Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8017): 671-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867039

ABSTRACT

The subpectoral diverticulum (SPD) is an extension of the respiratory system in birds that is located between the primary muscles responsible for flapping the wing1,2. Here we survey the pulmonary apparatus in 68 avian species, and show that the SPD was present in virtually all of the soaring taxa investigated but absent in non-soarers. We find that this structure evolved independently with soaring flight at least seven times, which indicates that the diverticulum might have a functional and adaptive relationship with this flight style. Using the soaring hawks Buteo jamaicensis and Buteo swainsoni as models, we show that the SPD is not integral for ventilation, that an inflated SPD can increase the moment arm of cranial parts of the pectoralis, and that pectoralis muscle fascicles are significantly shorter in soaring hawks than in non-soaring birds. This coupling of an SPD-mediated increase in pectoralis leverage with force-specialized muscle architecture produces a pneumatic system that is adapted for the isometric contractile conditions expected in soaring flight. The discovery of a mechanical role for the respiratory system in avian locomotion underscores the functional complexity and heterogeneity of this organ system, and suggests that pulmonary diverticula are likely to have other undiscovered secondary functions. These data provide a mechanistic explanation for the repeated appearance of the SPD in soaring lineages and show that the respiratory system can be co-opted to provide biomechanical solutions to the challenges of flight and thereby influence the evolution of avian volancy.


Subject(s)
Flight, Animal , Hawks , Respiration , Respiratory System , Wings, Animal , Animals , Biological Evolution , Biomechanical Phenomena/physiology , Flight, Animal/physiology , Hawks/anatomy & histology , Hawks/classification , Hawks/physiology , Lung/anatomy & histology , Lung/physiology , Models, Biological , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Respiratory System/anatomy & histology , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Male , Female
2.
J Parasitol ; 95(6): 1372-82, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19655998

ABSTRACT

In an evolutionary context, parasites tend to be morphologically conservative relative to their hosts. However, the rate of neutral molecular evolution across many parasite lineages is faster than in their hosts. Although this relationship is apparent at the macroevolutionary scale, insight into the processes underpinning it may be gained through investigations at the microevolutionary scale. Birds and their ectoparasitic lice have served as important natural experiments in co-evolution. Here, we compared mitochondrial and morphological divergence in 2 recently diverged avian host lineages and their parasites. Gálapagos hawks (Buteo galapagoensis) are phenotypically divergent from their closest mainland relatives, the Swainson's hawk (Buteo swainsoni). Both species are host to a feather louse species of Craspedorrhynchus (Insecta: Phthiraptera: Ischnocera, Philopteridae). We sequenced the 5' end of the mitochondrial gene cytochrome oxidase c subunit I (COI) from a set of hawks and lice. Although this fragment allowed unambiguous identification of host and parasite lineages on the islands and the mainland, only a single variable site was present in the 2 hosts, but 2 major Craspedorrhynchus clades divergent by ~10% were recovered that sorted perfectly with host species. We found significant population genetic structure within the Galápagos Craspedorrhynchus lineage. While the host species are highly differentiated phenotypically, the 2 Craspedorrhynchus louse lineages are phenotypically overlapping, although subtle but significant morphological differences exist.


Subject(s)
Bird Diseases/parasitology , Hawks/classification , Hawks/parasitology , Lice Infestations/veterinary , Phthiraptera/classification , Animals , Ecuador , Female , Genetic Variation , Hawks/anatomy & histology , Hawks/genetics , Lice Infestations/parasitology , Male , North America , Phthiraptera/anatomy & histology , Phthiraptera/genetics , Phylogeny , Principal Component Analysis , South America
3.
Mol Phylogenet Evol ; 53(3): 703-15, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19635577

ABSTRACT

Buteonine hawks represent one of the most diverse groups in the Accipitridae, with 58 species distributed in a variety of habitats on almost all continents. Variations in migratory behavior, remarkable dispersal capability, and unusual diversity in Central and South America make buteonine hawks an excellent model for studies in avian evolution. To evaluate the history of their global radiation, we used an integrative approach that coupled estimation of the phylogeny using a large sequence database (based on 6411 bp of mitochondrial markers and one nuclear intron from 54 species), divergence time estimates, and ancestral state reconstructions. Our findings suggest that Neotropical buteonines resulted from a long evolutionary process that began in the Miocene and extended to the Pleistocene. Colonization of the Nearctic, and eventually the Old World, occurred from South America, promoted by the evolution of seasonal movements and development of land bridges. Migratory behavior evolved several times and may have contributed not only to colonization of the Holarctic, but also derivation of insular species. In the Neotropics, diversification of the buteonines included four disjunction events across the Andes. Adaptation of monophyletic taxa to wet environments occurred more than once, and some relationships indicate an evolutionary connection among mangroves, coastal and várzea environments. On the other hand, groups occupying the same biome, forest, or open vegetation habitats are not monophyletic. Refuges or sea-level changes or a combination of both was responsible for recent speciation in Amazonian taxa. In view of the lack of concordance between phylogeny and classification, we propose numerous taxonomic changes.


Subject(s)
Animal Migration , Evolution, Molecular , Hawks/genetics , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Central America , DNA, Mitochondrial/genetics , Ecosystem , Hawks/classification , Likelihood Functions , Models, Genetic , Nucleic Acid Conformation , Sequence Alignment , Sequence Analysis, DNA , South America
4.
Mol Phylogenet Evol ; 49(3): 988-96, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18848634

ABSTRACT

Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l.elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l.elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted.


Subject(s)
Genetic Speciation , Genetics, Population , Geography , Hawks/genetics , Alleles , Animals , Bayes Theorem , Computational Biology , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Evolution, Molecular , Gene Frequency , Genetic Variation , Haplotypes , Hawks/classification , Microsatellite Repeats , Mitochondria/genetics , North America , Phylogeny , Population Dynamics , Sequence Analysis, DNA
5.
Mol Ecol ; 16(22): 4759-73, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18028178

ABSTRACT

Comparative microevolutionary studies of multiple parasites occurring on a single host species can help shed light on the processes underlying parasite diversification. We compared the phylogeographical histories, population genetic structures and population divergence times of three co-distributed and phylogenetically independent ectoparasitic insect species, including an amblyceran and an ischnoceran louse (Insecta: Phthiraptera), a hippoboscid fly (Insecta: Diptera) and their endemic avian host in the Galápagos Islands. The Galápagos hawk (Aves: Falconiformes: Buteo galapagoensis) is a recently arrived endemic lineage in the Galápagos Islands and its island populations are diverging evolutionarily. Each parasite species differed in relative dispersal ability and distribution within the host populations, which allowed us to make predictions about their degree of population genetic structure and whether they tracked host gene flow and colonization history among islands. To control for DNA region in comparisons across these phylogenetically distant taxa, we sequenced ~1 kb of homologous mitochondrial DNA from samples collected from all island populations of the host. Remarkably, the host was invariant across mitochondrial regions that were comparatively variable in each of the parasite species, to degrees consistent with differences in their natural histories. Differences in these natural history traits were predictably correlated with the evolutionary trajectories of each parasite species, including rates of interisland gene flow and tracking of hosts by parasites. Congruence between the population structures of the ischnoceran louse and the host suggests that the ischnoceran may yield insight into the cryptic evolutionary history of its endangered host, potentially aiding in its conservation management.


Subject(s)
Diptera/genetics , Geography , Hawks/parasitology , Phthiraptera/genetics , Phylogeny , Animals , DNA, Mitochondrial/chemistry , Diptera/classification , Gene Flow , Haplotypes , Hawks/classification , Hawks/genetics , Phthiraptera/classification , Population Dynamics
6.
BMC Evol Biol ; 6: 10, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16464261

ABSTRACT

BACKGROUND: The family Accipitridae (hawks, eagles and Old World vultures) represents a large radiation of predatory birds with an almost global distribution, although most species of this family occur in the Neotropics. Despite great morphological and ecological diversity, the evolutionary relationships in the family have been poorly explored at all taxonomic levels. Using sequences from four mitochondrial genes (12S, ATP8, ATP6, and ND6), we reconstructed the phylogeny of the Neotropical forest hawk genus Leucopternis and most of the allied genera of Neotropical buteonines. Our goals were to infer the evolutionary relationships among species of Leucopternis, estimate their relationships to other buteonine genera, evaluate the phylogenetic significance of the white and black plumage patterns common to most Leucopternis species, and assess general patterns of diversification of the group with respect to species' affiliations with Neotropical regions and habitats. RESULTS: Our molecular phylogeny for the genus Leucopternis and its allies disagrees sharply with traditional taxonomic arrangements for the group, and we present new hypotheses of relationships for a number of species. The mtDNA phylogenetic trees derived from analysis of the combined data posit a polyphyletic relationship among species of Leucopternis, Buteogallus and Buteo. Three highly supported clades containing Leucopternis species were recovered in our phylogenetic reconstructions. The first clade consisted of the sister pairs L. lacernulatus and Buteogallus meridionalis, and Buteogallus urubitinga and Harpyhaliaetus coronatus, in addition to L. schistaceus and L. plumbeus. The second clade included the sister pair Leucopternis albicollis and L. occidentalis as well as L. polionotus. The third lineage comprised the sister pair L. melanops and L. kuhli, in addition to L. semiplumbeus and Buteo buteo. According to our results, the white and black plumage patterns have evolved at least twice in the group. Furthermore, species found to the east and west of the Andes (cis-Andean and trans-Andean, respectively) are not reciprocally monophyletic, nor are forest and non-forest species. CONCLUSION: The polyphyly of Leucopternis, Buteogallus and Buteo establishes a lack of concordance of current Accipitridae taxonomy with the mtDNA phylogeny for the group, and points to the need for further phylogenetic analysis at all taxonomic levels in the family as also suggested by other recent analyses. Habitat shifts, as well as cis- and trans-Andean disjunctions, took place more than once during buteonine diversification in the Neotropical region. Overemphasis of the black and white plumage patterns has led to questionable conclusions regarding the relationships of Leucopternis species, and suggests more generally that plumage characters should be used with considerable caution in the taxonomic evaluation of the Accipitridae.


Subject(s)
Ecosystem , Hawks/classification , Hawks/genetics , Phylogeny , Animals , Feathers , Genetic Variation
7.
Mol Ecol ; 14(1): 159-70, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15643959

ABSTRACT

DNA sequences of the mitochondrial control region were analysed from 298 individual sharp-shinned hawks (Accipiter striatus velox) sampled at 12 different migration study sites across North America. The control region proved to be an appropriate genetic marker for identification of continental-scale population genetic structure and for determining the historical demography of population units. These data suggest that sharp-shinned hawks sampled at migration sites in North America are divided into distinct eastern and western groups. The eastern group appears to have recently expanded in response to the retreat of glacial ice at the end of the last glacial maximum. The western group appears to have been strongly effected by the Holocene Hypsithermal dry period, with molecular evidence indicating the most recent expansion following this mid-Holocene climatic event 7000-5000 years before present.


Subject(s)
Hawks/physiology , Animals , Climate , DNA, Mitochondrial/genetics , Demography , Genetics, Population , Hawks/classification , Hawks/genetics , North America , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...