Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 464
Filter
1.
Hear Res ; 447: 109013, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718672

ABSTRACT

Cisplatin, a highly effective chemotherapeutic drug for various human cancers, induces irreversible sensorineural hearing loss as a side effect. Currently there are no highly effective clinical strategies for the prevention of cisplatin-induced ototoxicity. Previous studies have indicated that short-term cisplatin ototoxicity primarily affects the outer hair cells of the cochlea. Therefore, preventing the entry of cisplatin into hair cells may be a promising strategy to prevent cisplatin ototoxicity. This study aimed to investigate the entry route of cisplatin into mouse cochlear hair cells. The competitive inhibitor of organic cation transporter 2 (OCT2), cimetidine, and the sensory mechanoelectrical transduction (MET) channel blocker benzamil, demonstrated a protective effect against cisplatin toxicity in hair cells in cochlear explants. Sensory MET-deficient hair cells explanted from Tmc1Δ;Tmc2Δ mice were resistant to cisplatin toxicity. Cimetidine showed an additive protective effect against cisplatin toxicity in sensory MET-deficient hair cells. However, in the apical turn, cimetidine, benzamil, or genetic ablation of sensory MET channels showed limited protective effects, implying the presence of other entry routes for cisplatin to enter the hair cells in the apical turn. Systemic administration of cimetidine failed to protect cochlear hair cells from ototoxicity caused by systemically administered cisplatin. Notably, outer hair cells in MET-deficient mice exhibited no apparent deterioration after systemic administration of cisplatin, whereas the outer hair cells in wild-type mice showed remarkable deterioration. The susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on the sensory MET channel both ex vivo and in vivo. This result justifies the development of new pharmaceuticals, such as a specific antagonists for sensory MET channels or custom-designed cisplatin analogs which are impermeable to sensory MET channels.


Subject(s)
Antineoplastic Agents , Cimetidine , Cisplatin , Mechanotransduction, Cellular , Organic Cation Transporter 2 , Ototoxicity , Cisplatin/toxicity , Animals , Ototoxicity/prevention & control , Ototoxicity/metabolism , Ototoxicity/physiopathology , Mechanotransduction, Cellular/drug effects , Organic Cation Transporter 2/metabolism , Organic Cation Transporter 2/genetics , Organic Cation Transporter 2/antagonists & inhibitors , Cimetidine/pharmacology , Antineoplastic Agents/toxicity , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Hair Cells, Auditory, Outer/metabolism , Mice, Inbred C57BL , Mice , Membrane Proteins
2.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414247

ABSTRACT

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Subject(s)
Cisplatin , Ferroptosis , Hearing Loss , Mice, Inbred C57BL , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Cisplatin/adverse effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Hearing Loss/chemically induced , Hearing Loss/genetics , Hearing Loss/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Ototoxicity/etiology , Ototoxicity/metabolism , Antineoplastic Agents/adverse effects , Apoptosis/drug effects
3.
Nat Commun ; 14(1): 7145, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932294

ABSTRACT

The outstanding acuity of the mammalian ear relies on cochlear amplification, an active mechanism based on the electromotility (eM) of outer hair cells. eM is a piezoelectric mechanism generated by little-understood, voltage-induced conformational changes of the anion transporter homolog prestin (SLC26A5). We used a combination of molecular dynamics (MD) simulations and biophysical approaches to identify the structural dynamics of prestin that mediate eM. MD simulations showed that prestin samples a vast conformational landscape with expanded (ES) and compact (CS) states beyond previously reported prestin structures. Transition from CS to ES is dominated by the translational-rotational movement of prestin's transport domain, akin to elevator-type substrate translocation by related solute carriers. Reversible transition between CS and ES states was supported experimentally by cysteine accessibility scanning, cysteine cross-linking between transport and scaffold domains, and voltage-clamp fluorometry (VCF). Our data demonstrate that prestin's piezoelectric dynamics recapitulate essential steps of a structurally conserved ion transport cycle.


Subject(s)
Cysteine , Hair Cells, Auditory, Outer , Animals , Hair Cells, Auditory, Outer/metabolism , Cysteine/metabolism , Anions/metabolism , Ion Transport , Membrane Transport Proteins/metabolism , Anion Transport Proteins/metabolism , Mammals/metabolism
4.
J Chin Med Assoc ; 86(12): 1101-1108, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37820291

ABSTRACT

BACKGROUND: Hearing loss is a global health issue and its etiopathologies involve complex molecular pathways. The ubiquitin-proteasome system has been reported to be associated with cochlear development and hearing loss. The gene related to anergy in lymphocytes ( GRAIL ), as an E3 ubiquitin ligase, has not, as yet, been examined in aging-related and noise-induced hearing loss mice models. METHODS: This study used wild-type (WT) and GRAIL knockout (KO) mice to examine cochlear hair cells and synaptic ribbons using immunofluorescence staining. The hearing in WT and KO mice was detected using auditory brainstem response. Gene expression patterns were compared using RNA-sequencing to identify potential targets during the pathogenesis of noise-induced hearing loss in WT and KO mice. RESULTS: At the 12-month follow-up, GRAIL KO mice had significantly less elevation in threshold level and immunofluorescence staining showed less loss of outer hair cells and synaptic ribbons in the hook region compared with GRAIL WT mice. At days 1, 14, and 28 after noise exposure, GRAIL KO mice had significantly less elevation in threshold level than WT mice. After noise exposure, GRAIL KO mice showed less loss of outer hair cells in the cochlear hook and basal regions compared with WT mice. Moreover, immunofluorescence staining showed less loss of synaptic ribbons in the hook regions of GRAIL KO mice than of WT mice. RNA-seq analysis results showed significant differences in C-C motif chemokine ligand 19 ( CCL19 ), C-C motif chemokine ligand 21 ( CCL21 ), interleukin 25 ( IL25 ), glutathione peroxidase 6 ( GPX6 ), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 ( NOX1 ) genes after noise exposure. CONCLUSION: The present data demonstrated that GRAIL deficiency protects against aging-related and noise-induced hearing loss. The mechanism involved needs to be further clarified from the potential association with synaptic modulation, inflammation, and oxidative stress.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Mice , Aging/physiology , Auditory Threshold/physiology , Chemokines/metabolism , Evoked Potentials, Auditory, Brain Stem/physiology , Gene Knockout Techniques , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/pathology , Hearing Loss, Noise-Induced/genetics , Hearing Loss, Noise-Induced/prevention & control , Ligands , Noise/adverse effects
5.
Curr Opin Neurobiol ; 81: 102745, 2023 08.
Article in English | MEDLINE | ID: mdl-37356371

ABSTRACT

The auditory organ cochlea harbors two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs), which are innervated by spiral (auditory) ganglion neurons (SGNs). Recent transcriptomic, epigenetic, and genetic studies have started to reveal various aspects of cochlear development, including how prosensory progenitors are specified and diversified into IHCs or OHCs, as well as the heterogeneity among SGNs and how SGN subtypes are formed. Here, we primarily review advances in this line of research over the past five years and discuss a few key studies (from the past two years) to elucidate (1) how prosensory progenitors are specified; (2) the cis-regulatory control of Atoh1 expression and the synergistic interaction between Atoh1 and Pou4f3; and (3) the essential roles of Insm1 and Ikzf2 in OHC development and Tbx2 in IHC development. Moreover, we highlight the contribution of recent molecular studies on cochlear development toward the goal of regenerating IHCs and OHCs, which holds considerable potential for application in treating human deafness. Lastly, we briefly summarize the most recent progress on uncovering when and how SGN diversity is generated.


Subject(s)
Cochlea , Hair Cells, Auditory, Inner , Humans , Hair Cells, Auditory, Inner/physiology , Hair Cells, Auditory, Outer/metabolism , Neurons/metabolism , Transcriptome
6.
Neurosci Bull ; 39(12): 1762-1774, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37233921

ABSTRACT

The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.


Subject(s)
Cochlea , Hair Cells, Auditory, Inner , Animals , Mice , Cochlea/metabolism , Hair Cells, Auditory, Outer/metabolism , Disease Models, Animal , Fibroblast Growth Factor 8/metabolism
7.
Cell Rep ; 42(5): 112504, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37171961

ABSTRACT

The cochlea harbors two types of sound receptors, outer hair cells (OHCs) and inner hair cells (IHCs). OHCs transdifferentiate into IHCs in Insm1 mutants, and OHCs in Ikzf2-deficient mice are dysfunctional and maintain partial IHC gene expression. Insm1 potentially acts as a positive but indirect regulator of Ikzf2, considering that Insm1 is expressed earlier than Ikzf2 and primarily functions as a transcriptional repressor. However, direct evidence of this possibility is lacking. Here, we report the following results: first, Insm1 overexpression in IHCs leads to ectopic Ikzf2 expression. Second, Ikzf2 expression is repressed in Insm1-deficient OHCs, and forced expression of Ikzf2 mitigates the OHC abnormality in Insm1 mutants. Last, dual ablation of Insm1 and Ikzf2 generates a similar OHC phenotype as does Insm1 ablation alone. Collectively, our findings reveal the transcriptional cascade from Insm1 to Ikzf2, which should facilitate future investigation of the molecular mechanisms underlying OHC development and regeneration.


Subject(s)
Hair Cells, Auditory, Inner , Hair Cells, Auditory, Outer , Animals , Mice , Cochlea/metabolism , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Outer/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism
8.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37096733

ABSTRACT

GIPC3 has been implicated in auditory function. Here, we establish that GIPC3 is initially localized to the cytoplasm of inner and outer hair cells of the cochlea and then is increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at 1 month of age. Cuticular plates of Gipc3KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks and the cuticular plate. Several of immunoprecipitated proteins contained GIPC family consensus PDZ-binding motifs (PBMs), including MYO18A, which bound directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell junction proteins to shape the cuticular plate.


Subject(s)
Mechanotransduction, Cellular , PDZ Domains , Mice , Animals , Hair Cells, Auditory, Inner/metabolism , Cytoskeleton/metabolism , Hair Cells, Auditory, Outer/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Myosins/genetics , Myosins/metabolism
9.
PLoS Biol ; 21(3): e3002041, 2023 03.
Article in English | MEDLINE | ID: mdl-36947567

ABSTRACT

Our sense of hearing is mediated by sensory hair cells, precisely arranged and highly specialized cells subdivided into outer hair cells (OHCs) and inner hair cells (IHCs). Light microscopy tools allow for imaging of auditory hair cells along the full length of the cochlea, often yielding more data than feasible to manually analyze. Currently, there are no widely applicable tools for fast, unsupervised, unbiased, and comprehensive image analysis of auditory hair cells that work well either with imaging datasets containing an entire cochlea or smaller sampled regions. Here, we present a highly accurate machine learning-based hair cell analysis toolbox (HCAT) for the comprehensive analysis of whole cochleae (or smaller regions of interest) across light microscopy imaging modalities and species. The HCAT is a software that automates common image analysis tasks such as counting hair cells, classifying them by subtype (IHCs versus OHCs), determining their best frequency based on their location along the cochlea, and generating cochleograms. These automated tools remove a considerable barrier in cochlear image analysis, allowing for faster, unbiased, and more comprehensive data analysis practices. Furthermore, HCAT can serve as a template for deep learning-based detection tasks in other types of biological tissue: With some training data, HCAT's core codebase can be trained to develop a custom deep learning detection model for any object on an image.


Subject(s)
Cochlea , Hair Cells, Vestibular , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Outer/metabolism , Hearing
10.
Proc Natl Acad Sci U S A ; 120(11): e2217891120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893263

ABSTRACT

Prestin (SLC26A5)-mediated voltage-driven elongations and contractions of sensory outer hair cells within the organ of Corti are essential for mammalian cochlear amplification. However, whether this electromotile activity directly contributes on a cycle-by-cycle basis is currently controversial. By restoring motor kinetics in a mouse model expressing a slowed prestin missense variant, this study provides experimental evidence acknowledging the importance of fast motor action to mammalian cochlear amplification. Our results also demonstrate that the point mutation in prestin disrupting anion transport in other proteins of the SLC26 family does not alter cochlear function, suggesting that the potential weak anion transport of prestin is not essential in the mammalian cochlea.


Subject(s)
Anion Transport Proteins , Proteins , Mice , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Proteins/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Mammals/metabolism , Anions/metabolism , Hair Cells, Auditory, Outer/metabolism , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism
11.
PLoS One ; 18(1): e0273586, 2023.
Article in English | MEDLINE | ID: mdl-36689403

ABSTRACT

Diaphanous related formins are regulatory cytoskeletal protein involved in actin elongation and microtubule stabilization. In humans, defects in two of the three diaphanous genes (DIAPH1 and DIAPH3) have been associated with different types of hearing loss. Here, we investigate the role of the third member of the family, DIAPH2, in nonsyndromic hearing loss, prompted by the identification, by exome sequencing, of a predicted pathogenic missense variant in DIAPH2. This variant occurs at a conserved site and segregated with nonsyndromic X-linked hearing loss in an Italian family. Our immunohistochemical studies indicated that the mouse ortholog protein Diaph2 is expressed during development in the cochlea, specifically in the actin-rich stereocilia of the sensory outer hair cells. In-vitro studies showed a functional impairment of the mutant DIAPH2 protein upon RhoA-dependent activation. Finally, Diaph2 knock-out and knock-in mice were generated by CRISPR/Cas9 technology and auditory brainstem response measurements performed at 4, 8 and 14 weeks. However, no hearing impairment was detected. Our findings indicate that DIAPH2 may play a role in the inner ear; further studies are however needed to clarify the contribution of DIAPH2 to deafness.


Subject(s)
Actins , Hearing Loss , Humans , Mice , Animals , Formins/metabolism , Hair Cells, Auditory, Outer/metabolism
12.
Hum Mol Genet ; 32(7): 1137-1151, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36331344

ABSTRACT

Mitochondrial dynamics is essential for maintaining the physiological function of the mitochondrial network, and its disorders lead to a variety of diseases. Our previous study identified mitochondrial dynamics controlled anti-tumor immune responses and anxiety symptoms. However, how mitochondrial dynamics affects auditory function in the inner ear remains unclear. Here, we show that the deficiency of FAM73a or FAM73b, two mitochondrial outer membrane proteins that mediate mitochondrial fusion, leads to outer hair cells (HCs) damage and progressive hearing loss in FVB/N mice. Abnormal mitochondrial fusion causes elevated oxidative stress and apoptosis of HCs in the early stage. Thereafter, the activation of macrophages and CD4+ T cell is found in the mutant mice with the increased expression of the inflammatory cytokines IL-12 and IFN-γ compared with control mice. Strikingly, a dramatically decreased number of macrophages by Clophosome®-A-Clodronate Liposomes treatment alleviates the hearing loss of mutant mice. Collectively, our finding highlights that FAM73a or FAM73b deficiency affects HCs survival by disturbing the mitochondrial function, and the subsequent immune response in the cochleae worsens the damage of HCs.


Subject(s)
Hearing Loss , Mitochondrial Dynamics , Animals , Mice , Mitochondrial Dynamics/genetics , Hearing , Hearing Loss/genetics , Hearing Loss/metabolism , Hair Cells, Auditory, Outer/metabolism , Immunity
13.
Cell Tissue Res ; 391(1): 43-54, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36287265

ABSTRACT

Damage-associated molecular pattern molecules (DAMPs) play a critical role in mediating cochlear cell death, which leads to noise-induced hearing loss (NIHL). High-mobility group box 1 (HMGB1), a prototypical DAMP released from cells, has been extensively studied in the context of various diseases. However, whether extracellular HMGB1 contributes to cochlear pathogenesis in NIHL and the potential signals initiating HMGB1 release from cochlear cells are not well understood. Here, through the transfection of the adeno-associated virus with HMGB1-HA-tag, we first investigated early cytoplasmic accumulation of HMGB1 in cochlear hair cells after noise exposure. We found that the cochlear administration of HMGB1-neutralizing antibody immediately after noise exposure significantly alleviated hearing loss and outer hair cells (OHCs) death induced by noise exposure. In addition, activation of signal transducer and activators of transcription 1 (STAT1) and cellular hyperacetylation were verified as potential canonical initiators of HMGB1 cytoplasmic accumulation. These findings reveal the adverse effects of extracellular HMGB1 on the cochlea and the potential signaling events mediating HMGB1 release in hair cells, indicating multiple potential pharmacotherapeutic targets for NIHL.


Subject(s)
Cochlea , HMGB1 Protein , Hearing Loss, Noise-Induced , Noise , Animals , Mice , Cochlea/metabolism , Cochlea/pathology , Cytoplasm/metabolism , Hair Cells, Auditory, Outer/metabolism , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , HMGB1 Protein/metabolism , Noise/adverse effects
14.
Neuroscience Bulletin ; (6): 1762-1774, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010632

ABSTRACT

The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.


Subject(s)
Animals , Mice , Hair Cells, Auditory, Inner , Cochlea/metabolism , Hair Cells, Auditory, Outer/metabolism , Disease Models, Animal , Fibroblast Growth Factor 8/metabolism
15.
Nat Commun ; 13(1): 7628, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494345

ABSTRACT

The auditory function of the mammalian cochlea relies on two types of mechanosensory hair cells and various non-sensory supporting cells. Recent studies identified the transcription factors INSM1 and IKZF2 as regulators of outer hair cell (OHC) fate. However, the transcriptional regulation of the differentiation of inner hair cells (IHCs) and their associated inner supporting cells (ISCs) has remained enigmatic. Here, we show that the expression of the transcription factor TBX2 is restricted to IHCs and ISCs from the onset of differentiation until adulthood and examine its function using conditional deletion and misexpression approaches in the mouse. We demonstrate that TBX2 acts in prosensory progenitors as a patterning factor by specifying the inner compartment of the sensory epithelium that subsequently gives rise to IHCs and ISCs. Hair cell-specific inactivation or misexpression causes transdifferentiation of hair cells indicating a cell-autonomous function of TBX2 in inducing and maintaining IHC fate.


Subject(s)
Gene Expression Regulation, Developmental , Hair Cells, Auditory, Inner , Mice , Animals , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Outer/metabolism , Cochlea/physiology , Transcription Factors/metabolism , Cell Differentiation/genetics , Organ of Corti/metabolism , Mammals/metabolism
16.
Hear Res ; 426: 108640, 2022 12.
Article in English | MEDLINE | ID: mdl-36332380

ABSTRACT

Measurement of the motor protein prestin offers a novel approach to assessing outer hair cell (OHC) status using serological techniques. Motivated by our prior work showing reduced serum prestin levels in healthy young adults at-risk for noise damage, the current study examined serum prestin levels, measured from circulating blood, across the age span from 18 to 82 years old. Results suggest that serum prestin levels negatively correlate with age, with young adults having higher levels of circulating serum in the blood than older adults. Group-level analyses showed minimal differences in prestin levels between 18 and 29, 30-39, and 40-49 year olds, but significant reductions in the 50+ years-old age group compared to the three younger groups, even though all groups significantly differed from each other in audiometric thresholds and distortion product otoacoustic emissions signal-to-noise ratio. Serum prestin levels declined with increasing levels of hearing loss, with a statistically significant relationship emerging between prestin and low-frequency hearing thresholds (0.25-2 kHz) but a weaker non-significant relationship for high-frequency hearing thresholds (3-8 kHz). This differential pattern between low- and high- frequency thresholds is consistent with the basal-to-apical progression of OHC loss with age. Findings support the idea that serum prestin is the product of residual OHCs in the less age-affected apical regions. Moreover, when entered in a regression model with audiometric thresholds, age was a stronger predictor than pure tone hearing threshold level for predicting serum prestin levels.


Subject(s)
Hair Cells, Auditory, Outer , Hearing Loss , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , Hair Cells, Auditory, Outer/metabolism , Hearing , Hearing Loss/metabolism , Noise/adverse effects , Otoacoustic Emissions, Spontaneous
17.
Nat Commun ; 13(1): 6877, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371434

ABSTRACT

Prestin is a high-density motor protein in the outer hair cells (OHCs), whose conformational response to acoustic signals alters the shape of the cell, thereby playing a major role in sound amplification by the cochlea. Despite recent structures, prestin's intimate interactions with the membrane, which are central to its function remained unresolved. Here, employing a large set (collectively, more than 0.5 ms) of coarse-grained molecular dynamics simulations, we demonstrate the impact of prestin's lipid-protein interactions on its organization at densities relevant to the OHCs and its effectiveness in reshaping OHCs. Prestin causes anisotropic membrane deformation, which mediates a preferential membrane organization of prestin where deformation patterns by neighboring copies are aligned constructively. The resulting reduced membrane rigidity is hypothesized to maximize the impact of prestin on OHC reshaping. These results demonstrate a clear case of protein-protein cooperative communication in membrane, purely mediated by interactions with lipids.


Subject(s)
Cochlea , Hair Cells, Auditory, Outer , Hair Cells, Auditory, Outer/metabolism , Cochlea/metabolism , Proteins/metabolism , Molecular Motor Proteins/metabolism , Lipids , Cell Membrane/metabolism
18.
Nat Commun ; 13(1): 6208, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266333

ABSTRACT

Outer hair cell elecromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized prestin (PresTS), complexed with chloride, sulfate, or salicylate at 3.52-3.63 Å resolutions. The central positively-charged cavity allows flexible binding of various anion species, which likely accounts for the known distinct modulations of nonlinear capacitance (NLC) by different anions. Comparisons of these PresTS structures with recent prestin structures suggest rigid-body movement between the core and gate domains, and provide mechanistic insights into prestin inhibition by salicylate. Mutations at the dimeric interface severely diminished NLC, suggesting that stabilization of the gate domain facilitates core domain movement, thereby contributing to the expression of NLC. These findings advance our understanding of the molecular mechanism underlying mammalian cochlear amplification.


Subject(s)
Anion Transport Proteins , Chlorides , Animals , Anion Transport Proteins/metabolism , Chlorides/metabolism , Cryoelectron Microscopy , Hair Cells, Auditory, Outer/metabolism , Anions/metabolism , Salicylates , Sulfates/metabolism , Mammals/metabolism
19.
Proc Natl Acad Sci U S A ; 119(41): e2210849119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191207

ABSTRACT

Transmembrane channel-like protein 1 (TMC1) is thought to form the ion-conducting pore of the mechanoelectrical transducer (MET) channel in auditory hair cells. Using single-channel analysis and ionic permeability measurements, we characterized six missense mutations in the purported pore region of mouse TMC1. All mutations reduced the Ca2+ permeability of the MET channel, triggering hair cell apoptosis and deafness. In addition, Tmc1 p.E520Q and Tmc1 p.D528N reduced channel conductance, whereas Tmc1 p.W554L and Tmc1 p.D569N lowered channel expression without affecting the conductance. Tmc1 p.M412K and Tmc1 p.T416K reduced only the Ca2+ permeability. The consequences of these mutations endorse TMC1 as the pore of the MET channel. The accessory subunits, LHFPL5 and TMIE, are thought to be involved in targeting TMC1 to the tips of the stereocilia. We found sufficient expression of TMC1 in outer hair cells of Lhfpl5 and Tmie knockout mice to determine the properties of the channels, which could still be gated by hair bundle displacement. Single-channel conductance was unaffected in Lhfpl5-/- but was reduced in Tmie-/-, implying TMIE very likely contributes to the pore. Both the working range and half-saturation point of the residual MET current in Lhfpl5-/- were substantially increased, suggesting that LHFPL5 is part of the mechanical coupling between the tip-link and the MET channel. Based on counts of numbers of stereocilia per bundle, we estimate that each PCDH15 and LHFPL5 monomer may contact two channels irrespective of location.


Subject(s)
Hair Cells, Vestibular , Mechanotransduction, Cellular , Animals , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Vestibular/metabolism , Mechanotransduction, Cellular/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Stereocilia/metabolism
20.
Cell Calcium ; 105: 102613, 2022 07.
Article in English | MEDLINE | ID: mdl-35797824

ABSTRACT

In cochlear outer hair cells (OHCs), a network of Ca2+ channels, pumps and Ca2+-binding proteins (CaBPs) regulates the localization, spread, and magnitude of free Ca2+ ions. During early postnatal development, OHCs express three prominent mobile EF-hand CaBPs: oncomodulin (OCM), α-parvalbumin (APV) and sorcin. We have previously shown that deletion of Ocm (Ocm-/-) gives rise to progressive cochlear dysfunction in young adult mice. Here, we show that changes in Ca2+ signaling begin early in postnatal development of Ocm-/- mice. While mutant OHCs exhibit normal electrophysiological profiles compared to controls, their intracellular Ca2+ signaling is altered. The onset of OCM expression at postnatal day 3 (P3) causes a developmental change in KCl-induced Ca2+ transients in OHCs and leads to slower KCl-induced Ca2+ transients than those elicited in cells from Ocm-/- littermates. We compared OCM buffering kinetics with other CaBPs in animal models and cultured cells. In a double knockout of Ocm and Apv (Ocm-/-;Apv-/-), mutant OHCs show even faster Ca2+ kinetics, suggesting that APV may also contribute to early postnatal Ca2+ signaling. In transfected HEK293T cells, OCM slows Ca2+ kinetics more so than either APV or sorcin. We conclude that OCM controls the intracellular Ca2+ environment by lowering the amount of freely available [Ca2+]i in OHCs and transfected HEK293T cells. We propose that OCM plays an important role in shaping the development of early OHC Ca2+ signals through its inimitable Ca2+ buffering capacity.


Subject(s)
Calcium Signaling , Hair Cells, Auditory, Outer , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , HEK293 Cells , Hair Cells, Auditory, Outer/metabolism , Humans , Mice , Parvalbumins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...