Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.411
Filter
1.
Food Res Int ; 188: 114517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823849

ABSTRACT

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Subject(s)
Blood Glucose , Cicer , Cross-Over Studies , Digestion , Insulin , Postprandial Period , Rheology , Humans , Cicer/chemistry , Postprandial Period/physiology , Insulin/blood , Insulin/metabolism , Blood Glucose/metabolism , Adult , Male , Female , Young Adult , Starch/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/blood , Healthy Volunteers , Kinetics
2.
Food Res Int ; 188: 114511, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823884

ABSTRACT

This study investigated the relationship between rheological properties, sensory perception, and overall acceptability in healthy young and old groups for dysphagia thickened liquids. Unflavored (UTL) and flavored (FTLP) thickened liquids were prepared using tap water or pomegranate juice at 10 different viscosity levels. The rheological properties were then evaluated via syringe flow test and line spread test (LST). When the apparent viscosity levels of UTL and FTLP were similar, the syringe test and LST results were also similar, indicating consistent flow behavior. Sensory perception evaluations showed that the young group better distinguished viscosity differences between stages compared to the old group. Regarding overall acceptability, the old group preferred samples with higher apparent viscosity than the young group. Principal component analysis and k-means cluster analysis were used to explore correlations between variables and classify thickened liquids into four groups. This can serve the foundation for standardized texture grades of dysphagia thickened liquids, considering rheological characteristics and sensory profiles.


Subject(s)
Deglutition Disorders , Rheology , Humans , Viscosity , Young Adult , Female , Male , Adult , Aged , Taste , Taste Perception , Middle Aged , Beverages , Fruit and Vegetable Juices , Principal Component Analysis , Healthy Volunteers
3.
Narra J ; 4(1): e574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798847

ABSTRACT

Respiratory droplets, naturally produced during expiration, can transmit pathogens from infected individuals. Wearing a face mask is crucial to prevent such transmission, yet the perception of dyspnea and uncomfortable breathing remains a common concern, particularly during epidemics. The aim of this study was to investigate the impact of face mask use on the perception of dyspnea, cardiopulmonary parameters, and facial temperature during physical activity. A randomized crossover study was conducted on healthy adults at a physiology laboratory located in the Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia, in November 2022. Participants underwent five stages of physical exercise tests based on the Bruce Protocol under three conditions: without any face mask (control), wearing a surgical mask, and an N95 mask, forming the study's main groups. Dyspnea perception (measured by the Modified Borg Dyspnea Scale), cardiopulmonary parameters (heart rate, oxygen saturation, respiratory rate, blood pressure, and mean arterial pressure) and facial temperature were measured before the exercise test (pre-workout), at the end of stage 1, 2, 3, 4, 5, and after the whole exercise test (post-workout). A two-way repeated measures ANOVA was conducted, considering two factors: the type of mask (control, surgical mask, N95 mask) and the various stages of the exercise test. A total of 36 healthy adults were included in the study. We found that dyspnea perception was much worse in the N95 mask group, particularly during vigorous exercise. There was no significant difference between groups in cardiopulmonary parameters. However, participants wearing N95 had a greater supralabial temperature than those wearing surgical masks or no mask at all. It is recommended to undertake a more in-depth evaluation of cardiopulmonary physiological measures.


Subject(s)
Cross-Over Studies , Dyspnea , Heart Rate , Masks , Humans , Masks/adverse effects , Dyspnea/prevention & control , Male , Female , Adult , Heart Rate/physiology , Body Temperature , Indonesia , Healthy Volunteers , Perception , Exercise Test , Young Adult , Exercise/physiology , Blood Pressure/physiology , Respiratory Rate/physiology
4.
Transl Psychiatry ; 14(1): 211, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802372

ABSTRACT

Lamotrigine is an effective mood stabiliser, largely used for the management and prevention of depression in bipolar disorder. The neuropsychological mechanisms by which lamotrigine acts to relieve symptoms as well as its neural effects on emotional processing remain unclear. The primary objective of this current study was to investigate the impact of an acute dose of lamotrigine on the neural response to a well-characterised fMRI task probing implicit emotional processing relevant to negative bias. 31 healthy participants were administered either a single dose of lamotrigine (300 mg, n = 14) or placebo (n = 17) in a randomized, double-blind design. Inside the 3 T MRI scanner, participants completed a covert emotional faces gender discrimination task. Brain activations showing significant group differences were identified using voxel-wise general linear model (GLM) nonparametric permutation testing, with threshold free cluster enhancement (TFCE) and a family wise error (FWE)-corrected cluster significance threshold of p < 0.05. Participants receiving lamotrigine were more accurate at identifying the gender of fearful (but not happy or angry) faces. A network of regions associated with emotional processing, including amygdala, insula, and the anterior cingulate cortex (ACC), was significantly less activated in the lamotrigine group compared to the placebo group across emotional facial expressions. A single dose of lamotrigine reduced activation in limbic areas in response to faces with both positive and negative expressions, suggesting a valence-independent effect. However, at a behavioural level lamotrigine appeared to reduce the distracting effect of fear on face discrimination. Such effects may be relevant to the mood stabilisation effects of lamotrigine.


Subject(s)
Emotions , Facial Expression , Healthy Volunteers , Lamotrigine , Magnetic Resonance Imaging , Triazines , Humans , Lamotrigine/pharmacology , Lamotrigine/administration & dosage , Male , Female , Adult , Double-Blind Method , Emotions/drug effects , Triazines/pharmacology , Triazines/administration & dosage , Young Adult , Brain/drug effects , Brain/diagnostic imaging , Facial Recognition/drug effects , Gyrus Cinguli/drug effects , Gyrus Cinguli/diagnostic imaging , Amygdala/drug effects , Amygdala/diagnostic imaging , Antimanic Agents/pharmacology , Antimanic Agents/administration & dosage
5.
Sci Data ; 11(1): 556, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816523

ABSTRACT

Used on clinical and sportive context, three-dimensional motion analysis is considered as the gold standard in the biomechanics field. The proposed dataset has been established on 30 asymptomatic young participants. Volunteers were asked to walk at slow, comfortable and fast speeds, and to run at comfortable and fast speeds on overground and treadmill using shoes. Three dimensional trajectories of 63 reflective markers, 3D ground reaction forces and moments were simultaneously recorded. A total of 4840 and 18159 gait cycles were measured for overground and treadmill walking, respectively. Additionally, 2931 and 18945 cycles were measured for overground and treadmill running, respectively. The dataset is presented in C3D and CSV files either in raw or pre-processed format. The aim of this dataset is to provide a complete set of data that will help for the gait characterization during clinical gait analysis and in a sportive context. This data could be used for the creation of a baseline database for clinical purposes to research activities exploring the gait and the run.


Subject(s)
Gait , Running , Walking , Humans , Running/physiology , Young Adult , Biomechanical Phenomena , Healthy Volunteers , Adult , Gait Analysis , Male , Exercise Test
7.
PLoS One ; 19(5): e0303459, 2024.
Article in English | MEDLINE | ID: mdl-38768164

ABSTRACT

BACKGROUND AND PURPOSE: Whereas motor skills of the untrained upper limb (UL) can improve following practice with the other UL, it has yet to be determined if an UL motor skill can improve following practice of that skill with the lower limb (LL). METHODS: Forty-five healthy subjects randomly participated in a 10-minute single-session intervention of (1) practicing 50 reaching movement (RM) sequences with the non-dominant left LL toward light switches (LL group); or (2) observing the identical 50 light switches sequences (Switches Observation (SO) group); or (3) observing nature films (Nature Observation (NO) group). RM sequence performance with the left UL toward the light switches was tested before and immediately after the intervention and retested after 24 h. RESULTS: Reaching response time improved in the LL group more than in the SO and NO groups in the posttest (pBonferroni = 0.038 and pBonferroni < 0.001, respectively), and improved in the LL group more than in the NO group in the retest (pBonferroni = 0.004). Percentage of fails did not differ between groups across the timepoints. CONCLUSIONS: It appears that the actual practice of the RM sequence skill with the UL together with the cognitive element embedded in the observation of the RM sequences contributes to ipsilateral transfer from LL to UL.


Subject(s)
Lower Extremity , Motor Skills , Upper Extremity , Humans , Motor Skills/physiology , Male , Female , Adult , Upper Extremity/physiology , Lower Extremity/physiology , Young Adult , Movement/physiology , Healthy Volunteers
8.
Anal Chim Acta ; 1309: 342689, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772669

ABSTRACT

BACKGROUND: Metabolomics plays a critical role in deciphering metabolic alterations within individuals, demanding the use of sophisticated analytical methodologies to navigate its intricate complexity. While many studies focus on single biofluid types, simultaneous analysis of multiple matrices enhances understanding of complex biological mechanisms. Consequently, the development of data fusion methods enabling multiblock analysis becomes essential for comprehensive insights into metabolic dynamics. RESULTS: This study introduces a novel guideline for jointly analyzing diverse metabolomic datasets (serum, urine, metadata) with a focus on metabolic differences between groups within a healthy cohort. The guideline presents two fusion strategies, 'Low-Level data fusion' (LLDF) and 'Mid-Level data fusion' (MLDF), employing a sequential application of Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS), linking the outcomes of successive analyses. MCR-ALS is a versatile method for analyzing mixed data, adaptable at various stages of data processing-encompassing resonance integration, data compression, and exploratory analysis. The LLDF and MLDF strategies were applied to 1H NMR spectral data extracted from urine and serum samples, coupled with biochemical metadata sourced from 145 healthy volunteers. SIGNIFICANCE: Both methodologies effectively integrated and analysed multiblock datasets, unveiling the inherent data structure and variables associated with discernible factors among healthy cohorts. While both approaches successfully detected sex-related differences, the MLDF strategy uniquely revealed components linked to age. By applying this analysis, we aim to enhance the interpretation of intricate biological mechanisms and uncover variations that may not be easily discernible through individual data analysis.


Subject(s)
Metabolomics , Humans , Metabolomics/methods , Male , Female , Multivariate Analysis , Healthy Volunteers , Adult , Proton Magnetic Resonance Spectroscopy , Cohort Studies , Middle Aged , Least-Squares Analysis , Young Adult
9.
Swiss Dent J ; 134(2): 72-87, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38739771

ABSTRACT

Dry mouth is a multifaceted condition which is caused by reduced salivary secretion. This study aimed to evaluate and compare the effects of different lozenge surface textures, tastes and acidity levels on stimulated salivary secretion for increased oral moistening in participants without hyposalivation. This randomized, double-blind, clinical crossover trial with before and after comparison involved 33 healthy volunteers. Five lozenges, including a baseline control (C), apple (A), sour (S), sour apple (SA) and granular pectin (P) were tested on five different days with all the subjects. Salivary flow, pH value, and subjective feeling (visual analog scale) were measured before and after consuming the lozenge each day. Throughout all trial days the unstimulated whole salivary flow (UWSF) averaged 0.65 ± 0.26 ml/min. Lozenges S, SA, and P showed higher stimulated whole salivary flow (SWSF) than C (P < 0.001) by more than 0.5 ml/min. Lozenge P, with a rough surface, demonstrated the highest difference between UWSF and SWSF, 2.41 ± 0.69 ml/min. The stimulated saliva with the lozenges containing acidifiers (S, SA and P) was more than 1.4 pH units lower compared to lozenges C and A (P < 0.001). Subjects reported the strongest subjective feeling of increased saliva with lozenges SA and P. Overall lozenges SA and P provided the best objective results in enhancing salivary flow rate and subjective feeling of increased salivary flow.


Subject(s)
Cross-Over Studies , Saliva , Taste , Humans , Male , Hydrogen-Ion Concentration , Double-Blind Method , Female , Adult , Taste/drug effects , Taste/physiology , Saliva/chemistry , Saliva/metabolism , Healthy Volunteers , Secretory Rate/drug effects , Young Adult , Surface Properties/drug effects , Salivation/drug effects , Salivation/physiology
10.
Clin Transl Sci ; 17(5): e13789, 2024 May.
Article in English | MEDLINE | ID: mdl-38761014

ABSTRACT

This first-in-human study evaluated the safety, tolerability, single- and multiple-dose pharmacokinetic profiles with dietary influence, and pharmacodynamics (PD) of DFV890, an oral NLRP3 inhibitor, in healthy participants. In total, 122 participants were enrolled into a three-part trial including single and 2-week multiple ascending oral doses (SAD and MAD, respectively) of DFV890, and were randomized (3:1) to DFV890 or placebo (SAD [3-600 mg] and MAD [fasted: 10-200 mg, once-daily or fed: 25 and 50 mg, twice-daily]). DFV890 was generally well-tolerated. Neither deaths nor serious adverse events were reported. A less than dose-proportional increase in exposure was observed with the initially used crystalline suspension (3-300 mg); however, an adjusted suspension formulation using spray-dried dispersion (SDD; 100-600 mg) confirmed dose-proportional increase in exposure. Relative bioavailability between crystalline suspension and tablets, and food effect were evaluated at 100 mg. Under fasting conditions, Cmax of the tablet yielded 78% compared with the crystalline suspension, and both formulations showed comparable AUC. The fed condition led to a 2.05- and 1.49-fold increase in Cmax and AUC0-last compared with the fasting condition. The median IC50 and IC90 for ex-vivo lipopolysaccharide-stimulated interleukin IL-1ß release inhibition (PD) were 61 (90% CI: 50, 70) and 1340 ng/mL (90% CI: 1190, 1490). Crystalline tablets of 100 mg once-daily or 25 mg twice-daily were sufficient to maintain ~90% of the IL-1ß release inhibition over 24 h at steady state. Data support dose and formulation selection for further development in diseases, in which an overactivated NLRP3 represents the underlying pathophysiology.


Subject(s)
Dose-Response Relationship, Drug , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Male , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adult , Female , Administration, Oral , Middle Aged , Young Adult , Interleukin-1beta/metabolism , Healthy Volunteers , Food-Drug Interactions , Double-Blind Method , Biological Availability , Adolescent , Drug Administration Schedule
11.
Sci Rep ; 14(1): 11349, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762532

ABSTRACT

Passive translational acceleration (PTA) has been demonstrated to induce the stress response and regulation of autonomic balance in healthy individuals. Electrodermal activity (EDA) and heart rate variability (HRV) measurements are reliable indicators of the autonomic nervous system (ANS) and can be used to assess stress levels. The objective of this study was to investigate the potential of combining EDA and HRV measurements in assessing the physiological stress response induced by PTA. Fourteen healthy subjects were randomly assigned to two groups of equal size. The experimental group underwent five trials of elevator rides, while the control group received a sham treatment. EDA and HRV indices were obtained via ultra-short-term analysis and compared between the two groups to track changes in the ANS. In addition, the complexity of the EDA time series was compared between the 4 s before and the 2-6 s after the onset of PTA to assess changes in the subjects' stress levels in the experimental group. The results revealed a significant increase in the skin conductance response (SCR) frequency and a decrease in the root mean square of successive differences (RMSSD) and high frequency (HF) components of HRV. In terms of stress assessment, the results showed an increase in the complexity of the EDA time series 2-6 s after the onset of PTA. These results indicate an elevation in sympathetic tone when healthy subjects were exposed to a translational transport scenario. Furthermore, evidence was provided for the ability of EDA complexity to differentiate stress states in individual trials of translational acceleration.


Subject(s)
Autonomic Nervous System , Galvanic Skin Response , Healthy Volunteers , Heart Rate , Stress, Physiological , Adult , Female , Humans , Male , Young Adult , Acceleration , Autonomic Nervous System/physiology , Galvanic Skin Response/physiology , Heart Rate/physiology , Pilot Projects , Stress, Physiological/physiology
12.
Article in English | MEDLINE | ID: mdl-38739519

ABSTRACT

Intuitive regression control of prostheses relies on training algorithms to correlate biological recordings to motor intent. The quality of the training dataset is critical to run-time regression performance, but accurately labeling intended hand kinematics after hand amputation is challenging. In this study, we quantified the accuracy and precision of labeling hand kinematics using two common training paradigms: 1) mimic training, where participants mimic predetermined motions of a prosthesis, and 2) mirror training, where participants mirror their contralateral intact hand during synchronized bilateral movements. We first explored this question in healthy non-amputee individuals where the ground-truth kinematics could be readily determined using motion capture. Kinematic data showed that mimic training fails to account for biomechanical coupling and temporal changes in hand posture. Additionally, mirror training exhibited significantly higher accuracy and precision in labeling hand kinematics. These findings suggest that the mirror training approach generates a more faithful, albeit more complex, dataset. Accordingly, mirror training resulted in significantly better offline regression performance when using a large amount of training data and a non-linear neural network. Next, we explored these different training paradigms online, with a cohort of unilateral transradial amputees actively controlling a prosthesis in real-time to complete a functional task. Overall, we found that mirror training resulted in significantly faster task completion speeds and similar subjective workload. These results demonstrate that mirror training can potentially provide more dexterous control through the utilization of task-specific, user-selected training data. Consequently, these findings serve as a valuable guide for the next generation of myoelectric and neuroprostheses leveraging machine learning to provide more dexterous and intuitive control.


Subject(s)
Algorithms , Artificial Limbs , Electromyography , Hand , Humans , Electromyography/methods , Biomechanical Phenomena , Male , Female , Adult , Hand/physiology , Reproducibility of Results , Amputees/rehabilitation , Neural Networks, Computer , Prosthesis Design , Movement/physiology , Young Adult , Healthy Volunteers , Nonlinear Dynamics
13.
Clin Transl Sci ; 17(5): e13832, 2024 May.
Article in English | MEDLINE | ID: mdl-38769747

ABSTRACT

Olamkicept selectively inhibits the cytokine interleukin-6 (IL-6) trans-signaling pathway without blocking the classic pathway and is a promising immunoregulatory therapy for inflammatory bowel disease (IBD). These first-in-human, randomized, placebo-controlled, single- (SAD) and multiple-ascending dose (MAD) trials evaluated olamkicept safety, tolerability, pharmacokinetic, and pharmacodynamic characteristics. Doses tested in the SAD trial included seven single intravenous doses (0.75, 7.5, 75, 150, 300, 600, and 750 mg) and one subcutaneous (SC) dose (60 mg) given to healthy subjects (N = 64), and three intravenous doses (75 mg, 300 mg, and 750 mg) given to patients with Crohn's disease (CD; N = 24). Doses tested in the MAD trial included multiple intravenous doses (75, 300, and 600 mg once weekly for 4 weeks) given to healthy subjects (N = 24). No severe or serious treatment-emergent adverse events (TEAEs) were recorded. The most common TEAEs were headache, nasopharyngitis, and myalgia in the SAD trial, and diarrhea, headache, and cough in the MAD trial. Infusion-related reactions occurred in one and two subjects in the SAD and MAD trial, respectively, leading to treatment discontinuation in the MAD trial. Olamkicept showed dose-independent pharmacokinetics after single and multiple administrations, and there was no major difference in systemic exposure between healthy subjects and patients with CD. Complete target engagement (inhibition of phosphorylation of signal transducer and activator of transcription-3) was achieved in blood around or above olamkicept serum concentrations of 1-5 µg/mL. Overall, these results suggest that olamkicept is safe and well-tolerated in healthy subjects and patients with CD after single intravenous/SC and multiple intravenous administrations.


Subject(s)
Crohn Disease , Dose-Response Relationship, Drug , Humans , Male , Female , Adult , Crohn Disease/drug therapy , Crohn Disease/immunology , Middle Aged , Young Adult , Double-Blind Method , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/adverse effects , Injections, Subcutaneous , Drug Administration Schedule , Interleukin-6/blood , Healthy Volunteers , Adolescent
14.
Clin Transl Sci ; 17(5): e13834, 2024 May.
Article in English | MEDLINE | ID: mdl-38771175

ABSTRACT

Pioglitazone is class of thiazolidinediones that activates peroxisome proliferator-activated receptors (PPARs) in adipocytes to improve glucose metabolism and insulin sensitivity and has been used as a treatment for type 2 diabetes. However, the underlying mechanisms of associated pioglitazone-induced effects remain unclear. Our study aimed to investigate endogenous metabolite alterations associated with pioglitazone administration in healthy male subjects using an untargeted metabolomics approach. All subjects received 30 mg of pioglitazone once daily in the assigned sequence and period. Urine samples were collected before pioglitazone administration and for 24 h after 7 days of administration. A total of 1465 compounds were detected and filtered using a coefficient of variance below 30% and 108 metabolites were significantly altered upon pioglitazone administration via multivariate statistical analysis. Fourteen significant metabolites were identified using authentic standards and public libraries. Additionally, pathway analysis revealed that metabolites from purine and beta-alanine metabolisms were significantly altered after pioglitazone administration. Further analysis of quantification of metabolites from purine metabolism, revealed that the xanthine/hypoxanthine and uric acid/xanthine ratios were significantly decreased at post-dose. Pioglitazone-dependent endogenous metabolites and metabolic ratio indicated the potential effect of pioglitazone on the activation of PPAR and fatty acid synthesis. Additional studies involving patients are required to validate these findings.


Subject(s)
Healthy Volunteers , Pioglitazone , Purines , Thiazolidinediones , Humans , Male , Pioglitazone/pharmacology , Pioglitazone/administration & dosage , Purines/administration & dosage , Purines/metabolism , Adult , Thiazolidinediones/administration & dosage , Thiazolidinediones/pharmacology , Thiazolidinediones/adverse effects , Metabolomics/methods , Young Adult , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage
15.
Article in English | MEDLINE | ID: mdl-38717876

ABSTRACT

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Subject(s)
Algorithms , Electroencephalography , Memory, Short-Term , Neurovascular Coupling , Spectroscopy, Near-Infrared , Humans , Electroencephalography/methods , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Normal Distribution , Neurovascular Coupling/physiology , Young Adult , Memory, Short-Term/physiology , Healthy Volunteers , Reproducibility of Results , Multivariate Analysis , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Brain Mapping/methods , Theta Rhythm/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Nonlinear Dynamics , Delta Rhythm/physiology , Alpha Rhythm/physiology
16.
Trends Hear ; 28: 23312165241246596, 2024.
Article in English | MEDLINE | ID: mdl-38738341

ABSTRACT

The auditory brainstem response (ABR) is a valuable clinical tool for objective hearing assessment, which is conventionally detected by averaging neural responses to thousands of short stimuli. Progressing beyond these unnatural stimuli, brainstem responses to continuous speech presented via earphones have been recently detected using linear temporal response functions (TRFs). Here, we extend earlier studies by measuring subcortical responses to continuous speech presented in the sound-field, and assess the amount of data needed to estimate brainstem TRFs. Electroencephalography (EEG) was recorded from 24 normal hearing participants while they listened to clicks and stories presented via earphones and loudspeakers. Subcortical TRFs were computed after accounting for non-linear processing in the auditory periphery by either stimulus rectification or an auditory nerve model. Our results demonstrated that subcortical responses to continuous speech could be reliably measured in the sound-field. TRFs estimated using auditory nerve models outperformed simple rectification, and 16 minutes of data was sufficient for the TRFs of all participants to show clear wave V peaks for both earphones and sound-field stimuli. Subcortical TRFs to continuous speech were highly consistent in both earphone and sound-field conditions, and with click ABRs. However, sound-field TRFs required slightly more data (16 minutes) to achieve clear wave V peaks compared to earphone TRFs (12 minutes), possibly due to effects of room acoustics. By investigating subcortical responses to sound-field speech stimuli, this study lays the groundwork for bringing objective hearing assessment closer to real-life conditions, which may lead to improved hearing evaluations and smart hearing technologies.


Subject(s)
Acoustic Stimulation , Electroencephalography , Evoked Potentials, Auditory, Brain Stem , Speech Perception , Humans , Evoked Potentials, Auditory, Brain Stem/physiology , Male , Female , Speech Perception/physiology , Acoustic Stimulation/methods , Adult , Young Adult , Auditory Threshold/physiology , Time Factors , Cochlear Nerve/physiology , Healthy Volunteers
17.
Gut Microbes ; 16(1): 2350173, 2024.
Article in English | MEDLINE | ID: mdl-38738780

ABSTRACT

Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Intestine, Small , Synbiotics , Humans , Synbiotics/administration & dosage , Gastrointestinal Microbiome/physiology , Male , Adult , Intestine, Small/microbiology , Intestine, Small/metabolism , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Feces/microbiology , Young Adult , Probiotics/administration & dosage , Metabolome , Healthy Volunteers , Spatio-Temporal Analysis
18.
Sci Rep ; 14(1): 10194, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702398

ABSTRACT

Paired associative stimulation (PAS) consisting of high-intensity transcranial magnetic stimulation (TMS) and high-frequency peripheral nerve stimulation (known as high-PAS) induces plastic changes and improves motor performance in patients with incomplete spinal cord injury (SCI). Listening to music during PAS may potentially improve mood and arousal and facilitate PAS-induced neuroplasticity via auditory-motor coupling, but the effects have not been explored. This pilot study aimed to determine if the effect of high-PAS on motor-evoked potentials (MEPs) and subjective alertness can be augmented with music. Ten healthy subjects and nine SCI patients received three high-PAS sessions in randomized order (PAS only, PAS with music synchronized to TMS, PAS with self-selected music). MEPs were measured before (PRE), after (POST), 30 min (POST30), and 60 min (POST60) after stimulation. Alertness was evaluated with a questionnaire. In healthy subjects, MEPs increased at POST in all sessions and remained higher at POST60 in PAS with synchronized music compared with the other sessions. There was no difference in alertness. In SCI patients, MEPs increased at POST and POST30 in PAS only but not in other sessions, whereas alertness was higher in PAS with self-selected music. More research is needed to determine the potential clinical effects of using music during high-PAS.


Subject(s)
Evoked Potentials, Motor , Spinal Cord Injuries , Transcranial Magnetic Stimulation , Humans , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Male , Female , Adult , Transcranial Magnetic Stimulation/methods , Middle Aged , Evoked Potentials, Motor/physiology , Pilot Projects , Music , Healthy Volunteers , Arousal/physiology , Music Therapy/methods
19.
PLoS One ; 19(5): e0302476, 2024.
Article in English | MEDLINE | ID: mdl-38709742

ABSTRACT

BACKGROUND: The Incentive Spirometer (IS) increases lung volume and improves gas exchange by visually stimulating patients to take slow, deep breaths. It prevents respiratory complications and treats postoperative atelectasis in patients undergoing abdominal, thoracic, and neurosurgical procedures. Its effectiveness has been validated in studies that support improved lung capacities and volumes in individuals with respiratory complications, postoperative thoracic surgery, upper abdominal surgery, and bariatric surgery. The modified Pachón incentive spirometer (MPIS) is a cost-effective alternative to branded IS. It is crucial to validate whether the MPIS distributes ventilation as effectively as commercial devices do. Ventilation distribution will be measured using electrical impedance tomography. OBJECTIVE: The aim is to compare the distribution of pulmonary ventilation between the MPIS and another commercial IS in healthy adults using electrical impedance tomography. METHODS: A crossover clinical trial is proposed to evaluate the measurement of pulmonary ventilation distribution using EIT in a sample of healthy adults. All participants will use a commercial flow IS and the MPIS, with the order of assignment randomized. This research will use electrical impedance tomography to validate the operation of the MPIS. CONCLUSIONS: This study protocol will compare two incentive spirometers' impact on pulmonary ventilation, potentially endorsing the adoption of a cost-effective device to enhance accessibility for targeted populations. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov (NTC05532748).


Subject(s)
Electric Impedance , Pulmonary Ventilation , Spirometry , Tomography , Humans , Adult , Spirometry/methods , Spirometry/instrumentation , Tomography/methods , Pulmonary Ventilation/physiology , Male , Female , Healthy Volunteers , Cross-Over Studies , Lung/physiology , Middle Aged , Young Adult
20.
Nutrients ; 16(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794761

ABSTRACT

Seventy-one healthy subjects with sleep disturbances participated in a randomized, double-blind controlled trial in which dietary supplementation with an extract of Aloysia citrodora (lemon verbena) (n = 33) or placebo (n = 38) was administered for 90 days. There were between-group differences in favor of the experimental group in the visual analogue scale (VAS) for sleep quality (6.5 ± 1.6 vs. 5.5 ± 2.1, p = 0.021) as well as in the overall score (5.8 ± 2.4, p = 0.008) and scores for sleep latency (1.6 ± 1.0 vs. 1.9 ± 0.7, p = 0.027) and sleep efficiency (84.5 ± 12.8 vs. 79.8 ± 13.6, p = 0.023) in the Pittsburgh Sleep Quality Index (PSQI). Sleep-related variables (latency, efficiency, wakefulness after sleep onset, awakenings) assessed by actigraphy also showed better scores in the experimental group (p = 0.001). Plasma nocturnal melatonin levels also increased significantly in the experimental group (199.7 ± 135.3 vs. 174.7 ± 115.4 pg/mL, p = 0.048). Changes in anthropometric parameters and physical activity levels were not found. In summary, a dietary supplement of lemon verbena administered for 3 months was associated with a significant improvement in sleep quality as compared with placebo in a population of healthy subjects with sleep problems.


Subject(s)
Dietary Supplements , Plant Extracts , Sleep Quality , Humans , Double-Blind Method , Male , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Female , Adult , Middle Aged , Melatonin/administration & dosage , Healthy Volunteers , Young Adult , Sleep/drug effects , Sleep Wake Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...