Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 873
Filter
1.
Commun Biol ; 7(1): 600, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762693

ABSTRACT

Pending questions regarding cochlear amplification and tuning are hinged upon the organ of Corti (OoC) active mechanics: how outer hair cells modulate OoC vibrations. Our knowledge regarding OoC mechanics has advanced over the past decade thanks to the application of tomographic vibrometry. However, recent data from live cochlea experiments often led to diverging interpretations due to complicated interaction between passive and active responses, lack of image resolution in vibrometry, and ambiguous measurement angles. We present motion measurements and analyses of the OoC sub-components at the close-to-true cross-section, measured from acutely excised gerbil cochleae. Specifically, we focused on the vibrating patterns of the reticular lamina, the outer pillar cell, and the basilar membrane because they form a structural frame encasing active outer hair cells. For passive transmission, the OoC frame serves as a rigid truss. In contrast, motile outer hair cells exploit their frame structures to deflect the upper compartment of the OoC while minimally disturbing its bottom side (basilar membrane). Such asymmetric OoC vibrations due to outer hair cell motility explain how recent observations deviate from the classical cochlear amplification theory.


Subject(s)
Gerbillinae , Hair Cells, Auditory, Outer , Organ of Corti , Vibration , Animals , Gerbillinae/physiology , Hair Cells, Auditory, Outer/physiology , Organ of Corti/physiology , Organ of Corti/cytology , Cochlea/physiology , Cochlea/cytology , Basilar Membrane/physiology
2.
Proc Natl Acad Sci U S A ; 121(15): e2314763121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557194

ABSTRACT

Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.


Subject(s)
Hearing Loss, Noise-Induced , Hearing Loss, Sensorineural , Guinea Pigs , Animals , Hearing , Cochlea , Noise/adverse effects , Hair Cells, Auditory, Outer/physiology , Auditory Threshold
3.
J Physiol ; 602(6): 1199-1210, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38431907

ABSTRACT

DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.


Subject(s)
Deafness , Hearing Loss , Animals , Humans , Mice , Hair Cells, Auditory, Outer/physiology , Hearing Loss/genetics , Hearing Loss/metabolism , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Mutation , Proteins/genetics
4.
Antioxid Redox Signal ; 40(7-9): 470-491, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37476961

ABSTRACT

Aims: Radiation-induced sensorineural hearing loss (RISNHL) is one of the major side effects of radiotherapy for head and neck cancers. At present, no effective clinical treatment or prevention is available for RISNHL. This study thus aimed to investigate the cochlear pathology so that the underlying mechanisms of RISNHL may be elucidated, consequently paving the way for potential protective strategies to be developed. Results: Functional and morphological impairment in the stria vascularis (SV) was observed after irradiation (IR), as indicated by endocochlear potential (EP) reduction, hyperpermeability, and SV atrophy. The expression of zonulae occludins-1 was found to have decreased after IR. The loss of outer hair cells (OHCs) occurred later than SV damage. The disruption to the SV and OHCs could be attributed to reactive oxygen species (ROS)-related damage. In addition, EP shifts and the loss of OHCs were reduced when ROS was reduced by N-acetylcysteine (NAC) in C57BL/6 mice, attenuating auditory threshold shifts. Innovation: The damage to the SV was found to occur before OHC loss. ROS-related damage accounted for SV damage and OHC loss. The incidences of SV damage and OHC loss were decreased through ROS modulation by NAC, subsequently preventing RISNHL, suggesting the possible role of NAC as a possible protective agent against RISNHL. Conclusion: The findings from this study suggest oxidative stress-induced early SV injury and late OHC loss to be the key factors leading to RISNHL. NAC prevents IR-induced OHC loss, and attenuates auditory brainstem response and EP shifts by regulating the level of oxidative stress. Antioxid. Redox Signal. 40, 470-491.


Subject(s)
Hearing Loss, Sensorineural , Stria Vascularis , Mice , Animals , Stria Vascularis/pathology , Stria Vascularis/physiology , Reactive Oxygen Species , Mice, Inbred C57BL , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/pathology , Hair Cells, Auditory, Outer/pathology , Hair Cells, Auditory, Outer/physiology , Acetylcysteine/pharmacology
5.
J Neurosci ; 44(4)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38050104

ABSTRACT

Outer hair cells (OHCs) of the organ of Corti (OoC), acting as bidirectional cellular mechanoelectrical transducers, generate, receive, and exchange forces with other major elements of the cochlear partition, including the sensory inner hair cells (IHCs). Force exchange is mediated via a supporting cell scaffold, including Deiters' (DC) and outer pillar cells (OPC), to enable the sensitivity and exquisite frequency selectivity of the mammalian cochlea and to transmit its responses to the auditory nerve. To selectively activate DCs and OPCs in male and female mice, we conditionally expressed in them a hyperpolarizing halorhodopsin (HOP), a light-gated inward chloride ion pump, and measured extracellular receptor potentials (ERPs) and their DC component (ERPDCs) from the cortilymph, which fills the OoC fluid spaces, and compared the responses with similar potentials from HOP-/- littermates. The compound action potentials (CAP) of the auditory nerve were measured as an indication of IHC activity and transmission of cochlear responses to the CNS. HOP light-activated hyperpolarization of DCs and OPCs suppressed cochlear amplification through changing the timing of its feedback, altered basilar membrane (BM) responses to tones at all measured levels and frequencies, and reduced IHC excitation. HOP activation findings reported here complement recent studies that revealed channelrhodopsin activation depolarized DCs and OPCs and effectively bypassed, rather than blocked, the control of OHC mechanical and electrical responses to sound and their contribution to timed and directed electromechanical feedback to the mammalian cochlea. Moreover, our findings identify DCs and OPCs as potential targets for the treatment of noise-induced hearing loss.


Subject(s)
Hair Cells, Auditory, Outer , Hair Cells, Vestibular , Female , Male , Mice , Animals , Hair Cells, Auditory, Outer/physiology , Optogenetics , Cochlea/physiology , Hair Cells, Auditory, Inner/physiology , Organ of Corti/physiology , Mammals
6.
J Physiol ; 601(19): 4291-4308, 2023 10.
Article in English | MEDLINE | ID: mdl-37642186

ABSTRACT

Cochlear outer hair cells (OHCs) are responsible for the exquisite frequency selectivity and sensitivity of mammalian hearing. During development, the maturation of OHC afferent connectivity is refined by coordinated spontaneous Ca2+ activity in both sensory and non-sensory cells. Calcium signalling in neonatal OHCs can be modulated by oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein. Here, we investigated whether OCM regulates OHC spontaneous Ca2+ activity and afferent connectivity during development. Using a genetically encoded Ca2+ sensor (GCaMP6s) expressed in OHCs in wild-type (Ocm+/+ ) and Ocm knockout (Ocm-/- ) littermates, we found increased spontaneous Ca2+ activity and upregulation of purinergic receptors in OHCs from Ocm-/- cochlea immediately following birth. The afferent synaptic maturation of OHCs was delayed in the absence of OCM, leading to an increased number of ribbon synapses and afferent fibres on Ocm-/- OHCs before hearing onset. We propose that OCM regulates the spontaneous Ca2+ signalling in the developing cochlea and the maturation of OHC afferent innervation. KEY POINTS: Cochlear outer hair cells (OHCs) exhibit spontaneous Ca2+ activity during a narrow period of neonatal development. OHC afferent maturation and connectivity requires spontaneous Ca2+ activity. Oncomodulin (OCM, ß-parvalbumin), an EF-hand calcium-binding protein, modulates Ca2+ signals in immature OHCs. Using transgenic mice that endogenously expressed a Ca2+ sensor, GCaMP6s, we found increased spontaneous Ca2+ activity and upregulated purinergic receptors in Ocm-/- OHCs. The maturation of afferent synapses in Ocm-/- OHCs was also delayed, leading to an upregulation of ribbon synapses and afferent fibres in Ocm-/- OHCs before hearing onset. We propose that OCM plays an important role in modulating Ca2+ activity, expression of Ca2+ channels and afferent innervation in developing OHCs.


Subject(s)
Calcium , Hair Cells, Auditory, Outer , Mice , Animals , Hair Cells, Auditory, Outer/physiology , Calcium/metabolism , Parvalbumins/metabolism , Cochlea/physiology , Calcium-Binding Proteins/metabolism , Mice, Transgenic , Receptors, Purinergic/metabolism , Mammals/metabolism
7.
Comput Biol Med ; 161: 106986, 2023 07.
Article in English | MEDLINE | ID: mdl-37230014

ABSTRACT

Damage to the sensory hair cells in the cochlea is a major cause of hearing loss since human sensory hair cells do not regenerate naturally after damage. As these sensory hair cells are exposed to a vibrating lymphatic environment, they may be affected by physical flow. It is known that the outer hair cells (OHCs) are physically more damaged by sound than the inner hair cells (IHCs). In this study, the lymphatic flow is compared using computational fluid dynamics (CFD) based on the arrangement of the OHCs, and the effects of such flow on the OHCs is analyzed. In addition, flow visualization is used to validate the Stokes flow. The Stokes flow behavior is attributed to the low Reynolds number, and the same behavior is observed even when the flow direction is reversed. When the distance between the rows of the OHCs is large, each row is independent, but when this distance is short, the flow change in each row influences the other rows. The stimulation caused by flow changes on the OHCs is confirmed through surface pressure and shear stress. The OHCs located at the base with a short distance between the rows receive excess hydrodynamic stimulation, and the tip of the V-shaped pattern receives an excess mechanical force. This study attempts to understand the contributions of lymphatic flow to OHC damage by quantitatively suggesting stimulation of the OHCs and is expected to contribute to the development of OHC regeneration technologies in the future.


Subject(s)
Hair Cells, Auditory, Outer , Hydrodynamics , Humans , Hair Cells, Auditory, Outer/physiology , Cochlea/physiology , Hair Cells, Auditory, Inner/physiology
8.
J Neurosci ; 43(14): 2460-2468, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36868859

ABSTRACT

Charged moieties in the outer hair cell (OHC) membrane motor protein, prestin, are driven by transmembrane voltage to power OHC electromotility (eM) and cochlear amplification (CA), an enhancement of mammalian hearing. Consequently, the speed of prestin's conformational switching constrains its dynamic influence on micromechanics of the cell and the organ of Corti. Corresponding voltage-sensor charge movements in prestin, classically assessed as a voltage-dependent, nonlinear membrane capacitance (NLC), have been used to gauge its frequency response, but have been validly measured only out to 30 kHz. Thus, controversy exists concerning the effectiveness of eM in supporting CA at ultrasonic frequencies where some mammals can hear. Using megahertz sampling of guinea pig (either sex) prestin charge movements, we extend interrogations of NLC into the ultrasonic range (up to 120 kHz) and find an order of magnitude larger response at 80 kHz than previously predicted, indicating that an influence of eM at ultrasonic frequencies is likely, in line with recent in vivo results (Levic et al., 2022). Given wider bandwidth interrogations, we also validate kinetic model predictions of prestin by directly observing its characteristic cut-off frequency under voltage-clamp as the intersection frequency (Fis), near 19 kHz, of the real and imaginary components of complex NLC (cNLC). The frequency response of prestin displacement current noise determined from either the Nyquist relation or stationary measures aligns with this cut-off. We conclude that voltage stimulation accurately assesses the spectral limits of prestin activity, and that voltage-dependent conformational switching is physiologically significant in the ultrasonic range.SIGNIFICANCE STATEMENT The motor protein prestin powers outer hair cell (OHC) electromotility (eM) and cochlear amplification (CA), an enhancement of high-frequency mammalian hearing. The ability of prestin to work at very high frequencies depends on its membrane voltage-driven conformation switching. Using megahertz sampling, we extend measures of prestin charge movement into the ultrasonic range and find response magnitude at 80 kHz an order of magnitude larger than previously estimated, despite confirmation of previous low pass characteristic frequency cut-offs. The frequency response of prestin noise garnered by the admittance-based Nyquist relation or stationary noise measures confirms this characteristic cut-off frequency. Our data indicate that voltage perturbation provides accurate assessment of prestin performance indicating that it can support cochlear amplification into a higher frequency range than previously thought.


Subject(s)
Hair Cells, Auditory, Outer , Ultrasonics , Animals , Guinea Pigs , Hair Cells, Auditory, Outer/physiology , Cochlea , Hearing , Cell Membrane/metabolism , Mammals
9.
J Acoust Soc Am ; 153(3): 1776, 2023 03.
Article in English | MEDLINE | ID: mdl-37002110

ABSTRACT

In recent years, experimental studies have demonstrated that malfunction of the inner-hair cells and their synapse to the auditory nerve is a significant hearing loss (HL) contributor. This study presents a detailed biophysical model of the inner-hair cells embedded in an end-to-end computational model of the auditory pathway with an acoustic signal as an input and prediction of human audiometric thresholds as an output. The contribution of the outer hair cells is included in the mechanical model of the cochlea. Different types of HL were simulated by changing mechanical and biochemical parameters of the inner and outer hair cells. The predicted thresholds yielded common audiograms of hearing impairment. Outer hair cell damage could only introduce threshold shifts at mid-high frequencies up to 40 dB. Inner hair cell damage affects low and high frequencies differently. All types of inner hair cell deficits yielded a maximum of 40 dB HL at low frequencies. Only a significant reduction in the number of cilia of the inner-hair cells yielded HL of up to 120 dB HL at high frequencies. Sloping audiograms can be explained by a combination of gradual change in the number of cilia of inner and outer hair cells along the cochlear partition from apex to base.


Subject(s)
Deafness , Hearing Loss , Humans , Hair Cells, Auditory, Inner/physiology , Auditory Threshold/physiology , Cochlea , Audiometry , Hair Cells, Auditory, Outer/physiology
10.
J Assoc Res Otolaryngol ; 24(2): 129-145, 2023 04.
Article in English | MEDLINE | ID: mdl-36725778

ABSTRACT

The cochlea of the mammalian inner ear includes an active, hydromechanical amplifier thought to arise via the piezoelectric action of the outer hair cells (OHCs). A classic problem of cochlear biophysics is that the RC (resistance-capacitance) time constant of the hair-cell membrane appears inconveniently long, producing an effective cut-off frequency much lower than that of most audible sounds. The long RC time constant implies that the OHC receptor potential-and hence its electromotile response-decreases by roughly two orders of magnitude over the frequency range of mammalian hearing, casting doubt on the hypothesized role of cycle-by-cycle OHC-based amplification in mammalian hearing. Here, we review published data and basic physics to show that the "RC problem" has been magnified by viewing it through the wrong lens. Our analysis finds no appreciable mismatch between the expected magnitude of high-frequency electromotility and the sound-evoked displacements of the organ of Corti. Rather than precluding significant OHC-based boosts to auditory sensitivity, the long RC time constant appears beneficial for hearing, reducing the effects of internal noise and distortion while increasing the fidelity of cochlear amplification.


Subject(s)
Cochlea , Hair Cells, Auditory, Outer , Animals , Hair Cells, Auditory, Outer/physiology , Cochlea/physiology , Hearing/physiology , Sound , Mammals
11.
Hear Res ; 429: 108689, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36649664

ABSTRACT

Of all the human body's sensory systems, the auditory system is perhaps its most intricate. Hearing loss can result from even modest damage or cell death in the inner ear, and is the most common form of sensory loss. Human hearing is made possible by the sensory epithelium, the lateral wall, and auditory nerves. The most prominent functional cells in the sensory epithelium are outer hair cells (OHCs), inner hair cells (IHCs), and supporting cells. Different sound frequencies are processed by OHCs and IHCs in different cochlear regions, with those in the apex responsible for low frequencies and those in the basal region responsible for high frequencies. Hair cells can be damaged or destroyed by loud noise, aging process, genetic mutations, ototoxicity, infection, and illness. As such, they are a primary target for treating sensorineural hearing loss. Other areas known to affect hearing include spiral ganglion neurons (SGNs) in the auditory nerve. Age-related degradation of HCs and SGNs can also cause hearing loss. The aim of this review is to introduce the roles of mitochondria in human auditory system and the inner ear's main cell types and cellular functions, before going on to detail the likely health benefits of iPSC technology. We posit that patient-specific iPSCs with mitochondrial gene mutations will be an important aspect of regenerative medicine and will lead to significant progress in the treatment of SNHL.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , Induced Pluripotent Stem Cells , Humans , Genes, Mitochondrial , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/therapy , Hearing Loss, Sensorineural/metabolism , Hair Cells, Auditory, Inner/metabolism , Hearing Loss/genetics , Hair Cells, Auditory, Outer/physiology
12.
J Assoc Res Otolaryngol ; 24(2): 117-127, 2023 04.
Article in English | MEDLINE | ID: mdl-36648734

ABSTRACT

In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.


Subject(s)
Cochlea , Hair Cells, Auditory, Outer , Animals , Hair Cells, Auditory, Outer/physiology , Hearing/physiology , Mammals
13.
Biophys J ; 122(5): 880-891, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36709411

ABSTRACT

In the mammalian cochlea, each longitudinal position of the basilar membrane (BM) has a nonlinear vibratory response in a limited frequency range around the location-dependent frequency of maximum response, known as the best frequency (BF). This nonlinear response arises from the electromechanical feedback from outer hair cells (OHCs). However, recent in vivo measurements have demonstrated that the mechanical response of other organ of Corti (OoC) structures, such as the reticular lamina (RL), and the electrical response of OHCs (measured in the local cochlear microphonic [LCM]) are nonlinear even at frequencies significantly below BF. In this work, a physiologically motivated model of the gerbil cochlea is used to demonstrate that the source of this discrepancy between the frequency range of the BM, RL, and LCM nonlinearities is greater compliance in the structures at the top of the OHCs. The predicted responses of the BM, RL, and LCM to pure tone and two-tone stimuli are shown to be in line with experimental evidence. Simulations then demonstrate that the sub-BF nonlinearity in the RL requires the structures at the top of the OHCs to be significantly more compliant than the BM. This same condition is also necessary for "optimal" gain near BF, i.e., high amplification that is in line with the experiment. This demonstrates that the conditions for OHCs to operate optimally at BF inevitably yield nonlinearity of the RL response over a broad frequency range.


Subject(s)
Organ of Corti , Vibration , Animals , Organ of Corti/physiology , Cochlea/physiology , Basilar Membrane/physiology , Hair Cells, Auditory, Outer/physiology , Mammals
14.
Sci Rep ; 12(1): 19810, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396720

ABSTRACT

The prevailing theory of cochlear function states that outer hair cells amplify sound-induced vibration to improve hearing sensitivity and frequency specificity. Recent micromechanical measurements in the basal turn of gerbil cochleae through the round window have demonstrated that the reticular lamina vibration lags the basilar membrane vibration, and it is physiologically vulnerable not only at the best frequency but also at the low frequencies. These results suggest that outer hair cells from a broad cochlear region enhance hearing sensitivity through a global hydromechanical mechanism. However, the time difference between the reticular lamina and basilar membrane vibration has been thought to result from a systematic measurement error caused by the optical axis non-perpendicular to the cochlear partition. To address this concern, we measured the reticular lamina and basilar membrane vibrations in the transverse direction through an opening in the cochlear lateral wall in this study. Present results show that the phase difference between the reticular lamina and basilar membrane vibration decreases with frequency by ~ 180 degrees from low frequencies to the best frequency, consistent with those measured through the round window. Together with the round-window measurement, the low-coherence interferometry through the cochlear lateral wall demonstrates that the time difference between the reticular lamina and basilar membrane vibration results from the cochlear active processing rather than a measurement error.


Subject(s)
Basilar Membrane , Vibration , Animals , Basilar Membrane/physiology , Gerbillinae , Cochlea/physiology , Hair Cells, Auditory, Outer/physiology
15.
J Acoust Soc Am ; 152(4): 2227, 2022 10.
Article in English | MEDLINE | ID: mdl-36319240

ABSTRACT

The mammalian ear embeds a cellular amplifier that boosts sound-induced hydromechanical waves as they propagate along the cochlea. The operation of this amplifier is not fully understood and is difficult to disentangle experimentally. In the prevailing view, cochlear waves are amplified by the piezo-electric action of the outer hair cells (OHCs), whose cycle-by-cycle elongations and contractions inject power into the local motion of the basilar membrane (BM). Concomitant deformations of the opposing (or "top") side of the organ of Corti are assumed to play a minor role and are generally neglected. However, analysis of intracochlear motions obtained using optical coherence tomography calls this prevailing view into question. In particular, the analysis suggests that (i) the net local power transfer from the OHCs to the BM is either negative or highly inefficient; and (ii) vibration of the top side of the organ of Corti plays a primary role in traveling-wave amplification. A phenomenological model derived from these observations manifests realistic cochlear responses and suggests that amplification arises almost entirely from OHC-induced deformations of the top side of the organ of Corti. In effect, the model turns classic assumptions about spatial impedance relations and power-flow direction within the sensory epithelium upside down.


Subject(s)
Cochlea , Organ of Corti , Animals , Organ of Corti/physiology , Cochlea/physiology , Basilar Membrane/physiology , Hair Cells, Auditory, Outer/physiology , Sound , Vibration , Mammals
16.
J Neurophysiol ; 128(5): 1365-1373, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36259670

ABSTRACT

The mammalian cochlea contains three rows of outer hair cells (OHCs) that amplify the basilar membrane traveling wave with high gain and exquisite tuning. The pattern of OHC loss caused by typical methods of producing hearing loss in animal models (noise, ototoxic exposure, or aging) is variable and not consistent along the length of the cochlea. Thus, it is difficult to use these approaches to understand how forces from multiple OHCs summate to create normal cochlear amplification. Here, we selectively removed the third row of OHCs and Deiters' cells in adult mice and measured cochlear amplification. In the mature cochlear epithelia, expression of the Wnt target gene Lgr5 is restricted to the third row of Deiters' cells, the supporting cells directly underneath the OHCs. Diphtheria toxin administration to Lgr5DTR-EGFP/+ mice selectively ablated the third row of Deiters' cells and the third row of OHCs. Basilar membrane vibration in vivo demonstrated disproportionately lower reduction in cochlear amplification by about 13.5 dB. On a linear scale, this means that the 33% reduction in OHC number led to a 79% reduction in gain. Thus, these experimental data describe the impact of reducing the force of cochlear amplification by a specific amount. Furthermore, these data argue that because OHC forces progressively and sequentially amplify the traveling wave as it travels to its peak, the loss of even a relatively small number of OHCs, when evenly distributed longitudinally, will cause a substantial reduction in cochlear amplification.NEW & NOTEWORTHY Normal cochlear physiology involves force production from three rows of outer hair cells to amplify and tune the traveling wave. Here, we used a genetic approach to target and ablate the third row of outer hair cells in the mouse cochlea and found it reduced cochlear amplification by 79%. This means that the loss of even a relatively small number of OHCs, when evenly distributed, causes a substantial reduction in cochlear amplification.


Subject(s)
Hair Cells, Vestibular , Hearing Loss , Mice , Animals , Hair Cells, Auditory, Outer/physiology , Cochlea/metabolism , Noise , Mammals
17.
J Neurosci ; 42(42): 7875-7884, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261265

ABSTRACT

Cochlear amplification enables the enormous dynamic range of hearing through amplifying cochlear responses to low- to moderate-level sounds and compressing them to loud sounds. Amplification is attributed to voltage-dependent electromotility of mechanosensory outer hair cells (OHCs) driven by changing voltages developed across their cell membranes. At low frequencies, these voltage changes are dominated by intracellular receptor potentials (RPs). However, OHC membranes have electrical low-pass filter properties that attenuate high-frequency RPs, which should potentially attenuate amplification of high-frequency cochlear responses and impede high-frequency hearing. We made in vivo intracellular and extracellular electrophysiological measurements from the organ of Corti of male and female mice of the CBA/J strain, with excellent high-frequency hearing, and from the CD-1 mouse strain, which has sensitive hearing below 12 kHz but loses high-frequency hearing within a few weeks postpartum. The CD-1 mouse strain was transfected with an A88V mutation of the connexin 30 gap-junction protein. By blocking the action of the GJ protein to reduce input resistance, the mutation increased the OHC extracellular RP (ERP) magnitude and rescued high-frequency hearing. However, by increasing the organ of Corti resistance, the mutation rescued high-frequency hearing through preserving the OHC extracellular RP (ERP) magnitude. We measured the voltage developed across the basolateral membranes of OHCs, which controls their electromotility, for low- to high-frequency sounds in male and female mice of the CD-1 strain that expressed the A88V mutation. We demonstrate that ERPs, not RPs, drive OHC motility and cochlear amplification at high frequencies because at high frequencies, ERPs are not frequency attenuated, exceed RPs in magnitude, and are appropriately timed to provide cochlear amplification.SIGNIFICANCE STATEMENT Cochlear amplification, which enables the enormous dynamic range of hearing, is attributed to voltage-dependent electromotility of the mechanosensory outer hair cells (OHCs) driven by sound-induced voltage changes across their membranes. OHC intracellular receptor potentials are electrically low-pass filtered, which should hinder high-frequency hearing. We measured the intracellular and extracellular voltages that control OHC electromotility in vivo in a mouse strain with impaired high-frequency hearing. A gap-junction mutation of the strain rescued high-frequency hearing, increased organ of Corti resistance, and preserved large OHC extracellular receptor potentials but reduced OHC intracellular receptor potentials and impaired low-frequency hearing. We concluded intracellular potentials drive OHC motility at low frequencies and extracellular receptor potentials drive OHC motility and cochlear amplification at high frequencies.


Subject(s)
Cochlea , Hair Cells, Auditory, Outer , Animals , Female , Male , Mice , Cochlea/physiology , Connexin 30/genetics , Connexin 30/metabolism , Hair Cells, Auditory, Outer/physiology , Mice, Inbred CBA , Mutation/genetics , Gap Junctions
18.
Hear Res ; 424: 108602, 2022 10.
Article in English | MEDLINE | ID: mdl-36103788

ABSTRACT

Sex differences in the development of sensorineural hearing loss have been recognized in various inner ear disorders, but the molecular basis for such differences is poorly understood. Autosomal genes have been shown to cause sex differences in disease susceptibility, but many genes exerting sex-dependent effects on auditory function remain to be identified. Galectin-3 (Gal-3), a protein encoded by the autosomal gene Lgals3, is a member of the ß-galactoside-binding protein family, and has been linked to multiple biological processes, including immune responses, apoptosis, and cell adhesion. Here, we investigated auditory function and hair cell integrity in Gal-3 knockout (KO, Lgals3-/-) and wild-type (WT, Lgals3+/+) mice from age 1 to 6 months. KO mice show a more rapid age-related increase in ABR thresholds compared to WT mice. Noticeably, the threshold deterioration in female KO mice is significantly greater than in the male KO and WT mice. The ABR threshold elevation manifests over a broad frequency range in female KO mice, whereas the threshold elevations are confined to high frequencies in the male KO and WT mice. Moreover, DPOAE input/output functions reveal a similar pattern of auditory dysfunction, with the female KO mice displaying a significantly greater reduction in DPOAE amplitudes than male KO mice and WT mice of both sexes. Finally, age-related outer hair cell loss is greater for female KO mice compared to male KO mice and WT mice of both sexes. Together, these results indicate that Gal-3 deficiency exacerbates age-related cochlear degeneration and auditory dysfunction in female mice. Our study identifies Gal-3 as a sex-dependent molecule for maintaining female cochlear integrity.


Subject(s)
Galectin 3 , Hearing , Animals , Auditory Threshold/physiology , Cochlea , Evoked Potentials, Auditory, Brain Stem , Female , Galectin 3/genetics , Galectin 3/metabolism , Hair Cells, Auditory, Outer/physiology , Male , Mice , Mice, Knockout
19.
J Assoc Res Otolaryngol ; 23(5): 593-602, 2022 10.
Article in English | MEDLINE | ID: mdl-35902434

ABSTRACT

The relationship between the middle ear acoustic reflex (AR) and inner hair cell (IHC) loss is currently unknown. Given that IHC are believed to convey nearly all acoustic information to the central auditory nervous system, it has been assumed that loss of IHC would significantly impact the AR. To evaluate this relationship, we assessed the presence and amplitude of the AR in chinchillas before and after treatment with carboplatin, an anticancer drug that reliably and selectively destroys IHC in this species. Baseline measures of hearing sensitivity, including auditory brainstem response (ABR) thresholds and distortion product otoacoustic emissions (DPOAE), were assessed and then re-evaluated following carboplatin treatment. Post-carboplatin ABR thresholds and DPOAE were found to be unchanged or slightly elevated; results were consistent with published reports. Our main hypothesis was that loss of IHC would abolish the reflex or significantly reduce its amplitude. Contrary to our hypothesis, the ipsilateral 226-Hz AR continued to be reliably elicited following carboplatin treatment. Post-mortem histological analysis confirmed significant IHC loss (65-85 %), but no measurable loss of outer hair cells (OHCs). Given that loss of IHC alone does not significantly reduce the 226-Hz AR, our results suggest that few IHC are needed to maintain the 226-Hz AR response. These results suggest additional studies are needed to better understand the role of IHC in the reflex arc, present opportunities to further study the reflex pathway, and could change how we use the clinical AR as a potential diagnostic tool for IHC dysfunction, including those related to IHC synaptopathy.


Subject(s)
Hair Cells, Auditory, Inner , Reflex, Acoustic , Animals , Hair Cells, Auditory, Inner/physiology , Carboplatin , Chinchilla , Hair Cells, Auditory, Outer/physiology , Auditory Threshold/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Otoacoustic Emissions, Spontaneous/physiology
20.
J Assoc Res Otolaryngol ; 23(5): 579-591, 2022 10.
Article in English | MEDLINE | ID: mdl-35798901

ABSTRACT

Human speech primarily contains low frequencies. It is well established that such frequencies maximally excite the cochlea near its apex. But, the micromechanics that precede and are involved in this transduction are not well understood. We measured vibrations from the low-frequency, second turn in intact gerbil cochleae using optical coherence tomography (OCT). The data were used to create spatial maps that detail the sound-evoked motions across the sensory organ of Corti complex (OCC). These maps were remarkably similar across animals and showed little variation with frequency or level. We identify four, anatomically distinct, response regions within the OCC: the basilar membrane (BM), the outer hair cells (OHC), the lateral compartment (lc), and the tectorial membrane (TM). Results provide evidence that active processes in the OHC play an important role in the mechanical interplay between different OCC structures which increases the amplitude and tuning sharpness of the traveling wave. The angle between the OCT beam and the OCC makes that we captured radial motions thought to be the effective stimulus to the mechano-sensitive hair bundles. We found that TM responses were relatively weak, arguing against a role in enhancing mechanical hair bundle deflection. Rather, BM responses were found to closely resemble the frequency selectivity and sensitivity found in auditory nerve fibers (ANF) that innervate the low-frequency cochlea.


Subject(s)
Cochlea , Vibration , Animals , Humans , Gerbillinae , Cochlea/physiology , Basilar Membrane , Tectorial Membrane/physiology , Organ of Corti , Hair Cells, Auditory, Outer/physiology , Hearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...