Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 867
Filter
2.
Emerg Microbes Infect ; 13(1): 2361814, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38828746

ABSTRACT

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. From 2018 to 2023, a surge in severe neonatal cases and fatalities linked to a novel variant of genotype D5 was documented in China, France, and Italy. However, the prevention and control of E11 variants have been hampered by limited background data on the virus circulation and genetic variance. Therefore, the present study investigated the circulating dynamics of E11 and the genetic variation and molecular evolution of genotype D5 through the collection of strains from the national acute flaccid paralysis (AFP) and hand, foot, and mouth disease (HFMD) surveillance system in China during 2000-2022 and genetic sequences published in the GenBank database. The results of this study revealed a prevalent dynamic of E11 circulation, with D5 being the predominant genotype worldwide. Further phylogenetic analysis of genotype D5 indicated that it could be subdivided into three important geographic clusters (D5-CHN1: 2014-2019, D5-CHN2: 2016-2022, and D5-EUR: 2022-2023). Additionally, variant-specific (144) amino acid mutation sites and positive-selection pressure sites (132, 262) were identified in the VP1 region. Cluster-specific recombination patterns were also identified, with CVB5, E6, and CVB4 as the major recombinant viruses. These findings provide a preliminary landscape of E11 circulation worldwide and basic scientific data for further study of the pathogenicity of E11 variants.


Subject(s)
Enterovirus B, Human , Evolution, Molecular , Genetic Variation , Genotype , Phylogeny , China/epidemiology , Humans , Enterovirus B, Human/genetics , Enterovirus B, Human/classification , Enterovirus B, Human/isolation & purification , Infant, Newborn , Echovirus Infections/virology , Echovirus Infections/epidemiology , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/epidemiology , Infant
3.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38836810

ABSTRACT

Coxsackievirus A10 (CV-A10) infection, a prominent cause of childhood hand-foot-and-mouth disease (HFMD), frequently manifests with the intriguing phenomenon of onychomadesis, characterized by nail shedding. However, the underlying mechanism is elusive. Here, we found that CV-A10 infection in mice could suppress Wnt/ß-catenin signaling by restraining LDL receptor-related protein 6 (LRP6) phosphorylation and ß-catenin accumulation and lead to onychomadesis. Mechanistically, CV-A10 mimics Dickkopf-related protein 1 (DKK1) to interact with Kringle-containing transmembrane protein 1 (KRM1), the CV-A10 cellular receptor. We further found that Wnt agonist (GSK3ß inhibitor) CHIR99021 can restore nail stem cell differentiation and protect against nail shedding. These findings provide novel insights into the pathogenesis of CV-A10 and related viruses in onychomadesis and guide prognosis assessment and clinical treatment of the disease.


Subject(s)
Intercellular Signaling Peptides and Proteins , Low Density Lipoprotein Receptor-Related Protein-6 , Wnt Signaling Pathway , Animals , Wnt Signaling Pathway/drug effects , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Humans , beta Catenin/metabolism , Nail Diseases/metabolism , Nail Diseases/virology , Nail Diseases/pathology , Nails/metabolism , Nails/pathology , Cell Differentiation/drug effects , Mice, Inbred C57BL , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/metabolism , Hand, Foot and Mouth Disease/pathology , Hand, Foot and Mouth Disease/complications , Phosphorylation/drug effects , Coxsackievirus Infections/complications , Coxsackievirus Infections/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Pyridines/pharmacology , Pyrimidines
4.
Front Public Health ; 12: 1377861, 2024.
Article in English | MEDLINE | ID: mdl-38751577

ABSTRACT

Background: Hand, foot, and mouth disease (HFMD) is a common infectious disease in children. Enterovirus A71 (EV71) and coxsackievirus A16 (CA16) have been identified as the predominant pathogens for several decades. In recent years, coxsackievirus A6 (CA6) and coxsackievirus A10 (CA10) have played increasingly important roles in a series of HFMD outbreaks. We performed a retrospective analysis of the epidemiology of HFMD and the spectrum of different viral serotypes, to elucidate the genetic and phylogenetic characteristics of the main serotypes in the Jiashan area during 2016 to 2022. Methods: Descriptive epidemiological methods were used to analyze the time and population distribution of HFMD in Jiashan during 2016 to 2022 based on surveillance data. Molecular diagnostic methods were performed to identify the viral serotypes and etiological characteristics of HFMD. Phylogenetic analyses was based on VP1 region of CA16 and CA6. Results: The average annual incidence rate of HFMD fluctuated from 2016 to 2022. Children aged 1-5 years accounted for 81.65% of cases and boys were more frequently affected than girls. Except when HFMD was affected by the COVID-19 epidemic in 2020 and 2022, epidemics usually peak in June to July, followed by a small secondary peak from October to December and a decline in February. Urban areas had a high average incidence and rural areas had the lowest. Among 560 sample collected in Jiashan, 472 (84.29%) were positive for enterovirus. The most frequently identified serotypes were CA6 (296, 52.86%), CA16 (102, 18.21%), EV71 (16, 2.86%), CA10 (14, 2.50%) and other enteroviruses (44, 7.86%). There were 71 and 142 VP1 sequences from CA16 and CA6, respectively. Substitution of N218D, A220L and V251I was detected in CA16 and may have been related to viral infectivity. Phylogenetic analysis showed that CA16 could be assigned to two genogroups, B1a and B1b, while all the CA6 sequences belonged to the D3a genogroup. Conclusion: CA6 and CA16 were the two major serotypes of enteroviruses circulating in the Jiashan area during 2016 to 2022. Continuous and comprehensive surveillance for HFMD is needed to better understand and evaluate the prevalence and evolution of the associated pathogens.


Subject(s)
Hand, Foot and Mouth Disease , Phylogeny , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/virology , Humans , China/epidemiology , Male , Female , Child, Preschool , Infant , Retrospective Studies , Child , Incidence , Enterovirus/genetics , Enterovirus/isolation & purification , Enterovirus/classification , Serogroup , Disease Outbreaks/statistics & numerical data , Adolescent
5.
Virol J ; 21(1): 122, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816865

ABSTRACT

Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.


Subject(s)
Genome, Viral , Genotype , Hand, Foot and Mouth Disease , Phylogeny , China/epidemiology , Humans , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/virology , Child, Preschool , Infant , Retrospective Studies , Female , Male , Child , Molecular Epidemiology , Enterovirus/genetics , Enterovirus/classification , Enterovirus/isolation & purification , Enterovirus A, Human/genetics , Enterovirus A, Human/isolation & purification , Genomics , Incidence , Adolescent , Enterovirus Infections/epidemiology , Enterovirus Infections/virology
6.
J Clin Virol ; 173: 105691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749308

ABSTRACT

BACKGROUND: The increasing incidence of hand, foot, and mouth disease (HFMD) associated with Coxsackievirus A6 (CVA6) has become a very significant public health problem. The aim of this study is to investigate the recombination, geographic transmission, and evolutionary characteristics of the global CVA6. METHODS: From 2019 to 2022, 73 full-length CVA6 sequences were obtained from HFMD patients in China and analyzed in combination with 1032 published whole genome sequences. Based on this dataset, the phylogenetic features, recombinant diversity, Bayesian phylodynamic characteristics, and key amino acid variations in CVA6 were analyzed. RESULTS: The four genotypes of CVA6, A, D, E, and F, are divided into 24 recombinant forms (RFs, RF-A - RF-X) based on differences in the P3 coding region. The eastern China region plays a key role in the dissemination of CVA6 in China. VP1-137 and VP1-138 are located in the DE loop on the surface of the CVA6 VP1 protein, with the former being a highly variable site and the latter having more non-synonymous substitutions. CONCLUSIONS: Based on whole genome sequences, this study contributes to the CVA6 monitoring, early warning, and the pathogenic mechanism by studying recombination diversity, geographical transmission characteristics, and the variation of important amino acid sites.


Subject(s)
Evolution, Molecular , Genotype , Hand, Foot and Mouth Disease , Phylogeny , Recombination, Genetic , Humans , China/epidemiology , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/epidemiology , Genome, Viral , Whole Genome Sequencing , Enterovirus/genetics , Enterovirus/classification , Enterovirus/isolation & purification , Genetic Variation , Bayes Theorem
7.
Viruses ; 16(4)2024 04 08.
Article in English | MEDLINE | ID: mdl-38675915

ABSTRACT

The enterovirus A71 (EV71) inactivated vaccine is an effective intervention to control the spread of the virus and prevent EV71-associated hand, foot, and mouth disease (HFMD). It is widely administered to infants and children in China. The empty particles (EPs) and full particles (FPs) generated during production have different antigenic and immunogenic properties. However, the antigen detection methods currently used were established without considering the differences in antigenicity between EPs and FPs. There is also a lack of other effective analytical methods for detecting the different particle forms, which hinders the consistency between batches of products. In this study, we analyzed the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) in characterizing the EPs and FPs of EV71. Our results showed that the proportions of the two forms could be quantified simultaneously by SV-AUC. We also determined the repeatability and accuracy of this method and found that both parameters were satisfactory. We assessed SV-AUC for bulk vaccine quality control, and our findings indicated that SV-AUC can be used effectively to analyze the percentage of EPs and FPs and monitor the consistency of the process to ensure the quality of the vaccine.


Subject(s)
Enterovirus A, Human , Ultracentrifugation , Enterovirus A, Human/immunology , Enterovirus A, Human/isolation & purification , Ultracentrifugation/methods , Humans , Viral Vaccines/immunology , Vaccines, Inactivated/immunology , Virion/immunology , Virion/isolation & purification , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/prevention & control , China , Quality Control
9.
Virol Sin ; 39(2): 290-300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331038

ABSTRACT

Coxsackievirus B3 (CVB3) is the pathogen causing hand, foot and mouth disease (HFMD), which manifests across a spectrum of clinical severity from mild to severe. However, CVB3-infected mouse models mainly demonstrate viral myocarditis and pancreatitis, failing to replicate human HFMD symptoms. Although several enteroviruses have been evaluated in Syrian hamsters and rhesus monkeys, there is no comprehensive data on CVB3. In this study, we have first tested the susceptibility of Syrian hamsters to CVB3 infection via different routes. The results showed that Syrian hamsters were successfully infected with CVB3 by intraperitoneal injection or nasal drip, leading to nasopharyngeal colonization, acute severe pathological injury, and typical HFMD symptoms. Notably, the nasal drip group exhibited a longer viral excretion cycle and more severe pathological damage. In the subsequent study, rhesus monkeys infected with CVB3 through nasal drips also presented signs of HFMD symptoms, viral excretion, serum antibody conversion, viral nucleic acids and antigens, and the specific organ damages, particularly in the heart. Surprisingly, there were no significant differences in myocardial enzyme levels, and the clinical symptoms resembled those often associated with common, mild infections. In summary, the study successfully developed severe Syrian hamsters and mild rhesus monkey models for CVB3-induced HFMD. These models could serve as a basis for understanding the disease pathogenesis, conducting pre-trial prevention and evaluation, and implementing post-exposure intervention.


Subject(s)
Disease Models, Animal , Enterovirus B, Human , Hand, Foot and Mouth Disease , Macaca mulatta , Mesocricetus , Animals , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/pathology , Enterovirus B, Human/pathogenicity , Antibodies, Viral/blood , Cricetinae , Female , Virus Shedding , Nasopharynx/virology , Male
10.
J Cell Biol ; 222(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37906052

ABSTRACT

Enterovirus 71 (EV71) and Coxsackie A16 (CVA16) are two major causative agents of hand, foot, and mouth disease (HFMD) in young children. However, the mechanisms regulating the replication and pathogenesis of EV71/CVA16 remain incompletely understood. We performed a genome-wide CRISPR-Cas9 knockout screen and identified Ragulator as a mediator of EV71-induced apoptosis and pyroptosis. The Ragulator-Rag complex is required for EV71 and CVA16 replication. Upon infection, the Ragulator-Rag complex recruits viral 3D protein to the lysosomal surface through the interaction between 3D and RagB. Disruption of the lysosome-tethered Ragulator-Rag-3D complex significantly impairs the replication of EV71/CVA16. We discovered a novel EV71 inhibitor, ZHSI-1, which interacts with 3D and significantly reduces the lysosomal tethering of 3D. ZHSI-1 treatment significantly represses replication of EV71/CVA16 as well as virus-induced pyroptosis associated with viral pathogenesis. Importantly, ZHSI-1 treatment effectively protects against EV71 infection in neonatal and young mice. Thus, our study indicates that targeting lysosome-tethered Ragulator-Rag-3D may be an effective therapeutic strategy for HFMD.


Subject(s)
Enterovirus A, Human , Hand, Foot and Mouth Disease , Viral Nonstructural Proteins , Animals , Mice , Apoptosis , CRISPR-Cas Systems , Enterovirus A, Human/genetics , Lysosomes , Pyroptosis , Viral Nonstructural Proteins/genetics , Virus Replication , Hand, Foot and Mouth Disease/virology , Disease Models, Animal
11.
J Virol ; 97(11): e0107523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37847581

ABSTRACT

IMPORTANCE: Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-ß production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.


Subject(s)
Coxsackievirus Infections , Humans , Enterovirus A, Human/genetics , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Hand, Foot and Mouth Disease/virology , Immunity, Innate , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Interferon-beta/metabolism
12.
Curr Microbiol ; 79(9): 247, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35834056

ABSTRACT

Noncoding RNAs (ncRNAs) represent the largest and main transcriptome products and play various roles in the biological activity of cells and pathological processes. Accumulating evidence shows that microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) are important ncRNAs that play vital regulatory roles during viral infection. Hand-foot-mouth disease (HFMD) virus causes hand-foot-mouth disease, and is also associated with various serious complications and high mortality. However, there is currently no effective treatment. In this review, we focus on advances in the understanding of the modulatory role of ncRNAs during HFMD virus infection. Specifically, we discuss the generation, classification, and regulatory mechanisms of miRNA, lncRNA, and circRNA in the interaction between virus and host, with a particular focus on their influence with viral replication and infection. Analysis of these underlying mechanisms can help provide a foundation for the development of ncRNA-based antiviral therapies.


Subject(s)
Hand, Foot and Mouth Disease , Host Microbial Interactions , MicroRNAs , RNA, Untranslated , Hand, Foot and Mouth Disease/genetics , Hand, Foot and Mouth Disease/virology , Host Microbial Interactions/genetics , Humans , MicroRNAs/genetics , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , Viruses/genetics
13.
J Virol ; 96(15): e0056122, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867561

ABSTRACT

Enterovirus A71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease, which can progress to severe neurological disease. EV-A71 infects humans via the human scavenger receptor B2 (hSCARB2). It can also infect neonatal mice experimentally. Wild-type (WT) EV-A71 strains replicate primarily in the muscle of neonatal mice; however, susceptibility lasts only for a week after birth. Mouse-adapted (MA) strains, which can be obtained by serial passages in neonatal mice, are capable of infecting both muscle and neurons of the central nervous system. It is not clear how the host range and tropism of EV-A71 are regulated and why neonatal mice lose their susceptibility during development. We hypothesized that EV-A71 infection in neonatal mice is mediated by mouse Scarb2 (mScarb2) protein. Rhabdomyosarcoma (RD) cells expressing mScarb2 were prepared. Both WT and MA strains infected mScarb2-expressing cells, but the infection efficiency of the WT strain was much lower than that of the MA strain. Infection by WT and MA strains in vivo was abolished completely in Scarb2-/- mice. Scarb2+/- mice, in which Scarb2 expression was approximately half of that in Scarb2+/+ mice, showed a milder pathology than Scarb2+/+ mice after infection with the WT strain. The Scarb2 expression level in muscle decreased with aging, which was consistent with the reduced susceptibility of aged mice to infection. These results indicated that EV-A71 infection is mediated by mScarb2 and that the severity of the disease, the spread of virus, and the susceptibility period are modulated by mScarb2 expression. IMPORTANCE EV-A71 infects humans naturally but can also infect neonatal mice. The tissue tropism and severity of EV-A71 disease are determined by several factors, among which the virus receptor is thought to be important. We show that EV-A71 can infect neonatal mice using mScarb2. However, the infection efficiency of WT strains via mScarb2 is so low that an elevated virus-receptor interaction associated with mouse adaptation mutation and decrease in mScarb2 expression level during development modulate the severity of the disease, the spread of virus, and the susceptibility period in the artificial neonatal mice model.


Subject(s)
CD36 Antigens , Enterovirus A, Human , Lysosomal Membrane Proteins , Receptors, Virus , Animals , Animals, Newborn/metabolism , Animals, Newborn/virology , CD36 Antigens/biosynthesis , CD36 Antigens/metabolism , Disease Models, Animal , Disease Susceptibility , Enterovirus A, Human/metabolism , Enterovirus A, Human/pathogenicity , Hand, Foot and Mouth Disease/metabolism , Hand, Foot and Mouth Disease/transmission , Hand, Foot and Mouth Disease/virology , Host Specificity , Humans , Lysosomal Membrane Proteins/biosynthesis , Lysosomal Membrane Proteins/metabolism , Mice , Receptors, Virus/biosynthesis , Receptors, Virus/metabolism , Viral Tropism , Virulence
15.
Sci Rep ; 12(1): 2293, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145190

ABSTRACT

Echovirus 9 (E9) belongs to the species Enterovirus B. So far, 12 whole genome sequences of E9 are available in GenBank. In this study, we determined the whole genomic sequences of five E9 strains isolated from the stools of patients with hand-foot-and-mouth disease in Kunming, Yunnan Province, China, in 2019. Their nucleotide and amino acid sequences shared 80.8-80.9% and 96.4-96.8% identity with the prototype Hill strain, respectively, and shared 99.3-99.9% and 99.1-99.8% mutual identity, respectively. Recombination analyses revealed that intertype recombination had occurred in the 2C and 3D regions of the five Yunnan E9 strains with coxsackieviruses B5 and B4, respectively. This study augmented the whole genome sequences of E9 in the GenBank database and extended the molecular characterization of this virus in China.


Subject(s)
Echovirus 9/genetics , Echovirus 9/isolation & purification , Genome, Viral/genetics , Hand, Foot and Mouth Disease/virology , Child, Preschool , China , Databases, Nucleic Acid , Enterovirus B, Human/genetics , Humans , Infant , Phylogeny , Recombination, Genetic , Whole Genome Sequencing
16.
Nat Commun ; 13(1): 890, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173169

ABSTRACT

Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.


Subject(s)
Central Nervous System Diseases/virology , Chemokine CXCL1/metabolism , Enterovirus A, Human/metabolism , Hand, Foot and Mouth Disease/pathology , Receptors, Interleukin-8B/metabolism , Animals , Astrocytes/metabolism , Astrocytes/virology , Cell Line , Central Nervous System Diseases/pathology , Disease Models, Animal , Female , HEK293 Cells , Hand, Foot and Mouth Disease/virology , Humans , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred BALB C , Pyrimidines/pharmacology , Rats , Severity of Illness Index , Sulfonamides/pharmacology
17.
PLoS Negl Trop Dis ; 16(1): e0010090, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35041675

ABSTRACT

BACKGROUND: This research aimed to explore the association between the RIG-I-like receptor (RIG-I and MDA5 encoded by DDX58 and IFIH1, respectively) pathways and the risk or severity of hand, foot, and mouth disease caused by enterovirus 71 (EV71-HFMD). In this context, we explored the influence of gene methylation and polymorphism on EV71-HFMD. METHODOLOGY/PRINCIPAL FINDINGS: 60 healthy controls and 120 EV71-HFMD patients, including 60 mild EV71-HFMD and 60 severe EV71-HFMD patients, were enrolled. First, MiSeq was performed to explore the methylation of CpG islands in the DDX58 and IFIH1 promoter regions. Then, DDX58 and IFIH1 expression were detected in PBMCs using RT-qPCR. Finally, imLDR was used to detect DDX58 and IFIH1 single-nucleotide polymorphism (SNP) genotypes. Severe EV71-HFMD patients exhibited higher DDX58 promoter methylation levels than healthy controls and mild EV71-HFMD patients. DDX58 promoter methylation was significantly associated with severe HFMD, sex, vomiting, high fever, neutrophil abundance, and lymphocyte abundance. DDX58 expression levels were significantly lower in mild patients than in healthy controls and lower in severe patients than in mild patients. Binary logistic regression analysis revealed statistically significant differences in the genotype frequencies of DDX58 rs3739674 between the mild and severe groups. GeneMANIA revealed that 19 proteins displayed correlations with DDX58, including DHX58, HERC5, MAVS, RAI14, WRNIP1 and ISG15, and 19 proteins displayed correlations with IFIH1, including TKFC, IDE, MAVS, DHX58, NLRC5, TSPAN6, USP3 and DDX58. CONCLUSIONS/SIGNIFICANCE: DDX58 expression and promoter methylation were associated with EV71 infection progression, especially in severe EV71-HFMD patients. The effect of DDX58 in EV71-HFMD is worth further attention.


Subject(s)
DEAD Box Protein 58/genetics , DNA Methylation/genetics , Hand, Foot and Mouth Disease/pathology , Interferon-Induced Helicase, IFIH1/genetics , Receptors, Immunologic/genetics , Child , Child, Preschool , CpG Islands/genetics , DEAD Box Protein 58/metabolism , Enterovirus A, Human , Female , Genetic Predisposition to Disease/genetics , Hand, Foot and Mouth Disease/virology , Humans , Infant , Interferon-Induced Helicase, IFIH1/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Receptors, Immunologic/metabolism , Severity of Illness Index
18.
Microbiol Spectr ; 10(1): e0138821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34985336

ABSTRACT

Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of GADD34 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. IMPORTANCE Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5'-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.


Subject(s)
Enterovirus A, Human/genetics , Enterovirus A, Human/metabolism , Hand, Foot and Mouth Disease/metabolism , Protein Biosynthesis , Protein Phosphatase 1/metabolism , Viral Nonstructural Proteins/metabolism , 5' Untranslated Regions , Amino Acid Motifs , Cell Line , Enterovirus A, Human/chemistry , Hand, Foot and Mouth Disease/genetics , Hand, Foot and Mouth Disease/virology , Host-Pathogen Interactions , Humans , Internal Ribosome Entry Sites , Open Reading Frames , Protein Binding , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Replication
19.
J Med Virol ; 94(2): 587-593, 2022 02.
Article in English | MEDLINE | ID: mdl-30942492

ABSTRACT

Brain dysfunction is a prerequisite for critical complications in children with hand, foot, and mouth disease (HFMD). Aquaporin 4 (AQP-4) may be involved in the pathological process of cerebral oedema and injury in children with severe and critical HFMD. This study aimed to assess the association of AQP-4 with the severity of enterovirus 71 (EV71)-associated HFMD. Children with EV71-infected HFMD were divided into a common group (clinical stage 1), a severe group (clinical stage 2), and a critical group (clinical stage 3) according to Chinese guidelines. The levels of AQP-4, interleukin-6 (IL-6), norepinephrine (NE), and neuron-specific enolase (NSE) before and after treatment were tested. Serum AQP-4, IL-6, NE, and NSE levels showed significant differences among the critical, severe, and common groups before and after treatment (P < 0.01). No significant differences in AQP-4 levels in cerebrospinal fluid (CSF) were observed between the critical and severe groups before and after treatment, but the CSF AQP-4 levels in these two groups were higher than those in the common group before treatment (P < 0.01). Serum AQP-4 levels, but not CSF AQP-4 levels, closely correlated with serum IL-6, NE, and NSE levels. These results suggest that the level of AQP-4 in serum, but not in CSF, is a candidate biomarker for evaluating the severity and prognosis of EV71-associated HFMD.


Subject(s)
Aquaporin 4/blood , Aquaporin 4/cerebrospinal fluid , Enterovirus A, Human/isolation & purification , Hand, Foot and Mouth Disease/virology , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Child, Preschool , Enterovirus Infections , Female , Hand, Foot and Mouth Disease/blood , Hand, Foot and Mouth Disease/cerebrospinal fluid , Humans , Infant , Interleukin-6/blood , Male , Norepinephrine/blood , Phosphopyruvate Hydratase/blood , Prognosis , ROC Curve , Severity of Illness Index
20.
J Med Virol ; 94(2): 601-609, 2022 02.
Article in English | MEDLINE | ID: mdl-34387895

ABSTRACT

Hand, foot, and mouth disease (HFMD) is a contagious disease that threatens the health of children under 5 years of age. Coxsackievirus A10 (CV-A10) is one of the main pathogens of HFMD. Currently, preventive vaccines and specific therapeutic drugs are not available for CV-A10. In this study, a total of 327 stool specimens were collected from pediatric patients from 2009 to 2017 during HFMD surveillance, among which 14 CV-A10 strains could only be isolated from rhabdomyosarcoma cells, but not from KMB17 and Vero cells. Through adaptive culture, 2 and 11 CV-A10 strains were recovered from Vero and KMB17 cell cultures, respectively. The growth of CV-A10 strains in Vero cells was better than that in KMB17 cells. The 14 CV-A10 strains belonged to the F genotype, and the nucleotides and amino acids of their complete genomes shared 92.6%-96.3% and 98.4%-98.9% identities, respectively. The different CV-A10 strains exhibited varying virulence in vivo, but had similar effects on tissue injury, with the hind limb muscles, kidneys, and lungs being severely affected. Additionally, the hind limb muscles had the highest viral loads. CV-A10 was found to exhibit a strong tropism to muscle tissue. The results of this study are critical to developing vaccines against CV-A10 infections.


Subject(s)
Enterovirus A, Human/genetics , Hand, Foot and Mouth Disease/virology , Animals , Child, Preschool , Chlorocebus aethiops , Enterovirus A, Human/isolation & purification , Female , Genotype , Humans , Male , Mice , Mice, Inbred BALB C , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...