Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 21(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911856

ABSTRACT

Halogen bonding is studied in different structures consisting of halogenated guanine DNA bases, including the Hoogsteen guanine-guanine base pair, two different types of guanine ribbons (R-I and R-II) consisting of two or three monomers, and guanine quartets. In the halogenated base pairs (except the Cl-base pair, which has a very non-planar structure with no halogen bonds) and R-I ribbons (except the At trimer), the potential N-X•••O interaction is sacrificed to optimise the N-X•••N halogen bond. In the At trimer, the astatines originally bonded to N1 in the halogen bond donating guanines have moved to the adjacent O6 atom, enabling O-At•••N, N-At•••O, and N-At•••At halogen bonds. The brominated and chlorinated R-II trimers contain two N-X•••N and two N-X•••O halogen bonds, whereas in the iodinated and astatinated trimers, one of the N-X•••N halogen bonds is lost. The corresponding R-II dimers keep the same halogen bond patterns. The G-quartets display a rich diversity of symmetries and halogen bond patterns, including N-X•••N, N-X•••O, N-X•••X, O-X•••X, and O-X•••O halogen bonds (the latter two facilitated by the transfer of halogens from N1 to O6). In general, halogenation decreases the stability of the structures. However, the stability increases with the increasing atomic number of the halogen, and the At-doped R-I trimer and the three most stable At-doped quartets are more stable than their hydrogenated counterparts. Significant deviations from linearity are found for some of the halogen bonds (with halogen bond angles around 150°).


Subject(s)
Guanine/chemistry , Guanine/metabolism , Halogens/chemistry , Base Pairing , DNA , Electrons , Halogenation/physiology , Halogens/metabolism , Hydrogen , Hydrogen Bonding , Macromolecular Substances
2.
Int J Mol Sci ; 21(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272759

ABSTRACT

Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Halogenation/physiology , Indoleacetic Acids/metabolism , Amino Acids/metabolism , Fabaceae/metabolism , Gene Expression Regulation, Plant/physiology , Indoles/metabolism , Pisum sativum/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Tryptophan/metabolism
3.
Molecules ; 24(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694313

ABSTRACT

Halogens can be very important for active agents as vital parts of their binding mode, on the one hand, but are on the other hand instrumental in the synthesis of most active agents. However, the primary halogenating compound is molecular chlorine which has two major drawbacks, high energy consumption and hazardous handling. Nature bypassed molecular halogens and evolved at least six halogenating enzymes: Three kind of haloperoxidases, flavin-dependent halogenases as well as α-ketoglutarate and S-adenosylmethionine (SAM)-dependent halogenases. This review shows what is known today on these enzymes in terms of biocatalytic usage. The reader may understand this review as a plea for the usage of halogenating enzymes for fine chemical syntheses, but there are many steps to take until halogenating enzymes are reliable, flexible, and sustainable catalysts for halogenation.


Subject(s)
Halogenation/physiology , Halogens/chemistry , Biocatalysis , Catalysis , Flavin-Adenine Dinucleotide/metabolism , Flavins/chemistry , Humans , Ketoglutaric Acids/metabolism , Peroxidases/metabolism , S-Adenosylmethionine/metabolism
4.
Chemosphere ; 236: 124361, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31325823

ABSTRACT

Haloacetaldehydes (HAs) are the third prevalent group of disinfection by-products of great health concern. A bench-scale study was performed to investigate the formation and speciation of HAs in raw and treated waters after chlorination and ozonation-chlorination. Pre-ozonation resulted in enhanced HA formation during subsequent chlorination, and the HA yields from ozonation-chlorination were 1.66 and 1.63 times higher than that from chlorination of raw and treated waters. The mechanism about the increase of HA formation during ozonation-chlorination was systematically investigated in this study. The results showed that acetaldehyde formed after ozonation was the dominant precursor for the enhanced HA formation during subsequent chlorination. Increase in pH and chlorine dose increased HA formation during acetaldehyde chlorination. Based on the kinetic studies on the HA formation during acetaldehyde chlorination and the HA stabilities with and without free chlorine, it was found that chlorine was incorporated into the α-hydrogen in acetaldehyde to form a sequence of mono-, di- and tri-chloroacetaldehyde. During this process, these three chlorinated acetaldehydes would also undergo base-catalyzed hydrolysis through decarburization and dehalogenation pathways. This study elucidated that acetaldehyde formed after ozonation resulted in the increase of HA formation during subsequent chlorination. This study also revealed the formation pathway of HA during chlorination of acetaldehyde, which would help to minimize HA formation at drinking water plants.


Subject(s)
Acetaldehyde/analogs & derivatives , Chlorine/chemistry , Drinking Water/chemistry , Halogenation/physiology , Ozone/chemistry , Water Pollutants, Chemical/analysis , Acetaldehyde/chemical synthesis , Disinfection/methods , Kinetics , Water Purification/methods
5.
Chemosphere ; 229: 77-85, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31075705

ABSTRACT

In this study the direct and indirect photolysis of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in an organic solvent mixture (60:30:10, ACN:MeOH:THF) under UV-(C) and simulated sunlight irradiation was investigated, and the formed photo-transformation products were identified for the first time. TTBP-TAZ was almost completely degraded within 10 min under UV-(C) irradiation. Due to the fast degradation no specific kinetic order could be observed. In comparison, the reaction under simulated sunlight irradiation was much slower and thus, the kinetic first-order could be determined. The observed photolysis rate constant k as well as the half-life time t1/2 were estimated to be k = (0.0163 ±â€¯0.0002) h-1 and t1/2 = 42.3 h, respectively. The addition of 2-propanol and hydrogen peroxide to investigate the influence of indirect photolysis under UV-(C) irradiation causes no influence on the degradation of TTBP-TAZ. Nevertheless, the removal of TTBP-TAZ under UV-(C) and simulated sunlight without additional chemicals (except solvent) indicates that the direct photolysis plays a significant role in the degradation mechanism of TTBP-TAZ. In both irradiation experiments, TTBP-TAZ was quantitatively degraded that involve the formation of previously unknown PTPs. Overall, two main PTPs were determined when irradiated with UV-(C) and eight sequential debromination products were observed when irradiated by simulated sunlight. These were determined by HPLC-DAD and - MS/(MS), respectively. Based on the chosen experimental conditions the consecutive debromination as well as photo-Fries rearrangement was confirmed as the main degradation pathway by high resolution mass spectrometry and X-ray diffraction.


Subject(s)
Flame Retardants/analysis , Halogenation/physiology , Hydrocarbons, Brominated/chemistry , Triazines/chemistry , Kinetics , Photolysis
6.
Chemosphere ; 231: 72-81, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31128354

ABSTRACT

Polyfluorinated dibenzo-p-dioxins (PFDDs) are dioxin compounds that have been detected in industrial fluoroaromatic chemicals and can cause adverse effects to organisms. In this work, the photochemical behaviors of PFDDs congeners on silica was systematically investigated. The pseudo-first-order rate constants (k, h-1) of surface photolysis changed with the substitution number and position of fluorine atoms, and the tetra-fluorinated PFDDs tended to degrade more efficiently. Octafluorinated dibenzo-p-dioxin (OFDD) was selected as a representative to explore the reaction mechanisms. Product analysis showed that OFDD was decomposed into hydroxylated PFDDs (OH-PFDDs) and hydroxylated polyfluorinated diphenyl ethers (OH-PFDEs) via hydroxyl substitution and (OH radical mediated or direct) C-O bond cleavage. Coupling elimination reaction was also observed, resulting in the formation of three-membered and four-membered ring compounds. According to the extracted peak areas in mass spectra and the energy barrier in potential energy surface, direct homolysis of C-O bond occurs as the dominant reaction pathway. This work could provide some new insights into the environmental fate of dioxin compounds.


Subject(s)
Dioxins/chemistry , Halogenation/physiology , Photochemical Processes , Silicon Dioxide/chemistry , Hydroxyl Radical , Hydroxylation , Photolysis
7.
Chemosphere ; 219: 243-249, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30543959

ABSTRACT

Climbazole is an antifungal agent widely used in household personal care products, and it was found persistent in chlorination disinfection process. Here we investigated the kinetics and mechanism of climbazole degradation by UV/chlorine process. The results showed that the UV/chlorine process dramatically enhanced degradation of climbazole when compared to the UV photolysis and chlorination alone. The neutral condition (pH 7) produced the highest reaction rate for the climbazole by UV/chlorine among the various pH conditions. Dissolved organic matter and inorganic ions in natural water showed moderate inhibition effects on the degradation of climbazole in the UV/chlorine process. Hydroxyl radical (OH and chlorine radical (Cl) were found to be the main reactive species in the degradation of climbazole, with the second-order rate constant of 1.24 × 1010 M-1 s-1 and 6.3 × 1010 M-1 s-1, respectively. In addition, the OH and Cl in the UV/chlorine at 100 µM accounted for 82.2% and 7.7% contributions to the removal of climbazole, respectively. Eleven of main transformation products of climbazole were identified in the UV/chlorine process. These oxidation products did not cause extra toxicity than climbazole itself. The findings from this study show that the combination of chlorination with UV photolysis could provide an effective approach for removal of climbazole during conventional disinfection process.


Subject(s)
Chlorine/chemistry , Halogenation/physiology , Imidazoles/therapeutic use , Water Pollutants, Chemical/metabolism , Water Purification/methods , Imidazoles/pharmacology , Kinetics
8.
Biochim Biophys Acta Biomembr ; 1861(3): 631-642, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30582916

ABSTRACT

This study aims to investigate bacteriorhodopsin (bR) molecules reconstituted in lipid bilayers composed of di(nonafluorotetradecanoyl)-phosphatidylcholine (F4-DMPC), a partially fluorinated analogue of dimyristoyl-phosphatidylcholine (DMPC) to clarify the effects of partially fluorinated hydrophobic chains of lipids on protein's stability. Calorimetry measurements showed that the chain-melting transition of F4-DMPC/bR systems occurs at 3.5 °C, whereas visible circular dichroism (CD) and X-ray diffraction measurements showed that a two-dimensional (2D) hexagonal lattice formed by bR trimers in F4-DMPC bilayers remains intact even above 30 °C, similar to bR in a native purple membrane. Complete dissociation of the trimers into the monomers detected by visible CD almost coincides with the complete melting of 2D lattice observed by X-ray diffraction, in which both take place at around 65 °C (10 °C lower than that for bR in a native purple membrane). However, it is extremely high in comparison with the bR reconstituted in DMPC bilayers in which the dissociation of bR trimer in DMPC bilayers occurs near the chain-melting transition temperature of DMPC bilayers at approximately 18 °C. In order to explore the rationale behind the difference in stability, a further investigation of the detailed structural features of pure F4-DMPC bilayers was performed by analyzing the lamellar diffraction data using simple electron density models. The results suggested that the perfluoroalkyl groups do not exhibit any conformation change even if the chain-melting transition occurs, which is likely to contribute to the stability of the 2D hexagonal lattice formed by the bR trimers.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/metabolism , Dimyristoylphosphatidylcholine/metabolism , Halogenation/physiology , Lipid Bilayers , Protein Multimerization/physiology , Protein Structure, Quaternary , Calorimetry, Differential Scanning , Circular Dichroism , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemical synthesis , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Conformation , Protein Binding , Protein Stability , X-Ray Diffraction
9.
J Vis Exp ; (139)2018 09 12.
Article in English | MEDLINE | ID: mdl-30272667

ABSTRACT

We present the chemoselective synthesis of 1-(iodoethynyl)-4-methylbenzene, 1-(1,2-diiodovinyl)-4-methylbenzene, and 1-methyl-4-(1,2,2-triiodovinyl)benzene as representative examples for the practical chemoselective preparation of 1-iodoalkynes, 1,2-diiodoalkenes, and 1,1,2-triiodoalkenes from the chemoselective iodination of terminal alkynes mediated by hypervalent-iodine reagents. The chemoselectivity was confirmed by using p-tolylethyne as a model substrate to screen a variety of iodine sources and/or the hypervalent-iodine reagents. A combination of tetrabutylammonium iodide (TBAI) and (diacetoxyiodo)benzene (PIDA) selectively generates 1-iodoalkynes, while a combination of KI and PIDA generates 1,2-diiodoalkenes. A one-pot synthesis based on both TBAI-PIDA and KI-PIDA yields the corresponding 1,1,2-triiodoalkenes. These protocols were subsequently applied to the synthesis of synthetically important aromatic and aliphatic 1-iodoalkynes, 1,2-diiodoalkenes, and 1,1,2-triiodoalkenes, which were obtained in good yield with excellent chemoselectivity.


Subject(s)
Alkynes/chemistry , Halogenation/physiology
10.
Aging (Albany NY) ; 10(5): 868-901, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29779015

ABSTRACT

Non-enzymatic protein modifications occur inevitably in all living systems. Products of such modifications accumulate during aging of cells and organisms and may contribute to their age-related functional deterioration. This review presents the formation of irreversible protein modifications such as carbonylation, nitration and chlorination, modifications by 4-hydroxynonenal, removal of modified proteins and accumulation of these protein modifications during aging of humans and model organisms, and their enhanced accumulation in age-related brain diseases.


Subject(s)
Aging/metabolism , Brain Diseases/metabolism , Brain Diseases/physiopathology , Oxidative Stress/physiology , Protein Processing, Post-Translational/physiology , Animals , Halogenation/physiology , Humans , Protein Carbonylation/physiology
11.
PLoS One ; 13(5): e0196797, 2018.
Article in English | MEDLINE | ID: mdl-29746521

ABSTRACT

Flavin-dependent halogenases catalyse halogenation of aromatic compounds. In most cases, this reaction proceeds with high regioselectivity and requires only the presence of FADH2, oxygen, and halide salts. Since marine habitats contain high concentrations of halides, organisms populating the oceans might be valuable sources of yet undiscovered halogenases. A new Hidden-Markov-Model (HMM) based on the PFAM tryptophan halogenase model was used for the analysis of marine metagenomes. Eleven metagenomes were screened leading to the identification of 254 complete or partial putative flavin-dependent halogenase genes. One predicted halogenase gene (brvH) was selected, codon optimised for E. coli, and overexpressed. Substrate screening revealed that this enzyme represents an active flavin-dependent halogenase able to convert indole to 3-bromoindole. Remarkably, bromination prevails also in a large excess of chloride. The BrvH crystal structure is very similar to that of tryptophan halogenases but reveals a substrate binding site that is open to the solvent instead of being covered by a loop.


Subject(s)
Flavins/metabolism , Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Binding Sites , Escherichia coli/metabolism , Flavin-Adenine Dinucleotide/analogs & derivatives , Flavin-Adenine Dinucleotide/metabolism , Halogenation/physiology , Metagenomics/methods , Oceans and Seas
12.
Annu Rev Biochem ; 87: 159-185, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29589959

ABSTRACT

Flavin-dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes have been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications.


Subject(s)
Flavins/metabolism , Halogenation/genetics , Halogenation/physiology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Biocatalysis , Catalytic Domain/genetics , Directed Molecular Evolution , Drug Design , Enzyme Stability/genetics , Hydrocarbons, Halogenated/chemistry , Hydrocarbons, Halogenated/metabolism , Metabolic Networks and Pathways , Models, Molecular , Mutagenesis , Oxidoreductases/chemistry , Substrate Specificity
13.
Chemosphere ; 198: 556-564, 2018 May.
Article in English | MEDLINE | ID: mdl-29422245

ABSTRACT

S,S-ethylenediamine-N,N-disuccinic acid (EDDS) enhanced reductive dissolution of α-FeOOH by Shewanella putrefaciens CN32 (CN32), resulting in formation of surface-bound Fe(II) species (FeIIEDDS) to improve reductive dechlorination of carbon tetrachloride (CT). The pseudo-first-order rate constants for bio-reduction extents of α-FeOOH by CN32 in the presence of 1.36 mM EDDS was 0.023 ±â€¯0.0003 d-1 which was higher than without EDDS. The enhancement mechanism of bio-reduction was attributed to the strong complexation ability of EDDS to formed FeIIIEDDS, which could be better utilized by CN32. The dechlorination kinetic of CT by FeIIEDDS (2.016 h-1) in the presence of 1.36 mM EDDS was 24 times faster than without EDDS. Chloroform were detected as main products for the degradation of CT. The chemical analyses and morphological observation showed that combination between EDDS and Fe2+ produced FeIIEDDS complex, which had a reductive potential of -0.375 V and significantly enhanced CT dechlorination. The results showed that EDDS played an important role in enhancing the bio-reduction of α-FeOOH to accelerate reductive dechlorination of CT.


Subject(s)
Carbon Tetrachloride/metabolism , Ethylenediamines/metabolism , Iron Compounds/metabolism , Minerals/metabolism , Shewanella putrefaciens/metabolism , Succinates/metabolism , Chelating Agents/metabolism , Chloroform/metabolism , Halogenation/physiology , Iron/chemistry , Kinetics , Oxidation-Reduction
14.
Chemosphere ; 195: 673-682, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29289012

ABSTRACT

Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M-1 s-1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H+, HOCl, OCl- and chlorocreatinine- with OCl- were calculated as 2.43 (±1.55) × 104 M-2 s-1, 1.05 (±0.09) M-1 s-1, 2.86 (±0.30) M-1 s-1 and 3.09 (±0.24) M-1 s-1, respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination.


Subject(s)
Chloramines/chemistry , Creatinine/chemistry , Halogenation/physiology , Water Pollutants, Chemical/chemistry , Water Purification/methods , Acetonitriles/chemistry , Chlorine/analysis , Chlorine/chemistry , Chloroform/chemistry , Disinfection/methods , Humic Substances/analysis , Hydrocarbons, Chlorinated/chemistry , Water , Water Pollutants, Chemical/analysis
15.
FEMS Microbiol Ecol ; 94(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29228161

ABSTRACT

Reductive dehalogenation of organohalides is carried out by organohalide-respiring bacteria (OHRB) in anoxic environments. The tetrachloroethene (PCE)-respiring Epsilonproteobacterium Sulfurospirillum multivorans is one of few OHRB able to respire oxygen. Therefore, we investigated the organism's capacity to dehalogenate PCE in the presence of oxygen, which would broaden the applicability to use S. multivorans, unlike other commonly oxygen-sensitive OHRB, for bioremediation, e.g. at oxic/anoxic interphases. Additionally, this has an impact on our understanding of the global halogen cycle. Sulfurospirillum multivorans performs dehalogenation of PCE to cis-1,2-dichloroethene at oxygen concentrations below 0.19 mg/L. The redox potential of the medium electrochemically adjusted up to +400 mV had no influence on reductive dehalogenation by S. multivorans in our experiments, suggesting that higher levels of oxygen impair PCE dechlorination by inhibiting or inactivating involved enzymes. The PCE reductive dehalogenase remained active in cell extracts of S. multivorans exposed to 0.37 mg/L oxygen for more than 96 h. Analysis of the proteome revealed that superoxide reductase and cytochrome peroxidase amounts increased with 5% oxygen in the gas phase, while the response to atmospheric oxygen concentrations involved catalase and hydrogen peroxide reductase. Taken together, our results demonstrate that reductive dehalogenation by OHRB is not limited to anoxic conditions.


Subject(s)
Campylobacteraceae/metabolism , Halogenation/physiology , Oxygen/metabolism , Tetrachloroethylene/metabolism , Biodegradation, Environmental , Catalase/metabolism , Cytochrome-c Peroxidase/metabolism , Oxidoreductases/metabolism , Proteome/analysis
16.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Article in English | MEDLINE | ID: mdl-29040506

ABSTRACT

In this study, six PCE-to-ethene dechlorinating cultures, fed with a fermentable substrate (lactate) or hydrogen as electron donor, were obtained from PCB and PCE dechlorinating microcosms constructed with PCB-contaminated marine sediments. A novel Chloroflexi member (OTU-DIS1) affiliated to Dehalococcoidales Incertae Sedis, only distantly related to known dechlorinating bacteria, dominated the enrichment cultures (up to 86% of total OTUs). Sulfate-, thiosulfate- and sulfur-reducing bacteria affiliated to genera Desulfobacter, Dethiosulfatibacter and Desulfuromusa were also found to lesser extent. Remarkably, tceA, vcrA and the bifunctional PCE/PCB dehalogenase genes pcbA1, pcbA4 and pcbA5 were found in all dechlorinating microbial enrichments indicating the coexistence of different Dehalococcoides mccartyi strains. The reductive dechlorination rate in each culture remained unvaried over long-term operation (≈ 30 months) and ranged between 0.85 and 0.97 mmol Cl-1 released L-1 d-1 in the lactate-fed microbial enrichments and between 0.66 and 0.85 mmol Cl-1 released L-1 d-1 in the H2-fed microbial enrichments. Overall, this study highlights the presence of yet unexplored biodiversity in PCBs contaminated marine sediments and indicates these environments as promising sources of novel organohalide-respiring bacteria.


Subject(s)
Biodegradation, Environmental , Chloroflexi/metabolism , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Polychlorinated Biphenyls/metabolism , Sulfur-Reducing Bacteria/metabolism , Thiosulfates/metabolism , Biodiversity , Chloroflexi/genetics , Chloroflexi/isolation & purification , Ethylenes/biosynthesis , Halogenation/physiology , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/isolation & purification
17.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Article in English | MEDLINE | ID: mdl-29040515

ABSTRACT

Bioremediation treatment (e.g. biostimulation) can decrease groundwater pH with consequences for Dehalococcoides mccartyi (Dhc) reductive dechlorination activity. To explore the pH resilience of Dhc, the Dhc-containing consortium BDI was exposed to pH 5.5 for up to 40 days. Following 8- and 16-day exposure periods to pH 5.5, dechlorination activity and growth recovered when returned to pH 7.2; however, the ability of the culture to dechlorinate vinyl chloride (VC) to ethene was impaired (i.e. decreased rate of VC transformation). Dhc cells exposed to pH 5.5 for 40 days did not recover the ethene-producing phenotype upon transfer to pH 7.2 even after 200 days of incubation. When returned to pH 7.2 conditions after an 8-, a 16- and a 40-day low pH exposure, tceA and vcrA genes showed distinct fold increases, suggesting Dhc strain-specific responses to low pH exposure. Furthermore, a survey of Dhc biomarker genes in groundwater samples revealed the average abundances of Dhc 16S rRNA, tceA and vcrA genes in pH 4.5-6 groundwater were significantly lower (P-value < 0.05) than in pH 6-8.3 groundwater. Overall, the results of the laboratory study and the assessment of field data demonstrate that sustained Dhc activity should not be expected in low pH groundwater, and the duration of low pH exposure affects the ability of Dhc to recover activity at circumneutral pH.


Subject(s)
Chloroflexi/metabolism , Ethylenes/biosynthesis , Groundwater/analysis , Halogenation/physiology , Vinyl Chloride/chemistry , Biodegradation, Environmental , Chloroflexi/genetics , Hydrogen-Ion Concentration , RNA, Ribosomal, 16S/genetics , Transcriptional Elongation Factors/genetics
18.
Protein Sci ; 26(10): 2051-2058, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28737009

ABSTRACT

It has been a long-standing goal to understand the structure-stability relationship of proteins, as optimal stability is essential for protein function and highly desirable for protein therapeutics. Halogenation has emerged as a minimally invasive strategy to probe the physical characteristics of proteins in solution, as well as enhance the structural stabilities of proteins for therapeutic applications. Although advances in synthetic chemistry and genetic code expansion have allowed for the rapid synthesis of proteins with diverse chemical sequences, much remains to be learned regarding the impact of these mutations on their structural integrity. In this contribution, we present a systematic study of three well-folded model protein systems, in which their structural stabilities are assessed in response to various hydrogen-to-halogen atom mutations. Halogenation allows for the perturbation of proteins on a sub-angstrom scale, offering unprecedented precision of protein engineering. The thermodynamic results from these model systems reveal that in certain cases, proteins can display modest steric tolerance to halogenation, yielding non-additive consequences to protein stability. The observed sub-angstrom sensitivity of protein stability highlights the delicate arrangement of a folded protein core structure. The stability data of various halogenated proteins presented herein should also provide guidelines for using halogenation as a strategy to improve the stability of protein therapeutics.


Subject(s)
Amino Acids/chemistry , Halogenation/physiology , Protein Engineering/methods , Protein Stability , Proteins/chemistry , Amino Acids/metabolism , Mutation , Protein Conformation , Proteins/metabolism
19.
Mol Pharmacol ; 91(6): 620-629, 2017 06.
Article in English | MEDLINE | ID: mdl-28325748

ABSTRACT

The TWIK-related acid-sensitive potassium channel 3 (TASK-3; KCNK9) tandem pore potassium channel function is activated by halogenated anesthetics through binding at a putative anesthetic-binding cavity. To understand the pharmacologic requirements for TASK-3 activation, we studied the concentration-response of TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, halothane, α-chloralose, 2,2,2-trichloroethanol [TCE], and chloral hydrate), to ethanol, and to a panel of halogenated methanes and alcohols. We used mutagenesis to probe the anesthetic-binding cavity as observed in a TASK-3 homology model. TASK-3 activation was quantified by Ussing chamber voltage clamp analysis. We mutagenized the residue Val-136, which lines the anesthetic-binding cavity, its flanking residues (132 to 140), and Leu-122, a pore-gating residue. The 2-halogenated ethanols activate wild-type TASK-3 with the following rank order efficacy (normalized current [95% confidence interval]): 2,2,2-tribromo-(267% [240-294]) > 2,2,2-trichloro-(215% [196-234]) > chloral hydrate (165% [161-176]) > 2,2-dichloro- > 2-chloro ≈ 2,2,2-trifluoroethanol > ethanol. Similarly, carbon tetrabromide (296% [245-346]), carbon tetrachloride (180% [163-196]), and 1,1,1,3,3,3-hexafluoropropanol (200% [194-206]) activate TASK-3, whereas the larger carbon tetraiodide and α-chloralose inhibit. Clinical agents activate TASK-3 with the following rank order efficacy: halothane (207% [202-212]) > isoflurane (169% [161-176]) > sevoflurane (164% [150-177]) > desflurane (119% [109-129]). Mutations at and near residue-136 modify TCE activation of TASK-3, and interestingly M159W, V136E, and L122D were resistant to both isoflurane and TCE activation. TASK-3 function is activated by a multiple agents and requires a halogenated substituent between ∼30 and 232 cm3/mol volume with potency increased by halogen polarizeability. Val-136 and adjacent residues may mediate anesthetic binding and stabilize an open state regulated by pore residue Leu-122. Isoflurane and TCE likely share commonalities in their mechanism of TASK-3 activation.


Subject(s)
Alkanes/metabolism , Anesthetics, Inhalation/metabolism , Ethanol/metabolism , Ether/metabolism , Halogenation/physiology , Potassium Channels, Tandem Pore Domain/metabolism , Alkanes/pharmacology , Anesthetics, Inhalation/pharmacology , Animals , Binding Sites/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Ethanol/pharmacology , Ether/pharmacology , Halogenation/drug effects , Potassium Channels, Tandem Pore Domain/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Rats, Inbred F344 , Saccharomyces cerevisiae
20.
Proc Natl Acad Sci U S A ; 113(14): 3797-802, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27001835

ABSTRACT

Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes.


Subject(s)
Flavins/metabolism , Halogenation/physiology , Pseudoalteromonas/enzymology , Pseudoalteromonas/metabolism , Pyrroles/chemistry , Amino Acid Sequence , Animals , Anthozoa/metabolism , Aquatic Organisms/metabolism , Bacterial Proteins/metabolism , Binding Sites/genetics , Bromine/chemistry , Crystallography, X-Ray , Pseudoalteromonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...