Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Test Anal ; 10(1): 177-183, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28407398

ABSTRACT

Ethyl glucuronide (EtG) is increasingly used in forensic toxicology as a marker for alcohol use in analyses of hair samples, especially in abstinence control. Some cosmetic treatments are considered to markedly reduce the EtG content. In view of especially many women with coloured hair the present study was performed to further investigate the effect of a variety of colouring procedures (bleaching, tinting, permanent and semi-permanent dyeing, henna) on the EtG content. Untreated hair samples (n = 12, EtG 13.9-64.7 pg/mg) were re-analyzed (gas chromatography- negative chemical ionization mass spectrometry, 0.8 pg/mg quantification limit) after different treatment procedures. A decrease of the EtG content of at least 10% occurred in every case. The reduction in comparison to the untreated hair was expectedly high for permanent dyeing and bleaching with 18.1% of the initial content (median, range 0.0-50.9%) and 18.4% (0.0-46.7%), respectively. For henna this was 38.3% (0.0-83.0%), for tinting 70.4% (29.0-90.8%), for semi-permanent dyeing 41.9% (0.0-77.4%). With permanent hair dye the EtG content was decreased to below 7 pg/mg in 10 of 12 cases, in 3 cases even below the LOD (0.2 pg/mg). Surprisingly henna treatment without oxidative component had a marked influence, EtG was below 2 pg/mg in 2 of 12 samples. The study showed that all tested coloration procedures markedly affected the deposited EtG content. Even temporary or henna coloration may have a marked effect. The present data support the recommendation to exclude hair samples with colour manipulations for analysis on the EtG content as a precaution in alcohol abstinence programs. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Glucuronates/analysis , Hair Bleaching Agents/pharmacology , Hair Dyes/pharmacology , Hair/chemistry , Hair/drug effects , Substance Abuse Detection/methods , Alcoholism/diagnosis , Alcoholism/metabolism , Forensic Toxicology/methods , Forensic Toxicology/standards , Hair/metabolism , Humans , Substance Abuse Detection/standards
3.
J Proteome Res ; 14(2): 860-73, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25546367

ABSTRACT

Hairdressers have an increased risk for developing airway symptoms, for example, asthma and rhinitis. Persulfates, which are oxidizing agents in bleaching powder, are considered important causal agents for these symptoms. However, the underlying mechanisms are unclear. The aim was therefore to measure proteomic changes in nasal lavage fluid from persulfate-challenged subjects to identify proteins potentially involved in the pathogenesis of bleaching powder-associated rhinitis or candidate effect biomarkers for persulfate. Also, oxidized peptides were measured to evaluate their usefulness as biomarkers for persulfate exposure or effect, for example, oxidative stress. Samples from hairdressers with and without bleaching powder-associated rhinitis were analyzed with liquid chromatography tandem mass spectrometry using selected reaction monitoring to target 246 proteins and five oxidized peptides. Pathway analysis was applied to obtain a functional overview of the proteins. Several proteins involved in biologically meaningful pathways, functions, or disorders, for example, inflammatory responses, oxidative stress, epithelium integrity, and dermatological disorders, changed after the persulfate challenge. A list with nine proteins that appeared to be affected by the persulfate challenge and should be followed up was defined. An albumin peptide containing oxidized tryptophan increased 2 h and 5 h after the challenge but not after 20 min, which indicates that such peptides may be useful as oxidative stress biomarkers.


Subject(s)
Beauty Culture , Hair Bleaching Agents/pharmacology , Nasal Lavage Fluid/chemistry , Occupational Exposure/analysis , Potassium Compounds/pharmacology , Proteome , Rhinitis/metabolism , Sulfates/pharmacology , Female , Humans , Proteome/analysis , Proteome/chemistry , Proteome/drug effects , Proteomics
4.
Forensic Sci Int ; 242: 103-110, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25047217

ABSTRACT

Today, forensic hair analysis is considered to be a standard method for identifying chronic drug users since information about drug use stored and located in hair can cover several months to even years. When interpreting these results, one should be aware of all kind of pitfalls. External factors such as bleaching might influence the analytical result. Although the effect of hydrogen peroxide on cocaine in a solution was described before, it was never investigated whether the described reaction products (ecgonine methylester, benzoylecgonine, hydroxynorcocaine and dihydroxycocaine) are indeed found on contaminated or user hair. Since it is of great importance in forensic hair analysis to know whether cocaine and/or reaction products are detectable in hair after bleaching, matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was used to study the effect of hydrogen peroxide treatment on incorporated cocaine in hairs. Cocaine oxidation products were identified in a solution based on MS/MS spectra and spatial distribution of these products in hair was explored using MALDI TOF-MS. All images were accomplished by spraying α-Cyano-4-hydroxycinnamic acid (CHCA) as a MALDI-matrix. Images revealed a loss of detectability of cocaine and its reaction products in hairs already after a short bleaching period. Since all compounds of interest are found in the hydrogen peroxide and wash solution, these findings indicate that all evidence of cocaine use might be lost after a hair bleaching treatment. Therefore, forensic toxicologists should take into consideration whether hair samples were bleached before making any conclusions from hair analysis results.


Subject(s)
Cocaine/analysis , Hair Bleaching Agents/pharmacology , Hair/chemistry , Hydrogen Peroxide/pharmacology , Narcotics/analysis , Cocaine-Related Disorders/diagnosis , Forensic Toxicology , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substance Abuse Detection
5.
Appl Spectrosc ; 67(12): 1408-16, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24359655

ABSTRACT

This paper describes the application of Raman spectroscopy to whole hair fibers. Previously this has proved difficult because the hairs are relatively opaque, and spatial resolution diminishes with depth because of the change in refractive index. A solution is to couple confocal Raman with multivariate curve resolution (MCR) data analysis, which separates spectral differences with depth despite this reduction in resolution. Initially, it is shown that the cuticle can be separated from the cortex, showing the differences in the proteins, which can then be plotted as a function of depth, with the cuticle factor being seen only at the surface as expected. Hairs that had been treated in different ways, e.g., by bleaching, treatment with the active molecule resorcinol followed by rinsing and treatment with a full hair care product, were also examined. In all cases, changes to the hair are identified and are associated with specific parts of the fiber. Since the hair fiber is kept intact, it can be repeatedly treated and measured, hence multistep treatment processes can be followed. This method expands the potential use of Raman spectroscopy in hair research.


Subject(s)
Hair/chemistry , Image Processing, Computer-Assisted/methods , Spectrum Analysis, Raman/methods , Animals , Cattle , Glycerol/pharmacology , Hair/drug effects , Hair Bleaching Agents/pharmacology , Humans , Peroxides/pharmacology , Resorcinols/pharmacology
6.
Langmuir ; 26(24): 18909-15, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21117613

ABSTRACT

The atomic force microscope fiber probe is used to directly measure the forces and friction between two human hairs under various conditions. It is shown that the forces between the hair fibers in solution can be well explained by a DLVO interaction and that cationic surfactant modifies the interactions in a manner entirely consistent with current views of adsorption behavior. A Coulombic attraction occurs between the crossed hair fibers in air due to the heterogeneity of the surface, and at shorter separations a clear dispersion interaction is observed. Exposure of the hair to a bleaching solution leads to the removal of the adhesion and solely a double-layer interaction. Two crossed hair fibers obey Amontons' classic law of friction, with a linear relation between applied load and frictional force, allowing the determination of a friction coefficient; positively charged surfactant adsorption is shown to reduce the friction coefficient between the fibers in a manner consistent with boundary lubrication by a palisade layer.


Subject(s)
Hair/chemistry , Hair/metabolism , Microscopy, Atomic Force , Nanotechnology/methods , Adhesives/chemistry , Adhesives/metabolism , Air , Female , Friction , Hair/drug effects , Hair Bleaching Agents/pharmacology , Humans , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...