated children and 91 pentavalent-vaccinated children completed this study. Both pentavalent and hexavalent groups demonstrated increased antibody levels against DT, TT, and B. pertussis antigens following the second booster with Tdap-IPV. All children achieved a seroprotective concentration for anti-DT and anti-TT IgG at 1 month post booster. The hexavalent group possessed significantly higher anti-pertactin IgG (adjusted p = .023), whereas the pentavalent group possessed significantly higher anti-pertussis toxin IgG (adjusted p < .001) after the second booster. Despite declining levels post-second booster, a greater number of children sustained protective levels of anti-DT and anti-TT IgG compared to those after the first booster.


Subject(s)
Antibodies, Bacterial , Bordetella pertussis , Diphtheria-Tetanus-Pertussis Vaccine , Haemophilus Vaccines , Haemophilus influenzae type b , Immunization, Secondary , Vaccines, Combined , Whooping Cough , Humans , Antibodies, Bacterial/blood , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Infant , Female , Male , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Child, Preschool , Bordetella pertussis/immunology , Haemophilus influenzae type b/immunology , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Whooping Cough/prevention & control , Whooping Cough/immunology , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Thailand , Tetanus Toxoid/immunology , Tetanus Toxoid/administration & dosage , Diphtheria Toxoid/immunology , Diphtheria Toxoid/administration & dosage , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Diphtheria/prevention & control , Diphtheria/immunology , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology
5.
J Korean Med Sci ; 39(15): e136, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38651222

ABSTRACT

BACKGROUND: Haemophilus influenzae is a frequently encountered pathogen responsible for respiratory tract infections in children. Following the detection of ceftriaxone-resistant H. influenzae at our institution, we aimed to investigate the resistance mechanisms of ceftriaxone in H. influenzae, with a particular focus on alterations in penicillin-binding protein 3 (PBP3) and ß-lactamase production. METHODS: Among H. influenzae isolates collected at Asan Medical Center Children's Hospital from March 2014 to April 2019, ceftriaxone-resistant strains by the disk-diffusion test were included. Ceftriaxone minimum inhibitory concentrations (MICs) were determined using the E-test according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The presence of ß-lactamase was assessed through cefinase test and TEM-1/ROB-1 polymerase chain reaction (PCR). PBP3 alterations were explored via ftsI gene sequencing. RESULTS: Out of the 68 collected strains, 21 exhibited resistance to ceftriaxone in disk diffusion tests. Two strains were excluded due to failed subculture. Among 19 ceftriaxone-resistant H. influenzae isolates, eighteen were non-typeable H. influenzae, and twelve were positive for TEM-1 PCR. Isolates were classified into groups II (harboring only N526K, n = 3), III (N526K+S385T, n = 2), III+ (S385T+L389F+N526K, n = 11), and III-like+ (S385T+L389F+R517H, n = 3) according to the PBP3 alteration pattern. With a median ceftriaxone MIC of 0.190 mg/L (range, 0.008-0.750), the median ceftriaxone MIC was the highest in group III-like+ (0.250 mg/L), followed by groups III+ (0.190 mg/L), III (0.158 mg/L), and II (0.012 mg/L). All three strains belonging to group II, which did not harbor the S385T substitution, had ceftriaxone MICs of ≤ 0.125 mg/L. CONCLUSION: The emergence of ceftriaxone-resistant H. influenzae with ceftriaxone MIC values of up to 0.75 mg/L was observed even in children in South Korea, with most associated with S385T and L389F substitutions. The N526K mutation alone does not significantly impact ceftriaxone resistance. Further large-scale studies are essential to investigate changes in antibiotic resistance patterns and factors influencing antibiotic resistance in H. influenzae isolated from pediatric patients in Korea.


Subject(s)
Anti-Bacterial Agents , Ceftriaxone , Haemophilus Infections , Haemophilus influenzae , Microbial Sensitivity Tests , beta-Lactamases , Ceftriaxone/pharmacology , Haemophilus influenzae/drug effects , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/genetics , Humans , Anti-Bacterial Agents/pharmacology , Republic of Korea , beta-Lactamases/genetics , beta-Lactamases/metabolism , Child , Haemophilus Infections/microbiology , Haemophilus Infections/drug therapy , Penicillin-Binding Proteins/genetics , Child, Preschool , Drug Resistance, Bacterial , Infant , Female , Male , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Hum Vaccin Immunother ; 20(1): 2343544, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38655676

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.


What is the context? Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory illness in older adults and the third leading cause of death worldwide.One bacterium in the lungs, non-typeable Haemophilus influenzae (NTHi), is responsible for acute exacerbation of the disease, characterized by an increase in airway wall inflammation and symptoms, leading to high morbidity and mortality.A vaccine targeting NTHi was previously developed but did not show efficacy in reducing exacerbations in COPD patients, probably because the vaccine did not elicit an immune response in the lung mucosae, where the bacteria are located.What is the impact? Parenteral immunization with new vaccines targeting NTHi is able to elicit immune defense at the level of lung mucosae.Now that antibodies can be measured in sputum, new vaccines against COPD exacerbations or other lung infections can be tested for efficacy in the actual target tissue.Also, lung immunity against specific pathogens can now be tested.What is new? We determined that antigen-specific antibodies were present in the lungs after vaccination; these were assessed in sputum after vaccination with NTHi surface antigens.NTHi-specific IgG were present in the lungs and appeared to have arrived there primarily by transudation, a type of leakage from the serum to the lung mucosae.Transudation appeared to be stronger in severe than in moderate COPD patients.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Pulmonary Disease, Chronic Obstructive , Sputum , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/immunology , Haemophilus Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/immunology , Sputum/microbiology
7.
Infect Immun ; 92(5): e0045323, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38602405

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a major otitis media (OM) pathogen, with colonization a prerequisite for disease development. Most acute OM is in children <5 years old, with recurrent and chronic OM impacting hearing and learning. Therapies to prevent NTHi colonization and/or disease are needed, especially for young children. Respiratory viruses are implicated in driving the development of bacterial OM in children. We have developed an infant mouse model of influenza-driven NTHi OM, as a preclinical tool for the evaluation of safety and efficacy of clinical therapies to prevent NTHi colonization and the development of OM. In this model, 100% of infant BALB/cARC mice were colonized with NTHi, and all developed NTHi OM. Influenza A virus (IAV) facilitated the establishment of dense (1 × 105 CFU/mL) and long-lasting (6 days) NTHi colonization. IAV was essential for the development of NTHi OM, with 100% of mice in the IAV/NTHi group developing NTHi OM compared with 8% of mice in the NTHi only group. Histological analysis and cytokine measurements revealed that the inflammation observed in the middle ear of the infant mice with OM reflected inflammation observed in children with OM. We have developed the first infant mouse model of NTHi colonization and OM. This ascension model uses influenza-driven establishment of OM and reflects the clinical pathology of bacterial OM developing after a respiratory virus infection. This model provides a valuable tool for testing therapies to prevent or treat NTHi colonization and disease in young children.


Subject(s)
Disease Models, Animal , Haemophilus Infections , Haemophilus influenzae , Influenza A virus , Otitis Media , Animals , Otitis Media/microbiology , Haemophilus influenzae/growth & development , Haemophilus influenzae/pathogenicity , Haemophilus influenzae/physiology , Haemophilus Infections/microbiology , Mice , Influenza A virus/pathogenicity , Influenza A virus/growth & development , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/complications , Humans , Animals, Newborn
8.
Hum Vaccin Immunother ; 20(1): 2342630, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38687024

ABSTRACT

Since the introduction of Haemophilus Influenzae type b (Hib) conjugate vaccines, invasive Hib disease has strongly declined worldwide, yet continued control of Hib disease remains important. In Europe, currently three different hexavalent combination vaccines containing Hib conjugates are marketed. In this phase IV, single-blind, randomized, controlled, multi-country study (NCT04535037), we aimed to compare, in a 2 + 1 vaccination schedule, the immunogenicity and safety and show non-inferiority, as well as superiority, of DTPa-HBV-IPV/Hib (Ih group) versus DTaP5-HB-IPV-Hib (Va group) in terms of anti-polyribosylribitol phosphate (PRP) antibody geometric mean concentrations (GMCs) and proportion of participants reaching anti-PRP antibody concentrations greater than or equal to a threshold of 5 µg/mL. One month after the booster vaccination, the anti-PRP antibody GMC ratio (Ih group/Va group) was 0.917 (95% CI: 0.710-1.185), meeting the non-inferiority criteria. The difference in percentage of participants (Ih group - Va group) reaching GMCs ≥5 µg/mL was -6.3% (95% CI: -14.1% to 1.5%), not reaching the predefined non-inferiority threshold. Interestingly, a slightly higher post-booster antibody avidity was observed in the Ih group versus the Va group. Both vaccines were well tolerated, and no safety concerns were raised. This study illustrates the different kinetics of the anti-PRP antibody response post-primary and post-booster using the two vaccines containing different Hib conjugates and indicates a potential differential impact of concomitant vaccinations on the anti-PRP responses. The clinical implications of these differences should be further studied.


Vaccination against Haemophilus influenzae type b (Hib) is included in the majority of national immunization programs worldwide and has shown to be effective in preventing Hib disease. In Europe, different vaccines containing Hib components are marketed. We compared the immune response and safety of 2 of these (DTPa-HBV-IPV/Hib, Ih group) and DTaP5-HB-IPV-Hib, Va group) in infants and toddlers, when used in a 2 + 1 schedule, i.e. two primary vaccination doses (at 2 and 4 months of age of the infant), followed by one booster dose at the age of one year. One month after the booster vaccination, the antibody concentration ratio between both groups (Ih group/Va group) was 0.917 (95% CI: 0.710­1.185) showing the DTPa-HBV-IPV/Hib vaccine was non-inferior to the DTaP5-HB-IPV-Hib vaccine; the difference in percentage of participants (Ih group ­ Va group) with antibody concentrations above 5 µg/mL was -6.3% (95% CI: −14.1% to 1.5%), which did not meet the pre-defined criterion for non-inferiority. In the Ih group, the quality of antibodies produced was somewhat higher versus the Va group. Both vaccines were well tolerated, and no safety concerns were raised. The kinetics of the immune response are different between the 2 vaccines. Since both vaccines contain different additional components (conjugated proteins), a possible effect of concomitant (simultaneously administered) vaccines was studied. Further investigations to confirm our findings are needed.


Subject(s)
Antibodies, Bacterial , Haemophilus Vaccines , Haemophilus influenzae type b , Immunization Schedule , Polysaccharides , Vaccines, Combined , Vaccines, Conjugate , Humans , Haemophilus Vaccines/immunology , Haemophilus Vaccines/adverse effects , Haemophilus Vaccines/administration & dosage , Antibodies, Bacterial/blood , Infant , Female , Male , Single-Blind Method , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/adverse effects , Haemophilus influenzae type b/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccines, Combined/adverse effects , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology , Hepatitis B Vaccines/immunology , Hepatitis B Vaccines/administration & dosage , Hepatitis B Vaccines/adverse effects , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/adverse effects , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Diphtheria-Tetanus-Pertussis Vaccine/administration & dosage , Diphtheria-Tetanus-Pertussis Vaccine/adverse effects , Child, Preschool , Immunogenicity, Vaccine , Europe
9.
Poult Sci ; 103(6): 103751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652951

ABSTRACT

Infectious coryza (IC) is an acute infectious respiratory disease in chickens that is caused by Avibacterium paragallinarum (A. paragallinarum). A. paragallinarum poses a significant threat to poultry health due to its virulence and multidrug resistance. This study isolated and identified 21 A. paragallinarum isolates from Guangdong between 2022 and 2023. Biochemical tests showed that 100% of A. paragallinarum isolates fermented glucose but did not ferment alginate and galactose, and only YZ18 was nicotinamide adenine dinucleotide independent. To determine the genetic relatedness between these isolates and NCBI reference strains, whole-genome-based phylogenetic analysis was employed. In addition, analysis of the 2,000 bp-length hmtp210 gene showed that the hmtp210 gene was strongly associated with A. paragallinarum serotypes. Meanwhile, a PCR assay for serotyping A. paragallinarum was developed based on the hmtp210 gene, this assay has high sensitivity and specificity. The antimicrobial susceptibility of isolates was assessed using the disk diffusion method. The antibiotic resistance genes of isolates were analyzed using the genomic method. Phenotypic resistance to ampicillin (95.2%), streptomycin (95.2%), methotrexate-sulfamethoxazole (90.5%), and tetracycline (85.7%) was most frequent among the isolates. All of the isolates exhibited resistance to multiple drugs, and furthermore, the isolates possessed a collective total of 14 genes associated with antibiotic resistance. This study will contribute to advancing our knowledge of A. paragallinarum antibiotic resistance and provide a scientific basis for the prophylaxis and treatment of IC, and the subsequent rational design of potential clinical therapeutics.


Subject(s)
Anti-Bacterial Agents , Chickens , Poultry Diseases , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Animals , China/epidemiology , Anti-Bacterial Agents/pharmacology , Prevalence , Haemophilus Infections/veterinary , Haemophilus Infections/microbiology , Haemophilus Infections/epidemiology , Pasteurellaceae/genetics , Pasteurellaceae/drug effects , Drug Resistance, Bacterial/genetics , Phylogeny , Haemophilus paragallinarum/genetics , Haemophilus paragallinarum/drug effects , Haemophilus paragallinarum/physiology , Genome, Bacterial
10.
BMC Vet Res ; 20(1): 141, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582846

ABSTRACT

Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.


Subject(s)
Haemophilus Infections , Haemophilus parasuis , Swine Diseases , Animals , B7-H1 Antigen , Haemophilus Infections/microbiology , Haemophilus Infections/veterinary , Immunosuppression Therapy/veterinary , Phosphatidylinositol 3-Kinases , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins c-akt , Swine , Swine Diseases/microbiology , TOR Serine-Threonine Kinases
11.
BMJ Case Rep ; 17(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627050

ABSTRACT

Infective endocarditis (IE) caused by Haemophilus parainfluenzae is a rare but serious condition if not diagnosed and treated promptly. In this article, we describe a patient with H. parainfluenzae IE who initially presented with non-specific symptoms but subsequently developed multiple sequelae of IE. The diagnosis of IE was made based on clinical, echocardiographic, radiological and microbiological findings. He was treated successfully with a mitral valve replacement along with 4 weeks of intravenous antibiotic therapy. Our case highlights the importance of obtaining a thorough history and a complete physical examination to ensure an early diagnosis of IE.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Haemophilus Infections , Male , Humans , Haemophilus parainfluenzae , Haemophilus Infections/complications , Haemophilus Infections/diagnosis , Haemophilus Infections/drug therapy , Endocarditis, Bacterial/complications , Endocarditis, Bacterial/diagnosis , Endocarditis, Bacterial/drug therapy , Endocarditis/microbiology , Echocardiography
12.
Microb Pathog ; 190: 106632, 2024 May.
Article in English | MEDLINE | ID: mdl-38537762

ABSTRACT

With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of ß-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Haemophilus Infections , Haemophilus influenzae , Biofilms/growth & development , Humans , Haemophilus Infections/microbiology , Haemophilus influenzae/physiology , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/genetics , Haemophilus influenzae/drug effects , Haemophilus influenzae/classification , Anti-Bacterial Agents/pharmacology , Child, Preschool , Female , Male , Child , Infant , Microbial Sensitivity Tests , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Microscopy, Electron, Scanning , Drug Resistance, Bacterial , Respiratory System/microbiology , Respiratory System/virology
13.
Int J Med Microbiol ; 314: 151616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461565

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is the dominant pathogen in several infectious diseases. Currently the use of antibiotics is the main intervention to prevent NTHi infections, however with the emergence of drug resistant strains, it has compromised the treatment of respiratory infections with antibiotics. Therefore there is an urgent need to develop a safe and effective vaccine to prevent NTHi infections. We investigate the potential of C-HapS-P6 fusion protein as a vaccine for treating NTHi in murine models. PGEX-6P2/C-HapS-P6 fusion gene was constructed using overlap extension polymerase chain reaction. The recombined plasmid was transformed into Escherichia coli for protein expression. The mice were subjected to intraperitoneal immunization using purified antigens. Immunoglobulin (Ig) G in serum samples and IgA in nasal and lung lavage fluids were analyzed using enzyme-linked immunosorbent assay. Cytokine release and proliferation capacity of splenic lymphocytes in response to antigens were measured in vitro. The protective effect of the C-HapS-P6 protein against NTHi infection was evaluated by NTHi count and histological examination. The data showed that the C-HapS-P6 fusion protein increased significantly the levels of serum IgG and nasal and lung IgA, and promoted the release of interleukin (IL)-2, interferon-ϒ, IL-4, IL-5, and IL-17 and the proliferation of splenic lymphocytes compared with C-HapS or P6 protein treatment alone. Moreover, C-HapS-P6 effectively reduced the NTHi colonization in the nasopharynx and lungs of mice. In conclusion, our results demonstrated that the C-HapS-P6 fusion protein vaccine can significantly enhance humoral and cell immune responses and effectively prevent against NTHi infection in the respiratory tract in murine models.


Subject(s)
Haemophilus Infections , Vaccines , Mice , Animals , Haemophilus influenzae/genetics , Bacterial Outer Membrane Proteins , Immunoglobulin G , Immunoglobulin A/analysis , Anti-Bacterial Agents , Haemophilus Infections/prevention & control , Antibodies, Bacterial , Mice, Inbred BALB C
14.
Pediatr Infect Dis J ; 43(6): 498-504, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38451895

ABSTRACT

BACKGROUND: Haemophilus influenzae (Hi) can cause severe disease in children. This study aimed to identify risk factors related to invasive Hi disease in Alaska children and evaluate carriage in people around them. METHODS: From 2005 to 2011, we investigated episodes of invasive, typeable Hi disease in Alaska children <10 years old. Three age-matched control children were enrolled for each case-patient. We evaluated oropharyngeal Hi carriage in people in close contact with Hi case-patients (contacts) as well as control children and their household members. Individual and household risk factors for illness and carriage were evaluated using questionnaires and chart reviews. RESULTS: Thirty-eight of 44 (86%) children with invasive, typeable Hi disease were recruited: 20 Hi serotype a (53%), 13 serotype b (Hib) (34%) and 5 serotype f (13%). Children with the invasive Hi disease were more likely than controls to have underlying health problems (67% vs. 24%, P = 0.001), other carriers of any Hi in their household (61% vs. 15%, P < 0.001), and inadequate Hib vaccination (26% vs. 9%, P = 0.005). People who carried Hi were younger than noncarriers (mean 12.7 vs. 18.0 years, P = 0.008). The carriage was clustered within case-patient households, with carriage in 19% of household contacts, while only 6.3% of nonhousehold contacts and 5.5% of noncontacts carried the Hi serotype of interest ( P < 0.001). CONCLUSIONS: Factors associated with invasive Hi disease in children included underlying health problems, household carriage and inadequate Hib vaccination. The high level of carriage in case-patient households is important to consider when evaluating treatment and prophylaxis strategies.


Subject(s)
Carrier State , Haemophilus Infections , Haemophilus influenzae , Humans , Haemophilus Infections/epidemiology , Haemophilus Infections/microbiology , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/classification , Child, Preschool , Male , Female , Infant , Alaska/epidemiology , Child , Case-Control Studies , Risk Factors , Carrier State/epidemiology , Carrier State/microbiology , Surveys and Questionnaires
15.
Eur J Clin Microbiol Infect Dis ; 43(4): 791-795, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332396

ABSTRACT

We report for the first time in Portugal a serotype c Haemophilus influenzae isolated from an adult, with HIV-1 infection. Whole-genome sequencing characterized the isolate as clonal complex ST-7, albeit with a novel MLST (ST2754) due to a unique atpG profile. Integration of this genome with other available H. influenzae serotype c genomes from PubMLST revealed its overall genetic distinctiveness, with the closest related isolate being identified in France in 2020. This surveillance study, involving collaboration among hospitals and reference laboratory, successfully contributed to the identification and characterization of this rare serotype.


Subject(s)
Haemophilus Infections , Haemophilus influenzae , Adult , Humans , Serogroup , Haemophilus influenzae/genetics , Multilocus Sequence Typing , Haemophilus Infections/epidemiology , Haemophilus Infections/microbiology , Portugal/epidemiology , Serotyping
16.
mSphere ; 9(3): e0000624, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38380941

ABSTRACT

Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE: The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.


Subject(s)
Haemophilus Infections , Haemophilus influenzae , Haemophilus , Humans , Heme/metabolism , Lung/microbiology , Iron
18.
BMC Infect Dis ; 24(1): 188, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347439

ABSTRACT

OBJECTIVE: Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS: Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS: The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION: NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.


Subject(s)
Haemophilus Infections , Haemophilus influenzae , Child , Humans , Haemophilus Infections/microbiology , Lung/microbiology , Bronchoalveolar Lavage Fluid/microbiology , Epithelial Cells
19.
Infect Disord Drug Targets ; 24(5): e150124225640, 2024.
Article in English | MEDLINE | ID: mdl-38231056

ABSTRACT

OBJECTIVE: The purpose of this study was to find data proving the influence of the Haemophilus influenzae type b (Hib) conjugate vaccination on the frequency of invasive Hib illness. METHODOLOGY: A systematic literature search was conducted on the PubMed database to identify peerreviewed publications pertaining to the epidemiology of Haemophilus influenzae meningitis, both before and after the introduction of Haemophilus influenzae type b (Hib) conjugate vaccines. The search query employed a combination of relevant keywords, including "invasive," "Haemophilus," "influenzae," "meningitis," and specific serotype b (Hib). Additionally, terms related to epidemiology, burden, risk factors, impact, Hib vaccine, Hib conjugate vaccine, combination vaccine, vaccine production, efficacy, immunisation coverage, surveillance, review, clinical aspects, outcomes, and various age groups (adults and children) were incorporated. RESULT: The search encompassed articles published till now. Subsequently, relevant research papers concerning Haemophilus influenzae meningitis were subjected to a comprehensive review and analysis. CONCLUSION: The Hib conjugate vaccination has shown to be extremely effective when administered to the entire population. However, changes to the immunisation protocol appear to be required in order to effectively manage invasive Hib illness.


Subject(s)
Haemophilus Vaccines , Haemophilus influenzae type b , Meningitis, Haemophilus , Vaccines, Conjugate , Adult , Child , Child, Preschool , Humans , Infant , Bacterial Capsules/immunology , Haemophilus Infections/prevention & control , Haemophilus Infections/epidemiology , Haemophilus Infections/microbiology , Haemophilus influenzae type b/immunology , Haemophilus Vaccines/administration & dosage , Haemophilus Vaccines/immunology , Meningitis, Haemophilus/prevention & control , Meningitis, Haemophilus/epidemiology , Meningitis, Haemophilus/microbiology , Vaccination , Vaccine Efficacy , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology
20.
BMC Infect Dis ; 24(1): 90, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225571

ABSTRACT

BACKGROUND: In recent decades, the prevalence of antibiotic resistance is increasing in Haemophilus influenzae (Haemophilus influenzae), which poses important challenges to global health. This research offers a comprehensive meta-analysis of the global epidemiology of multi-drug resistant (MDR) H. influenzae. METHODS: In this study, we conducted a meta-analysis based on PRISMA checklist. Electronic databases including PubMed, ISI Web of Science, Scopus, EMBASE, and Google Scholar were reviewed using keywords related to H. influenzae and antibiotic resistance. Eligible studies were selected based on stringent inclusion and exclusion criteria. Then, data from these studies were analyzed using the Comprehensive Meta-Analysis (CMA) software. RESULTS: Of 375 retrieved articles, 16 met the inclusion criteria. These studies were conducted from 2003 to 2023 and analyzed data from 19,787 clinical isolates of H. influenzae. The results showed different levels of resistance of H. influenzae to different antibiotics: ampicillin (36%), azithromycin (15.3%), ceftriaxone (1.4%), etc. The global prevalence for beta-lactamases producing H. influenzae and MDR H. influenzae was measured 34.9% and 23.1%, respectively. The prevalence rate of MDR H. influenzae was higher in Asian countries (24.6%) compared to Western regions (15.7%). MDR H. influenzae had the highest prevalence in meningitis cases (46.9%) and the lowest prevalence in acute otitis media (0.5%). CONCLUSIONS: The prevalence of MDR H. influenzae has been increasing worldwide, especially in Asian regions. This highlights the urgent need for monitoring and implementation of effective antibiotic stewardship programs globally.


Subject(s)
Haemophilus Infections , Haemophilus influenzae , Humans , Haemophilus Infections/epidemiology , Prevalence , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL
...