Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.746
Filter
1.
PLoS One ; 19(6): e0301498, 2024.
Article in English | MEDLINE | ID: mdl-38870170

ABSTRACT

The aims of this study were: 1) to describe the total muscular injuries, and specifically HSIs, and their corresponding missed matches; 2) to analyse their economic impact; and 3) to estimate the loss of incomes due to TV rights, in first division clubs from LaLigaTM depending on the expected and actual ranking position during the 2018/2019 season. To do that, a cross-sectional study for season 18/19 and for all players of the 20 Spanish professional football clubs was performed. The economic impact of injuries was estimated considering the missed matches and salary cost of all players and the audio-visual income loss was estimated considering the Spanish Royal Decree of Law (RDL 5/2015). The high number of muscular (270) and hamstring injuries (57) implies a high cost for professional first division football clubs, specifically € 365,811 per month for the former and € 47,388 per month for the latter. In addition, reaching a worse than expected position in LaLigaTM ranking involved a loss of 45,2 million € in TV rights incomes. The high cost of muscle injuries in first division teams justifies the need for multidisciplinary teams that are capable of reducing the number of injuries as well as recovery times.


Subject(s)
Athletic Injuries , Hamstring Muscles , Soccer , Humans , Soccer/injuries , Soccer/economics , Hamstring Muscles/injuries , Cross-Sectional Studies , Athletic Injuries/economics , Athletic Injuries/epidemiology , Spain , Male , Sprains and Strains/economics , Sprains and Strains/epidemiology
2.
J Bodyw Mov Ther ; 39: 382-389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876656

ABSTRACT

BACKGROUND AND OBJECTIVES: Nordic Hamstring Exercise (NHE) is one of the best exercises proposed for injury prevention of hamstring muscles. However, its effects on lower extremity proprioception are unclear. The aim of this study was to investigate the immediate effects of a single bout of NHE on hip and knee joints' proprioception. METHODS: Forty collegiate male soccer players participated in this study with a mean age of 22.85 ± 1.82 years and were randomized into either control (n = 20) or experimental (n = 20) groups. Each subject participated in pre-test measurements in which hip and knee active joints position sense (JPS) were assessed in standing and lying tasks using the image-capturing method. The experimental group then performed three sets of NHE with 10 repetitions in each set, while the control group rested for 10 min. Paired and independent t-tests were used for calculating the differences within and between groups on SPSS software, respectively. The level of significance was P ≤ 0.05. RESULTS: Hip JPS in the lying task and knee JPS in both of the standing and lying tasks were impaired significantly after performing a single bout of NHE (P ≤ 0.05). However, the effects of this exercise on hip JPS in the standing task were not significant (P ≥ 0.05). CONCLUSIONS: NHE performing with three sets of 10 repetitions can significantly impair hip and knee JPS immediately after exercise and reduce the proprioception acuity of the lower limbs. It is recommended to perform this exercise at a time rather than before training or match sessions.


Subject(s)
Hamstring Muscles , Hip Joint , Knee Joint , Proprioception , Humans , Male , Proprioception/physiology , Hip Joint/physiology , Knee Joint/physiology , Young Adult , Hamstring Muscles/physiology , Soccer/physiology , Exercise/physiology , Adult
3.
J Bodyw Mov Ther ; 39: 435-440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876665

ABSTRACT

INTRODUCTION: The single leg bridge test (SLBT) has been suggested as a clinical test to examine function, screen injury risk, and monitor the effectiveness of rehabilitation programes targeting the hamstring. This study aimed to determine the inter-day reliability and repeatability of both SLBT performance, semitendinosus (ST), and biceps femoris long head (BFlh) surface electromyography (sEMG) responses and characterise the BFlh and ST electrical activity during the SLBT performed until exhaustion in healthy individuals. METHODS: Twelve physically active young men without previous hamstring injury were tested for the number of repetitions attained, and sEMG signal median frequency and amplitude in both ST and BFlh of each lower limb, randomly in two sessions, with a seven-day interval between sessions. RESULTS: High reliability [ICC = 0.85] was found for the number of SLBT repetitions attained. Reliability of sEMG outcomes showed better results for ST (ICC = 0.62-0.91) than for BFlh (ICC = 0.39-0.81), and a high to very-high repeatability was found for both ST (ICC = 0.91-0.84) and BFlh (ICC = 0.91-0.85). sEMG median frequency decreased and amplitude increased for both BFlh (p ≤ 0.001) and ST (p ≤ 0.039) at the end of SLBT, suggesting localised fatigue. CONCLUSIONS: The SLBT performed by healthy individuals until exhaustion proved to be reliable and to induce fatigue in both BFlh and ST, where the sEMG median frequency and amplitude can be measured on different days with acceptable reliability and high repeatability, suggesting its potential future use in both practical and clinical settings.


Subject(s)
Electromyography , Hamstring Muscles , Humans , Male , Electromyography/methods , Hamstring Muscles/physiology , Reproducibility of Results , Young Adult , Adult , Exercise Test/methods
4.
J Bodyw Mov Ther ; 39: 525-530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876679

ABSTRACT

The Askling's H-test is considered a useful return to play criterion after a hamstring muscle injury (HMI). However, it assesses only the active and passive flexibility of posterior thigh muscles. This may lead the practitioner to underestimate a compensation or abnormal movement pattern. The aim of this study was to analyze these kinematic aspects and their reliability, and evaluate the hamstring (HM) and gluteus maximus (GM) muscles' activities. Twelve healthy male volunteers were tested during two session of three trials for passive and active tests. Dynamic flexibility (97.2 ± 6.0°) was significantly greater than the passive one (70.5 ± 14.7°) (p < 0.001), and good intra-individual reproductibility for most kinematic characteristics was observed. Biceps Femoris long head, semitendinosus and GM mean activities (20.1 ± 11.2%; 14.3 ± 7.3% and 25.2 ± 22.1%, respectively) were found to be low to moderate, indicating that only a moderate level of activity occurred during the active H-test, in comparison to other movements such as sprinting itself. In addition, the activity of the posterior thigh muscles during the active H-test appeared to be variable among the volunteers. These findings suggest that the H-test should be interpreted on an individual basis rather than relying on general characteristics, and be considered as an intermediate tool before more strenuous activities such as returning to sprint. With this comprehensive approach, clinicians can gain a more accurate understanding of their patients' progress and make more informed decisions about their readiness to return to play.


Subject(s)
Electromyography , Hamstring Muscles , Thigh , Humans , Male , Electromyography/methods , Biomechanical Phenomena/physiology , Hamstring Muscles/physiology , Adult , Thigh/physiology , Young Adult , Range of Motion, Articular/physiology , Muscle, Skeletal/physiology , Reproducibility of Results
5.
Scand J Med Sci Sports ; 34(6): e14670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856021

ABSTRACT

Passive hamstring stiffness varies proximo-distally, resulting in inhomogeneous tissue strain during stretching that may affect localized adaptations and risk of muscle injuries. The purpose of the present study was to determine the acute and chronic effects of static stretching (SS) on intramuscular hamstring stiffness. Thirty healthy active participants had acute changes in passive biceps femoris (BF), semimembranosus (SM), and semitendinosus (ST) stiffness measured at 25% (proximal), 50% (middle), and 75% (distal) muscle length, using shear-wave elastography, immediately after SS. Participants then completed 4 weeks of either a SS intervention (n = 15) or no intervention (CON, n = 15) with stiffness measured before and after the interventions. The acute and chronic effects of SS were compared between anatomical regions and between regions on the basis of their relative stiffness pre-intervention. Acutely, SS decreased stiffness throughout the BF and SM (p ≤ 0.05) but not the ST (p = 0.326). However, a regional effect of stretching was observed for SM and ST with greater reduction in stiffness occurring in stiffer muscular regions (p = 0.001-0.013). Chronically, SS increased BF and ST (p < 0.05), but not SM (p = 0.422) stiffness compared with CON, but no regional effect of stretching was observed in any muscle (p = 0.361-0.833). SS resulted in contrasting acute and chronic effects, acutely decreasing stiffness in stiffer regions while chronically increasing stiffness. These results indicate that the acute effects of SS vary along the muscle's length on the basis of the relative stiffness of the muscle and that acute changes in stiffness from SS are unrelated to chronic adaptations.


Subject(s)
Elasticity Imaging Techniques , Hamstring Muscles , Muscle Stretching Exercises , Humans , Hamstring Muscles/physiology , Hamstring Muscles/diagnostic imaging , Male , Young Adult , Adult , Female
6.
J Sports Sci Med ; 23(2): 425-435, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841632

ABSTRACT

Non-local muscle fatigue (NLMF) refers to a transient decline in the functioning of a non-exercised muscle following the fatigue of a different muscle group. Most studies examining NLMF conducted post-tests immediately after the fatiguing protocols, leaving the duration of these effects uncertain. The aim of this study was to investigate the duration of NLMF (1-, 3-, and 5-minutes). In this randomized crossover study, 17 recreationally trained participants (four females) were tested for the acute effects of unilateral knee extensor (KE) muscle fatigue on the contralateral homologous muscle strength, and activation. Each of the four sessions included testing at either 1-, 3-, or 5-minutes post-test, as well as a control condition for non-dominant KE peak force, instantaneous strength (force produced within the first 100-ms), and vastus lateralis and biceps femoris electromyography (EMG). The dominant KE fatigue intervention protocol involved two sets of 100-seconds maximal voluntary isometric contractions (MVIC) separated by 1-minute of rest. Non-dominant KE MVIC forces showed moderate and small magnitude reductions at 1-min (p < 0.0001, d = 0.72) and 3-min (p = 0.005, d = 0.30) post-test respectively. The KE MVIC instantaneous strength revealed large magnitude, significant reductions between 1-min (p = 0.021, d = 1.33), and 3-min (p = 0.041, d = 1.13) compared with the control. In addition, EMG data revealed large magnitude increases with the 1-minute versus control condition (p = 0.03, d = 1.10). In summary, impairments of the non-exercised leg were apparent up to 3-minutes post-exercise with no significant deficits at 5-minutes. Recovery duration plays a crucial role in the manifestation of NLMF.


Subject(s)
Cross-Over Studies , Electromyography , Isometric Contraction , Knee , Muscle Fatigue , Muscle Strength , Humans , Muscle Fatigue/physiology , Female , Male , Isometric Contraction/physiology , Muscle Strength/physiology , Young Adult , Knee/physiology , Time Factors , Adult , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Hamstring Muscles/physiology
7.
J Sports Sci Med ; 23(2): 436-444, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841644

ABSTRACT

The purpose of this study was to examine the differences in thoracolumbar fascia (TLF) and lumbar muscle modulus in individuals with and without hamstring injury using shear wave elastography (SWE). Thirteen male soccer players without a previous hamstring injury and eleven players with a history of hamstring injury performed passive and active (submaximal) knee flexion efforts from 0°, 45° and 90° angle of knee flexion as well as an active prone trunk extension test. The elastic modulus of the TLF, the erector spinae (ES) and the multifidus (MF) was measured using ultrasound SWE simultaneously with the surface electromyography (EMG) signal of the ES and MF. The TLF SWE modulus was significantly (p < 0.05) higher in the injured group (range: 29.86 ± 8.58 to 66.57 ± 11.71 kPa) than in the uninjured group (range: 17.47 ± 9.37 to 47.03 ± 16.04 kPa). The ES and MF modulus ranged from 14.97 ± 4.10 to 66.57 ± 11.71 kPa in the injured group and it was significantly (p < .05) greater compared to the uninjured group (range: 11.65 ± 5.99 to 40.49 ± 12.35 kPa). TLF modulus was greater than ES and MF modulus (p < 0.05). Active modulus was greater during the prone trunk extension test compared to the knee flexion tests and it was greater in the knee flexion test at 0° than at 90° (p < 0.05). The muscle EMG was greater in the injured compared to the uninjured group in the passive tests only (p < 0.05). SWE modulus of the TLF and ES and MF was greater in soccer players with previous hamstring injury than uninjured players. Further research could establish whether exercises that target the paraspinal muscles and the lumbar fascia can assist in preventing individuals with a history of hamstring injury from sustaining a new injury.


Subject(s)
Elasticity Imaging Techniques , Electromyography , Fascia , Hamstring Muscles , Soccer , Humans , Male , Soccer/injuries , Soccer/physiology , Young Adult , Hamstring Muscles/injuries , Hamstring Muscles/physiology , Hamstring Muscles/diagnostic imaging , Fascia/injuries , Fascia/diagnostic imaging , Fascia/physiology , Fascia/physiopathology , Elastic Modulus , Athletic Injuries/physiopathology , Athletic Injuries/diagnostic imaging , Adult , Lumbosacral Region/injuries , Lumbosacral Region/diagnostic imaging , Paraspinal Muscles/diagnostic imaging , Paraspinal Muscles/physiology , Paraspinal Muscles/physiopathology , Adolescent
8.
PLoS One ; 19(6): e0302901, 2024.
Article in English | MEDLINE | ID: mdl-38857230

ABSTRACT

OBJECTIVES: To investigate the relationships between handheld dynamometer (HHD), isokinetic and Nordic hamstrings exercise (NHE) measurements of knee flexor strength and their association with sprinting performance. DESIGN: Cross-sectional. METHODS: The relationships between HHD (prone isometric, prone break and supine break knee flexor strength tests), isokinetic and NHE peak knee flexor strength measures were examined using Pearson product correlations on 38 female footballers. A linear regression analysis was also performed for each pair of dependent variables (10 and 30 metre sprint times) and independent predictor variables (average relative peak torque for HHD, isokinetic and NHE testing). RESULTS: There were good correlations between HHD tests (r = 0.81-0.90, p < 0.001, R2 = 0.65-0.82), moderate correlations between HHD and isokinetic peak torque, (r = 0.61-0.67, p < 0.001, R2 = 0.37-0.44) and poor association between the HHD peak torques and isokinetic work (r = 0.44-0.46, p = 0.005-0.007, R2 = 0.20-0.21) and average power (r = 0.39-0.45, n = 36, p = 0.006-0.019, R2 = 0.15-0.22). There was a poor association between NHE peak torque and isokinetic total work (r = 0.34, p = 0.04, R2 = 0.12). No associations between knee flexor strength and sprint times were observed (p = 0.12-0.79, r2 = 0.002-0.086). CONCLUSIONS: Moderate to good correlations within HHD testing and poor to moderate correlations between HHD and isokinetic testing were observed. HHD knee flexor torque assessment may be useful to regularly chart the progress of hamstring rehabilitation for female footballers. Knee flexor strength assessments were not associated with sprint times in female footballers. Other aspects of knee flexor strength and sprint performance should be investigated to assist clinicians in making return to running and sprinting decisions in this population.


Subject(s)
Athletic Performance , Hamstring Muscles , Muscle Strength , Running , Humans , Female , Muscle Strength/physiology , Hamstring Muscles/physiology , Cross-Sectional Studies , Young Adult , Running/physiology , Athletic Performance/physiology , Linear Models , Adult , Muscle Strength Dynamometer , Adolescent , Torque , Knee/physiology
9.
Sci Rep ; 14(1): 12144, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802553

ABSTRACT

Pain in the lower back is a major concern in today's era due to prolonged sitting in two-wheeler riders, mainly due to hamstring tightness. It also creates physical disability and impairment in activities of daily living. The study aimed to compare the efficacy of muscle energy technique (MET) and self-myofascial release (SMFR) using the foam roller on hamstring flexibility, dynamic balance, and physical disability amongst two-wheeler riders with chronic low back pain (LBP). Participants were randomized into two intervention groups, MET and SMFR using the envelope method, with each group having 20 participants. Hamstring flexibility and range of motion for knee extension and the lower back were assessed using the active knee extension test (AKE-L and AKE-R) and sit and reach test (SRT), while the dynamic balance was assessed by the star excursion balance test (SEBT) and physical disability by Roland-Morris Disability Questionnaire, (RMDQ). Measurements were taken at baseline and after 4 weeks of intervention. This study demonstrated that both SMFR using a foam roller and MET are effective in enhancing hamstring muscle flexibility, (SRT-F(1, 38) = 299.5, p < 0.001; AKE-R-F(1, 38) = 99.53, p < 0.001; AKE-L-F(1, 38) = 89.67, p < 0.001). Additionally, these techniques significantly improved dynamic balance in various directions, including anterior (ANT), anteromedial (AMED), medial (MED), posteromedial (PMED), posterior (POST), posterolateral (PLAT), lateral (LAT), and anterolateral (ALAT) directions (p < 0.01). Furthermore, there was a significant reduction in physical disability (RMDQ-F(1, 38) = 1307, p < 0.001), among two-wheeler riders suffering from chronic LBP. Compared to MET, SMFR using foam rollers was found to be more effective in enhancing hamstring flexibility, improving balance, and decreasing disability level on the RMDQ after 4 weeks.


Subject(s)
Hamstring Muscles , Low Back Pain , Range of Motion, Articular , Humans , Low Back Pain/therapy , Low Back Pain/physiopathology , Male , Adult , Female , Hamstring Muscles/physiopathology , Young Adult
10.
J Electromyogr Kinesiol ; 77: 102900, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810416

ABSTRACT

A prior study reported that the concentric strength imbalance between hamstrings and quadriceps is associated with falls in older adults. Given that the concentric strength may not be measured as conveniently as the isometric strength, it is meaningful to test whether the isometric hamstring-quadricep strength imbalance is related to falls among older adults. This study sought to explore whether the hamstrings-quadriceps ratio could differentiate fallers from non-fallers in community-dwelling older adults. One hundred and eleven older adults were included in this cross-sectional study. Their isometric knee joint strength capacity (extensors and flexors) was measured. Based on their fall history in the past year, they were classified as fallers (at least one fall) or non-fallers (no fall). The hamstrings-quadriceps ratio was compared between the faller and non-faller groups. The receiver operating characteristic analysis was used to determine the cutoff value of the hamstrings-quadriceps ratio able to best classify fallers and non-fallers. Fallers showed a significantly lower hamstrings-quadriceps ratio than non-fallers (p = 0.008). The receiver operating characteristic analysis identified 0.733 as the best ratio to differentiate fallers from non-fallers with an accuracy of 64.0 %. A 0.1-unit reduction in the hamstrings-quadriceps ratio increases the probability of falling by a factor of 1.30. The hamstrings-quadriceps ratio could be used as an additional fall risk factor when assessing the risk of falls among older adults. A smaller than 0.733 hamstring-quadriceps ratio may indicate a high risk of falls.


Subject(s)
Accidental Falls , Hamstring Muscles , Independent Living , Muscle Strength , Quadriceps Muscle , Humans , Male , Aged , Female , Muscle Strength/physiology , Cross-Sectional Studies , Hamstring Muscles/physiology , Quadriceps Muscle/physiology , Aged, 80 and over , Isometric Contraction/physiology
11.
Technol Health Care ; 32(S1): 155-167, 2024.
Article in English | MEDLINE | ID: mdl-38759046

ABSTRACT

BACKGROUND: Conventional hamstring (HAM) stretching therapeutic effects are not substantiable in neuromusculoskeletal conditions with HAM tightness or shortness. We developed a kinetic chain stabilization exercise to provide a more sustainable effectiveness in adults with HAM tightness. However, its therapeutic effects and underlying motor mechanisms remain unknown. OBJECTIVE: To compare the effects of traditional active HAM stretching (AHS) and kinetic chain stretching (KCS) on electromyographic (EMG) amplitude and hip flexion range of motion (ROM) in participants with HAM tightness. METHODS: In this randomized controlled trial, 18 participants (mean age: 25.01 ± 2.47 years) with HAM tightness were assigned to the AHS or KCS group. Hip joint movement, EMG amplitude, and onset times were recorded in the bilateral erector spinae, HAM, transverse abdominis/internal oblique (IO), external oblique (EO), and rectus abdominis during a straight leg raise test. RESULTS: Compared to AHS, KCS led to greater increase in the hip flexion ROM and EMG activation amplitudes in the left and right EO and left IO. Post-test hip flexion ROM data in both the groups were higher than the pre-test data. CONCLUSION: KCS produced more sustainable effectiveness in hip flexion movement and EMG motor control patterns in participants with HAM tightness than AHS.


Subject(s)
Electromyography , Hamstring Muscles , Muscle Stretching Exercises , Range of Motion, Articular , Humans , Adult , Range of Motion, Articular/physiology , Muscle Stretching Exercises/physiology , Male , Female , Hamstring Muscles/physiology , Hip Joint/physiology , Young Adult
12.
PLoS One ; 19(5): e0298257, 2024.
Article in English | MEDLINE | ID: mdl-38771839

ABSTRACT

OBJECTIVES: The main purpose of this research study was to compare mean modified straight-leg raise test (mSLR) and hamstring muscle length (HL) between chronic non-specific low back pain (LBP) and healthy subjects to understand the possibility of neuropathic causes in LBP population as it may impact the diagnosis and treatment of LBP. Another purpose was to compare mean mSLR between those with lumbar nerve root impingement and those without as determine by magnetic resonance imaging (MRI). METHODS: The design of the study is cross sectional and included 32 subjects with ages ranging from 18-50 years old. Clinical exam objective measures were collected such as patient questionnaires, somatosensory tests, HL range of motion, and a mSLR test, and were compared to the findings from a structural lumbar spine MRI. RESULTS: There were no significant differences in mean HL angulation and mSLR angulation between LBP and healthy subjects (p>0.05). There was no significant difference in mean HL by impingement by versus no impingement (38.3±15.6 versus 44.8±9.4, p = 0.08, Cohen's d = 0.50). On the other hand, there was a significant difference in mean mSLR angulation by impingement (57.6.3±8.7 versus 63.8±11.6, p = 0.05, Cohen's d = 0.60). CONCLUSIONS: The mSLR test was found to be associated with lumbar nerve root compression, regardless of the existence of radiating leg symptoms, and showed no association solely with the report of LBP. The findings highlight the diagnostic dilemma facing clinicians in patients with chronic nonspecific LBP with uncorrelated neuroanatomical image findings. Clinically, it may be necessary to reevaluate the common practice of exclusively using the mSLR test for patients with leg symptoms. This study may impact the way chronic LBP and neuropathic symptoms are diagnosed, potentially improving treatment methods, reducing persistent symptoms, and ultimately improving disabling effects.


Subject(s)
Hamstring Muscles , Low Back Pain , Magnetic Resonance Imaging , Humans , Low Back Pain/physiopathology , Low Back Pain/diagnosis , Low Back Pain/diagnostic imaging , Adult , Cross-Sectional Studies , Male , Female , Middle Aged , Hamstring Muscles/physiopathology , Hamstring Muscles/diagnostic imaging , Adolescent , Young Adult , Magnetic Resonance Imaging/methods , Range of Motion, Articular/physiology , Leg/physiopathology , Leg/diagnostic imaging
13.
J Bodyw Mov Ther ; 38: 269-273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763569

ABSTRACT

INTRODUCTION: Previous studies have suggested that a reduced length of the biceps femoris long head (BFlh) fascicles may increase the risk of hamstring strain injury (HSI). However, it remains unclear whether the BFlh fascicles of the injured limb are shorter than those of the contralateral limb in athletes with an acute HSI. OBJECTIVE: To investigate the between-limb asymmetry of BFlh fascicle length in amateur athletes with an acute HSI. METHODS: Male amateur athletes were evaluated using ultrasound scans within five days following an HSI. The BFlh fascicle length was estimated using a validated equation. RESULTS: Eighteen injured athletes participated in this study. There was no significant difference (p = 0.27) in the length of BFlh fascicles between the injured limb (9.53 ± 2.55 cm; 95%CI 8.26 to 10.80 cm) and the uninjured limb (10.54 ± 2.87 cm; 95%CI 9.11 to 11.97 cm). Individual analysis revealed high heterogeneity, with between-limb asymmetries (percentage difference of the injured limb compared to the uninjured limb) ranging from -42% to 25%. Nine out of the 18 athletes had a fascicle length that was more than 10% shorter in the injured limb compared to the uninjured limb, five athletes had a difference of less than 10%, and four athletes had a fascicle length that was more than 10% longer in the injured limb compared to the uninjured limb. CONCLUSION: The architecture characteristics of injured and uninjured muscles is not consistent among athletes with HSI. Therefore, rehabilitation programs focused on fascicle lengthening should be evaluated on a case-by-case basis.


Subject(s)
Athletic Injuries , Hamstring Muscles , Sprains and Strains , Ultrasonography , Humans , Male , Hamstring Muscles/injuries , Hamstring Muscles/physiology , Hamstring Muscles/physiopathology , Young Adult , Athletic Injuries/physiopathology , Sprains and Strains/physiopathology , Adult , Athletes
14.
J Bodyw Mov Ther ; 38: 289-298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763572

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effects of Eutony, Holistic Gymnastics, and Pilates on hamstring flexibility and back pain in pre-adolescent girls. METHODS: This randomized prospective quantitative clinical trial compared the effects of Eutony, Holistic Gymnastics, and Pilates on hamstring flexibility and back pain. The sample consisted of 80 pre-adolescent girls aged 10-13 years and divided into three groups: Eutony, with 26 girls; Holistic Gymnastics, 27 girls; and Pilates, 27 girls. The participants underwent ten 1-h weekly interventions. Hamstring flexibility was evaluated using fingertip-to-floor, sit-and-reach, and hip angle tests; back pain was evaluated using the Body Posture Evaluation Instrument questionnaire and the way they carried their backpack by the Layout for Assessing Dynamic Posture. Descriptive statistical analysis, analysis of variance, and Kruskal-Wallis test were performed at a 5 % significance level (p < 0.05). RESULTS: The three body practices increased hamstring flexibility in all fingertip-to-floor (7.77 cm), hip angle (5.58°), and sit-and-reach evaluations (9.07 cm). Before the intervention, 66.25 % of participants complained of back pain. After the intervention, only 37.50 % continued with the complaint. Moreover, 25 % of pre-adolescent girls started to carry their school backpack correctly. CONCLUSION: Eutony, Holistic Gymnastics, and Pilates increased hamstring flexibility, reduced back pain complaints, and incentivized the girls to carry the school backpack correctly. REGISTRY OF CLINICAL TRIALS: Brazilian Registry of Clinical Trials ReBEC (RBR-25w6kk).


Subject(s)
Exercise Movement Techniques , Gymnastics , Hamstring Muscles , Range of Motion, Articular , Humans , Female , Child , Gymnastics/physiology , Hamstring Muscles/physiology , Adolescent , Range of Motion, Articular/physiology , Exercise Movement Techniques/methods , Prospective Studies , Back Pain/therapy , Back Pain/rehabilitation
15.
J Bodyw Mov Ther ; 38: 605-614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763615

ABSTRACT

BACKGROUND: To identify inter-limb asymmetries through the knee's muscular and lower limb functional performance in young male soccer athletes. METHODS: Twenty male soccer athletes aged 17 to 19 from an under-20 team performed isokinetic tests at 60°/s., 120°/s., 180°/s., and 240°/s. To assess the knee extensors and flexors muscles and functional tests (hop tests and Y-balance test). RESULTS: There were no significant differences between the dominant limb (DL) and non-dominant limb (NDL) in the knee extensors and flexors peak torque and hamstrings (H)/quadriceps(Q) conventional ratio. Moreover, no angular velocities observed inter-limb asymmetries seen by values higher than 10% in the isokinetic parameters. However, the H/Q conventional ratio shows borderline values in low angular velocities (60°/s. and 120°/s.). No significant changes were observed in the functional test performance between the DL and NDL. Furthermore, we did not see inter-limb asymmetries in both hop and Y-balance tests. On the contrary, the anterior distance reached was lower than found in the literature, and the composite score of the Y-balance test demonstrated values below the normative (>94%). CONCLUSION: The data demonstrated that soccer athletes have muscular and functional inter-limb symmetry. However, they tend to have knee muscle imbalance in low velocities and dynamic balance deficits that might increase the risk of musculoskeletal injury.


Subject(s)
Soccer , Humans , Male , Soccer/physiology , Adolescent , Young Adult , Muscle, Skeletal/physiology , Muscle Strength/physiology , Lower Extremity/physiology , Torque , Athletes , Hamstring Muscles/physiology
16.
Physiol Rep ; 12(9): e16039, 2024 May.
Article in English | MEDLINE | ID: mdl-38740563

ABSTRACT

Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.


Subject(s)
Spinal Cord Stimulation , Thigh , Humans , Male , Spinal Cord Stimulation/methods , Adult , Thigh/physiology , Thigh/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Muscle Contraction/physiology , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , H-Reflex/physiology , Femoral Nerve/physiology , Neural Inhibition/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/innervation , Hamstring Muscles/physiology , Electromyography
17.
Acta Orthop ; 95: 200-205, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708569

ABSTRACT

BACKGROUND AND PURPOSE: Reduced range of motion (ROM) and spasticity are common secondary findings in cerebral palsy (CP) affecting gait, positioning, and everyday functioning. These impairments can change over time and lead to various needs for intervention. The aim of this study was to analyze the development path of the changes in hamstring length, knee extension, ankle dorsiflexion, and spasticity in hamstrings and gastrosoleus from childhood into adulthood in individuals with CP at the Gross Motor Function Classification System (GMFCS) levels I-V. METHODS: A longitudinal cohort study was undertaken of 61,800 measurements in 3,223 individuals with CP, born 1990-2017 and followed for an average of 8.7 years (range 0-26). The age at examination varied between 0 and 30 years. The GMFCS levels I-V, goniometric measurements, and the modified Ashworth scale (MAS) were used for repeated assessments of motor function, ROM, and spasticity. RESULTS: Throughout the follow-up period, knee extension and hamstring length exhibited a consistent decline across all individuals, with more pronounced decreases evident in those classified at GMFCS levels III-V. Ankle dorsiflexion demonstrated a gradual reduction from 15° to 5° (GMFCS I-IV) or 10° (GMFCS V). Spasticity levels in the hamstrings and gastrosoleus peaked between ages 5 and 7, showing a propensity to increase with higher GMFCS levels. CONCLUSION: Passive ROM continues to decrease to 30 years of age, most pronouncedly for knee extension. Conversely, spasticity reached its peak at a younger age, with a more notable occurrence observed in the gastrosoleus compared with the hamstrings. Less than 50% of individuals had spasticity corresponding to MAS 2-4 at any age.


Subject(s)
Ankle Joint , Cerebral Palsy , Knee Joint , Muscle Spasticity , Range of Motion, Articular , Humans , Cerebral Palsy/physiopathology , Cerebral Palsy/complications , Muscle Spasticity/physiopathology , Muscle Spasticity/etiology , Longitudinal Studies , Range of Motion, Articular/physiology , Child , Adolescent , Male , Female , Adult , Young Adult , Knee Joint/physiopathology , Child, Preschool , Ankle Joint/physiopathology , Infant , Hamstring Muscles/physiopathology , Cohort Studies
18.
J Sci Med Sport ; 27(6): 387-393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644066

ABSTRACT

OBJECTIVES: This study aimed to analyze how spatiotemporal gait parameters, active knee extension range of motion, muscle activity, and self-perceived function change over a seven-day period in healthy individuals after exercise-induced muscle damage (EIMD) in the hamstrings. DESIGN: Longitudinal cohort study. METHODS: Twenty-four healthy males participated in four sessions before and after EIMD (pre-EIMD, 48 h, 96 h, and 168 h post-EIMD). A single-leg deadlift exercise was performed to provoke EIMD in the hamstrings of the dominant leg. Lower limb function perception, spatiotemporal gait parameters, active knee extension range of motion, and electromyographic (EMG) activity of the semitendinosus and biceps femoris muscles during gait and maximal isometric contraction were assessed bilaterally. RESULTS: At 48 h, the EIMD-side showed reduced step length, active knee extension range of motion, maximal strength and EMG activity compared to baseline (P < 0.042), while increased relative EMG activity in the biceps femoris during gait (P = 0.001). At 96 h, step length and EMG activity on the EIMD-side reached similar values to those at baseline, whereas lower limb function perception and active knee extension range of motion returned to baseline state at 168 h post-EIMD. No changes over time were observed on the control-side. CONCLUSIONS: Recovery from EIMD requires a multimodal assessment since the different parameters affected by EIMD recover at different paces. Active range of motion appears to be the last variable to fully recover. Self-perceived function should not be considered in isolation as it does not represent complete functional recovery.


Subject(s)
Electromyography , Exercise , Gait , Hamstring Muscles , Range of Motion, Articular , Humans , Male , Gait/physiology , Hamstring Muscles/injuries , Hamstring Muscles/physiology , Adult , Young Adult , Longitudinal Studies , Exercise/physiology , Isometric Contraction/physiology , Recovery of Function
19.
Surg Radiol Anat ; 46(6): 749-760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652253

ABSTRACT

PURPOSE: The hamstrings muscles are innervated by sciatic nerve branches. However, previous studies assessing which and how many branches innervate each muscle have yielded discrepant results. This study investigated the innervation patterns of hamstrings. MATERIALS AND METHODS: Thirty-five cadaver limbs were investigated. The average age of subjects was 78.6 ± 17.2 years, with 48.6% male and 51.4% female, while 57.1% were right limbs and 42.9% left. The sciatic nerve, hamstrings and associated structures were dissected. The number of nerve branches for each muscle and the level where they penetrated the muscle were recorded. RESULTS: The sciatic nerve was connected by a fibrous band to the long head of the biceps femoris. This muscle was innervated by either one or two branches, which penetrated the muscle into its superior or middle third. The short head of the biceps femoris was innervated by a single nerve that usually penetrated its middle third, but sometimes inferiorly or, less commonly, superiorly. The semitendinosus was always innervated by two branches, the superior branch penetrating its upper third, the inferior mostly the middle third. The semimembranosus usually was innervated by a single nerve branch that penetrated the muscle at its middle or lower third. Four specimens revealed common nerves that innervated than one muscle. CONCLUSIONS: We have characterized hamstring innervation patterns, knowledge that is relevant to neurolysis, surgery of the thigh, and other procedures. Moreover, a mechanical connection between the sciatic nerve and biceps femoris long head was identified that could explain certain neuralgias.


Subject(s)
Cadaver , Hamstring Muscles , Sciatic Nerve , Humans , Hamstring Muscles/innervation , Hamstring Muscles/anatomy & histology , Female , Male , Aged , Sciatic Nerve/anatomy & histology , Aged, 80 and over , Middle Aged , Dissection
20.
PLoS One ; 19(4): e0302474, 2024.
Article in English | MEDLINE | ID: mdl-38669272

ABSTRACT

Evaluation of muscle strength imbalance can be an important element in optimizing the training process of soccer players. The purpose of the study was to examine isokinetic peak torque (PT) and total work (TW) exerted by both knee extensors (quadriceps or Q) and flexors (hamstrings or H), intra-limb imbalance and the magnitude and direction of inter-limb asymmetry in top elite senior (n = 109) and junior (n = 74) soccer players. An isokinetic dynamometry was used to measure maximum peak torque of quadriceps (PT-Q) and hamstrings (PT-H) at an angular velocity of 60° ·s-1, as well as the total work for extensors (TW-Q) and flexors (TW-H) at an angular velocity of 240° ·s-1 in the dominant (DL) and non-dominant leg (NDL) during concentric muscle contraction. Intra-limb imbalance and inter-limb asymmetries were calculated using a standard equation. Statistical analysis using t-test and Mann-Whitney U-test revealed: (a) no differences (p > 0.05) between groups for PT-Q and PT-H, (b) greater strength levels (p < 0.05) for TW-Q and TW-H of senior players than juniors, and (c) no differences (p > 0.05) between groups for intra-limb imbalance and inter-limb asymmetry. Additionally, Pearson's chi-kwadrat (χ2) analysis showed no differences (p > 0.05) between groups for intra-limb imbalance and inter-limb asymmetry in relation to the 'normative' values accepted in the literature that indicate an increase in the risk of knee injury. This study shows that isokinetic assessment can be an important tool to identify imbalances/asymmetries and to develop strategies to reduce the risk of muscle injury.


Subject(s)
Muscle Strength , Soccer , Torque , Soccer/physiology , Humans , Muscle Strength/physiology , Male , Young Adult , Adolescent , Adult , Muscle Contraction/physiology , Athletes , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Hamstring Muscles/physiology , Muscle Strength Dynamometer
SELECTION OF CITATIONS
SEARCH DETAIL
...