Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.110
Filter
1.
Sci Rep ; 14(1): 10689, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724641

ABSTRACT

Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K + -Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before and after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed.


Subject(s)
Hearing Loss, Noise-Induced , K Cl- Cotransporters , Symporters , gamma-Aminobutyric Acid , Animals , Symporters/metabolism , Symporters/antagonists & inhibitors , Guinea Pigs , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , gamma-Aminobutyric Acid/metabolism , Male , Cochlear Nucleus/metabolism , Pyridazines/pharmacology , Neurons/metabolism
2.
J Acoust Soc Am ; 155(5): 3267-3273, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38742961

ABSTRACT

Music is complex. There are risks to hearing health associated with playing due to excessive sound exposure. Face the Music is an on-going cross-sectional project to assess the risks to unamplified classical musicians. Key findings over the first fifteen years are presented based on the research undertaken with a leading conservatoire on more than 5000 classical music students. The work covers hearing health surveillance, education and awareness, sound exposure, and new technology. The future of the research programme is discussed along with opportunities in objective hearing health assessment and new acoustic solutions. A lot has changed in fifteen years, but the research was driven by a change in United Kingdom legislation. It is hoped that the research results can inform future regulation.


Subject(s)
Hearing Loss, Noise-Induced , Music , Humans , Hearing Loss, Noise-Induced/prevention & control , Hearing Loss, Noise-Induced/etiology , Cross-Sectional Studies , Occupational Diseases/prevention & control , Occupational Diseases/psychology , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Occupational Exposure/prevention & control , Risk Factors , United Kingdom , Risk Assessment , Noise, Occupational/adverse effects , Young Adult , Male , Female , Adult , Acoustics , Health Knowledge, Attitudes, Practice
3.
J Acoust Soc Am ; 155(5): 3254-3266, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38742964

ABSTRACT

Testudines are a highly threatened group facing an array of stressors, including alteration of their sensory environment. Underwater noise pollution has the potential to induce hearing loss and disrupt detection of biologically important acoustic cues and signals. To examine the conditions that induce temporary threshold shifts (TTS) in hearing in the freshwater Eastern painted turtle (Chrysemys picta picta), three individuals were exposed to band limited continuous white noise (50-1000 Hz) of varying durations and amplitudes (sound exposure levels ranged from 151 to 171 dB re 1 µPa2 s). Control and post-exposure auditory thresholds were measured and compared at 400 and 600 Hz using auditory evoked potential methods. TTS occurred in all individuals at both test frequencies, with shifts of 6.1-41.4 dB. While the numbers of TTS occurrences were equal between frequencies, greater shifts were observed at 600 Hz, a frequency of higher auditory sensitivity, compared to 400 Hz. The onset of TTS occurred at 154 dB re 1 µPa2 s for 600 Hz, compared to 158 dB re 1 µPa2 s at 400 Hz. The 400-Hz onset and patterns of TTS growth and recovery were similar to those observed in previously studied Trachemys scripta elegans, suggesting TTS may be comparable across Emydidae species.


Subject(s)
Acoustic Stimulation , Auditory Threshold , Turtles , Animals , Turtles/physiology , Time Factors , Noise/adverse effects , Evoked Potentials, Auditory/physiology , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/etiology , Male , Female , Hearing/physiology
4.
Trends Hear ; 28: 23312165241239541, 2024.
Article in English | MEDLINE | ID: mdl-38738337

ABSTRACT

Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.


Subject(s)
Cochlea , Speech Perception , Tinnitus , Humans , Cochlea/physiopathology , Tinnitus/physiopathology , Tinnitus/diagnosis , Animals , Speech Perception/physiology , Hyperacusis/physiopathology , Noise/adverse effects , Auditory Perception/physiology , Synapses/physiology , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/diagnosis , Loudness Perception
5.
BMJ Open ; 14(5): e079955, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760055

ABSTRACT

OBJECTIVES: This study aims to predict the risk of noise-induced hearing loss (NIHL) through a back-propagation neural network (BPNN) model. It provides an early, simple and accurate prediction method for NIHL. DESIGN: Population based, a cross sectional study. SETTING: Han, China. PARTICIPANTS: This study selected 3266 Han male workers from three automobile manufacturing industries. PRIMARY OUTCOME MEASURES: Information including personal life habits, occupational health test information and occupational exposure history were collected and predictive factors of NIHL were screened from these workers. BPNN and logistic regression models were constructed using these predictors. RESULTS: The input variables of BPNN model were 20, 16 and 21 important factors screened by univariate, stepwise and lasso-logistic regression. When the BPNN model was applied to the test set, it was found to have a sensitivity (TPR) of 83.33%, a specificity (TNR) of 85.92%, an accuracy (ACC) of 85.51%, a positive predictive value (PPV) of 52.85%, a negative predictive value of 96.46% and area under the receiver operating curve (AUC) is: 0.926 (95% CI: 0.891 to 0.961), which demonstrated the better overall properties than univariate-logistic regression modelling (AUC: 0.715) (95% CI: 0.652 to 0.777). The BPNN model has better predictive performance against NIHL than the stepwise-logistic and lasso-logistic regression model in terms of TPR, TNR, ACC, PPV and NPV (p<0.05); the area under the receiver operating characteristics curve of NIHL is also higher than that of the stepwise and lasso-logistic regression model (p<0.05). It was a relatively important factor in NIHL to find cumulative noise exposure, auditory system symptoms, age, listening to music or watching video with headphones, exposure to high temperature and noise exposure time in the trained BPNN model. CONCLUSIONS: The BPNN model was a valuable tool in dealing with the occupational risk prediction problem of NIHL. It can be used to predict the risk of an individual NIHL.


Subject(s)
Automobiles , Hearing Loss, Noise-Induced , Manufacturing Industry , Neural Networks, Computer , Occupational Diseases , Occupational Exposure , Humans , Hearing Loss, Noise-Induced/diagnosis , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , Cross-Sectional Studies , Male , China/epidemiology , Adult , Middle Aged , Risk Assessment/methods , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Noise, Occupational/adverse effects , Logistic Models , Risk Factors , ROC Curve , East Asian People
6.
Sci Rep ; 14(1): 10762, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730002

ABSTRACT

Excessive occupational exposure to noise results in a well-recognized occupational hearing loss which is prevalent in many workplaces and now it is taken as a global problem. Therefore, this study aims to assess the prevalence of noise-induced hearing loss and associated factors among workers in the Bishoftu Central Air Base in Ethiopia. An institutional-based cross-sectional study was conducted among 260 central air base workers through face-to-face interviews, an environment noise survey, and an audiometric test for data collection. Data were entered by Epi-data version 3.1 and SPSS was used to analyze the data. Finally, a statistical analysis such as descriptive and binary logistic regression analysis was applied. A P-value < 0.05 at 95% CI was considered statistically significant. The overall prevalence of noise-induced hearing loss and hearing impairments was 24.6 and 30.9%, respectively. The highest prevalence of noise-induced hearing loss was recorded for workers who were exposed to noise levels greater than 90 dBA. Out of 132 workers exposed to the average noise level of 75 dB A, only 5% of workers were affected with noise-induced hearing loss, while 128 workers exposed to an average noise level equal to or greater than 90 dB A, 19.6% of workers were identified with noise-induced hearing loss. Regarding sex, around 21.9% of male workers were identified with noise-induced hearing loss. Workers who were exposed to a high noise level workplace previously or before the Central Air Base workplace were five times (AOR = 5.0, 95% CI 1.74-14.36) more likely affected by noise-induced hearing loss than those workers not previously exposed. Those workers who were exposed to greater or equal to 90dBA noise level were 4.98 times (AOR = 4.98, 95% CI 2.59-9.58) more likely to be exposed to noise-induced levels than those who were exposed to less than 90dBA noise level. Moreover, male air base workers were 3.5 times more likely exposed to hearing impairment than female workers (AOR = 3.5, 95% CI 1.01-12.0). This study identified that the prevalence of noise-induced hearing loss and hearing impairments was significantly high. So implementation of a hearing conservation program, giving noise education, and supplying adequate hearing protective devices (HPDs) are essentials.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Exposure , Humans , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , Ethiopia/epidemiology , Male , Adult , Prevalence , Female , Cross-Sectional Studies , Occupational Exposure/adverse effects , Noise, Occupational/adverse effects , Middle Aged , Young Adult , Risk Factors , Occupational Diseases/epidemiology , Occupational Diseases/etiology
8.
Cochrane Database Syst Rev ; 5: CD010333, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38813836

ABSTRACT

BACKGROUND: Infants in the neonatal intensive care unit (NICU) are subjected to different types of stress, including sounds of high intensity. The sound levels in NICUs often exceed the maximum acceptable level recommended by the American Academy of Pediatrics, which is 45 decibels (dB). Hearing impairment is diagnosed in 2% to 10% of preterm infants compared to only 0.1% of the general paediatric population. Bringing sound levels under 45 dB can be achieved by lowering the sound levels in an entire unit; by treating the infant in a section of a NICU, in a 'private' room, or in incubators in which the sound levels are controlled; or by reducing sound levels at the individual level using earmuffs or earplugs. By lowering sound levels, the resulting stress can be diminished, thereby promoting growth and reducing adverse neonatal outcomes. This review is an update of one originally published in 2015 and first updated in 2020. OBJECTIVES: To determine the benefits and harms of sound reduction on the growth and long-term neurodevelopmental outcomes of neonates. SEARCH METHODS: We used standard, extensive Cochrane search methods. On 21 and 22 August 2023, a Cochrane Information Specialist searched CENTRAL, PubMed, Embase, two other databases, two trials registers, and grey literature via Google Scholar and conference abstracts from Pediatric Academic Societies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) or quasi-RCTs in preterm infants (less than 32 weeks' postmenstrual age (PMA) or less than 1500 g birth weight) cared for in the resuscitation area, during transport, or once admitted to a NICU or stepdown unit. We specified three types of intervention: 1) intervention at the unit level (i.e. the entire neonatal department), 2) at the section or room level, or 3) at the individual level (e.g. hearing protection). DATA COLLECTION AND ANALYSIS: We used the standardised review methods of Cochrane Neonatal to assess the risk of bias in the studies. We used the risk ratio (RR) and risk difference (RD), with their 95% confidence intervals (CIs), for dichotomous data. We used the mean difference (MD) for continuous data. Our primary outcome was major neurodevelopmental disability. We used GRADE to assess the certainty of the evidence. MAIN RESULTS: We included one RCT, which enroled 34 newborn infants randomised to the use of silicone earplugs versus no earplugs for hearing protection. It was a single-centre study conducted at the University of Texas Medical School in Houston, Texas, USA. Earplugs were positioned at the time of randomisation and worn continuously until the infants were 35 weeks' postmenstrual age (PMA) or discharged (whichever came first). Newborns in the control group received standard care. The evidence is very uncertain about the effects of silicone earplugs on the following outcomes. • Cerebral palsy (RR 3.00, 95% CI 0.15 to 61.74)and Mental Developmental Index (MDI) (Bayley II) at 18 to 22 months' corrected age (MD 14.00, 95% CI 3.13 to 24.87); no other indicators of major neurodevelopmental disability were reported. • Normal auditory functioning at discharge (RR 1.65, 95% CI 0.93 to 2.94) • All-cause mortality during hospital stay (RR 2.07, 95% CI 0.64 to 6.70; RD 0.20, 95% CI -0.09 to 0.50) • Weight (kg) at 18 to 22 months' corrected age (MD 0.31, 95% CI -1.53 to 2.16) • Height (cm) at 18 to 22 months' corrected age (MD 2.70, 95% CI -3.13 to 8.53) • Days of assisted ventilation (MD -1.44, 95% CI -23.29 to 20.41) • Days of initial hospitalisation (MD 1.36, 95% CI -31.03 to 33.75) For all outcomes, we judged the certainty of evidence as very low. We identified one ongoing RCT that will compare the effects of reduced noise levels and cycled light on visual and neural development in preterm infants. AUTHORS' CONCLUSIONS: No studies evaluated interventions to reduce sound levels below 45 dB across the whole neonatal unit or in a room within it. We found only one study that evaluated the benefits of sound reduction in the neonatal intensive care unit for hearing protection in preterm infants. The study compared the use of silicone earplugs versus no earplugs in newborns of very low birth weight (less than 1500 g). Considering the very small sample size, imprecise results, and high risk of attrition bias, the evidence based on this research is very uncertain and no conclusions can be drawn. As there is a lack of evidence to inform healthcare or policy decisions, large, well designed, well conducted, and fully reported RCTs that analyse different aspects of noise reduction in NICUs are needed. They should report both short- and long-term outcomes.


Subject(s)
Infant, Premature , Infant, Very Low Birth Weight , Intensive Care Units, Neonatal , Noise , Randomized Controlled Trials as Topic , Humans , Infant, Newborn , Infant, Premature/growth & development , Noise/adverse effects , Infant, Very Low Birth Weight/growth & development , Sound , Ear Protective Devices , Bias , Hearing Loss, Noise-Induced/prevention & control
9.
Cochrane Database Syst Rev ; 5: CD015066, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38757544

ABSTRACT

BACKGROUND: Global Burden of Disease studies identify hearing loss as the third leading cause of years lived with a disability. Their estimates point to large societal and individual costs from unaddressed hearing difficulties. Workplace noise is an important modifiable risk factor; if addressed, it could significantly reduce the global burden of disease. In practice, providing hearing protection devices (HPDs) is the most common intervention to reduce noise exposure at work. However, lack of fit of HPDs, especially earplugs, can greatly limit their effectiveness. This may be the case for 40% of users. Testing the fit and providing instructions to improve noise attenuation might be effective. In the past two decades, hearing protection fit-test systems have been developed and evaluated in the field. They are called field attenuation estimation systems. They measure the noise attenuation obtained by individual workers using HPDs. If there is a lack of fit, instruction for better fit is provided, and may lead to better noise attenuation obtained by HPDs. OBJECTIVES: To assess: (1) the effects of field attenuation estimation systems and associated training on the noise attenuation obtained by HPDs compared to no instruction or to less instruction in workers exposed to noise; and (2) whether these interventions promote adherence to HPD use. SEARCH METHODS: We used CENTRAL, MEDLINE, five other databases, and two trial registers, together with reference checking, citation searching, and contact with study authors to identify studies. We imposed no language or date restrictions. The latest search date was February 2024. SELECTION CRITERIA: We included randomised controlled trials (RCTs), cluster-RCTs, controlled before-after studies (CBAs), and interrupted time-series studies (ITSs) exploring HPD fit testing in workers exposed to noise levels of more than 80 A-weighted decibels (or dBA) who use hearing protection devices. The unit 'dBA' reports on the use of a frequency-weighting filter to adjust sound measurement results to better reflect how human ears process sound. The outcome noise attenuation had to be measured either as a personal attenuation rating (PAR), PAR pass rate, or both. PAR pass rate is the percentage of workers who passed a pre-established level of sufficient attenuation from their HPDs, identified on the basis of their individual noise exposure. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility, risk of bias, and extracted data. We categorised interventions as fit testing of HPDs with instructions at different levels (no instructions, simple instructions, and extensive instructions). MAIN RESULTS: We included three RCTs (756 participants). We did not find any studies that examined whether fit testing and training contributed to hearing protector use, nor any studies that examined whether age, gender, or HPD experience influenced attenuation. We would have included any adverse effects if mentioned by the trial authors, but none reported them. None of the included studies blinded participants; two studies blinded those who delivered the intervention. Effects of fit testing of HPDs with instructions (simple or extensive) versus fit testing of HPDs without instructions Testing the fit of foam and premoulded earplugs accompanied by simple instructions probably does not improve their noise attenuation in the short term after the test (1-month follow-up: mean difference (MD) 1.62 decibels (dB), 95% confidence interval (CI) -0.93 to 4.17; 1 study, 209 participants; 4-month follow-up: MD 0.40 dB, 95% CI -2.28 to 3.08; 1 study, 197 participants; both moderate-certainty evidence). The intervention probably does not improve noise attenuation in the long term (MD 0.15 dB, 95% CI -3.44 to 3.74; 1 study, 103 participants; moderate-certainty evidence). Fit testing of premoulded earplugs with extensive instructions on the fit of the earplugs may improve their noise attenuation at the immediate retest when compared to fit testing without instructions (MD 8.34 dB, 95% CI 7.32 to 9.36; 1 study, 100 participants; low-certainty evidence). Effects of fit testing of HPDs with extensive instructions versus fit testing of HPDs with simple instructions Fit testing of foam earplugs with extensive instructions probably improves their attenuation (MD 8.62 dB, 95% CI 6.31 to 10.93; 1 study, 321 participants; moderate-certainty evidence) and also the pass rate of sufficient attenuation (risk ratio (RR) 1.75, 95% CI 1.44 to 2.11; 1 study, 321 participants; moderate-certainty evidence) when compared to fit testing with simple instructions immediately after the test. This is significant because every 3 dB decrease in noise exposure level halves the sound energy entering the ear. No RCTs reported on the long-term effectiveness of the HPD fit testing with extensive instructions. AUTHORS' CONCLUSIONS: HPD fit testing accompanied by simple instructions probably does not improve noise attenuation from foam and premoulded earplugs. Testing the fit of foam and premoulded earplugs with extensive instructions probably improves attenuation and PAR pass rate immediately after the test. The effects of fit testing associated with training to improve attenuation may vary with types of HPDs and training methods. Better-designed trials with larger sample sizes are required to increase the certainty of the evidence.


Subject(s)
Ear Protective Devices , Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Exposure , Randomized Controlled Trials as Topic , Humans , Noise, Occupational/adverse effects , Noise, Occupational/prevention & control , Hearing Loss, Noise-Induced/prevention & control , Occupational Exposure/prevention & control , Occupational Exposure/adverse effects , Occupational Diseases/prevention & control
10.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791192

ABSTRACT

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Subject(s)
Cochlea , Intercellular Adhesion Molecule-1 , Noise , Oxidative Stress , Phycocyanin , Synapses , Animals , Oxidative Stress/drug effects , Guinea Pigs , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Synapses/drug effects , Synapses/metabolism , Noise/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Reactive Oxygen Species/metabolism , Male , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hydrogen Peroxide/metabolism , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Antioxidants/pharmacology , Cell Line , Hearing Loss, Hidden
11.
Hear Res ; 447: 109021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703432

ABSTRACT

Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.


Subject(s)
Cochlea , Disease Models, Animal , Hair Cells, Auditory , Regeneration , Animals , Hair Cells, Auditory/pathology , Hair Cells, Auditory/metabolism , Mice , Cochlea/pathology , Cochlea/physiopathology , Humans , Hearing , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/pathology , Hearing Loss/pathology , Hearing Loss/physiopathology , Acoustic Stimulation
12.
Hear Res ; 447: 109010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744019

ABSTRACT

Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.


Subject(s)
Acoustic Stimulation , Cochlear Nerve , Noise , Humans , Noise/adverse effects , Aged , Cochlear Nerve/physiopathology , Middle Aged , Adult , Aged, 80 and over , Age Factors , Young Adult , Adolescent , Aging/physiology , Evoked Potentials, Auditory , Hearing Loss, Noise-Induced/physiopathology , Female , Male , Animals , Action Potentials
13.
Article in Chinese | MEDLINE | ID: mdl-38802307

ABSTRACT

Objective: To analyze the characteristics of high-frequency average hearing loss in both ears of noise exposed workers in Tianjin in 2020, and quantitatively analyze the influencing factors of high-frequency hearing loss in both ears of workers. Methods: In March 2023, Collect and organize basic information about noise-hazardous enterprises and personal information of workers exposed to noise. Data from the Tianjin Occupational Disease and Health Hazard Factors Information Monitoring System from January 2020 to December 2020, and analyze the impact of basic information of employees, enterprise size, regional distribution, industry category, and economic type on the high-frequency average hearing loss of workers during work. Apply logistic regression to quantitatively analyze the influencing factors of abnormal high-frequency average hearing threshold of noise exposed workers. Results: The size, economic type, industry category, and regional distribution of enterprises, as well as the gender, age, length of service of workers, have an impact on the abnormal high-frequency average hearing threshold of noise exposed workers (χ(2)=733.56、3 497、27、1352.84、1197.62、2570.59、22.30、506.60, P<0.001) . Quantitative analysis using a logistic regression model showed that in the basic information of workers, noise exposed workers were male (OR=2.500, P<0.001) and aged 30-39, 40-49, and 50-59 years (OR=1.33, P<0.001; OR=1.68, P<0.001; OR=1.52, P< 0.001) , with a length of service of 4 to<10 years and≥10 years (OR=1.08, P<0.001; OR=1.615, P<0.001) being the influencing factors for high-frequency hearing loss in both ears of noise exposed workers; In terms of enterprise characteristics, medium-sized, small and micro enterprises (OR=1.12, P<0.001; OR=1.75, P<0.001; OR=2.09, P<0.001) , enterprises located in the fourth district around the city (OR=1.268, P<0.001) , and enterprises with economic types of collective economy, other economy, private economy, Hong Kong, Macao and Taiwan investment, shareholding system, and other industry economies (OR are all >1, P<0.001) are all factors affecting high-frequency hearing loss in noise exposed personnel. Conclusion: Noise is a common occupational hazard factor in Tianjin's enterprises, especially for workers in micro enterprises who face a high risk of hearing abnormalities. Therefore, enterprises need to strengthen the management and intervention of noise operations to prevent the occurrence of hearing loss in workers.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Occupational Exposure , Humans , Noise, Occupational/adverse effects , Male , Female , Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/etiology , China/epidemiology , Occupational Exposure/adverse effects , Adult , Logistic Models , Risk Factors , Middle Aged , Occupational Diseases/epidemiology , Occupational Diseases/etiology
14.
Article in Chinese | MEDLINE | ID: mdl-38563181

ABSTRACT

Noise-induced hearing loss(NIHL) is an acquired sensorineural hearing loss induced by long-term noise exposure. The susceptibility of exposed people may vary even in the same noise environment. With the development of sequencing techniques, genes related to oxidative stress, immunoinflammatory, ion homeostasis, energy metabolism, DNA damage repair and other mechanisms in NIHL have been reported continuously. And some genes may interact with noise exposure indexes. In this article, population studies on NIHL-related gene polymorphisms and gene-environment interactions in the past 20 years are reviewed, aimed to providing evidence for the construction of NIHL-related risk prediction models and the formulation of individualized interventions.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Humans , Case-Control Studies , China/epidemiology , Genetic Predisposition to Disease , Genotype , Hearing Loss, Noise-Induced/genetics , Polymorphism, Single Nucleotide
15.
Proc Natl Acad Sci U S A ; 121(15): e2314763121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557194

ABSTRACT

Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.


Subject(s)
Hearing Loss, Noise-Induced , Hearing Loss, Sensorineural , Guinea Pigs , Animals , Hearing , Cochlea , Noise/adverse effects , Hair Cells, Auditory, Outer/physiology , Auditory Threshold
16.
Commun Biol ; 7(1): 421, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582813

ABSTRACT

Moderate noise exposure induces cochlear synaptopathy, the loss of afferent ribbon synapses between cochlear hair cells and spiral ganglion neurons, which is associated with functional hearing decline. Prior studies have demonstrated noise-induced changes in the distribution and number of synaptic components, but the dynamic changes that occur after noise exposure have not been directly visualized. Here, we describe a live imaging model using RIBEYE-tagRFP to enable direct observation of pre-synaptic ribbons in mature hearing mouse cochleae after synaptopathic noise exposure. Ribbon number does not change, but noise induces an increase in ribbon volume as well as movement suggesting unanchoring from synaptic tethers. A subgroup of basal ribbons displays concerted motion towards the cochlear nucleus with subsequent migration back to the cell membrane after noise cessation. Understanding the immediate dynamics of synaptic damage after noise exposure may facilitate identification of specific target pathways to treat cochlear synaptopathy.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Mice , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/metabolism , Cochlea , Hearing , Noise/adverse effects , Synapses/physiology
17.
Article in Chinese | MEDLINE | ID: mdl-38677986

ABSTRACT

Objective: To explore the mechanism of noise-induced hidden hearing loss by proteomics. Methods: In October 2022, 64 SPF male C57BL/6J mice were divided into control group and noise exposure group with 32 mice in each group according to random sampling method. The noise exposure group was exposed to 100 dB sound pressure level, 2000-16000 Hz broadband noise for 2 h, and the mouse hidden hearing loss model was established. Auditory brainstem response (ABR) was used to test the change of hearing threshold of mice on the 7th day after noise exposure, the damage of basal membrane hair cells was observed by immunofluorescence, and the differentially expressed proteins in the inner ear of mice in each group were identified and analyzed by 4D-Label-free quantitative proteomics, and verified by Western blotting. The results were statistically analyzed by ANOVA and t test. Results: On the 7th day after noise exposure, there was no significant difference in hearing threshold between the control group and the noise exposure group at click and 8000 Hz acoustic stimulation (P>0.05) . The hearing threshold in the noise exposure group was significantly higher than that in the control group under 16000 Hz acoustic stimulation (P<0.05) . Confocal immunofluorescence showed that the basal membrane hair cells of cochlear tissue in noise exposure group were arranged neatly, but the relative expression of C-terminal binding protein 2 antibody of presynaptic membrane in middle gyrus and basal gyrus was significantly lower than that in control group (P<0.05) . GO enrichment analysis showed that the functions of differentially expressed proteins were mainly concentrated in membrane potential regulation, ligand-gated channel activity, and ligand-gated ion channel activity. KEGG pathway enrichment analysis showed that differentially expressed proteins were significantly enriched in phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway, NOD-like receptor signaling pathway, calcium signaling pathway, etc. Western blotting showed that the expression of inositol 1, 4, 5-trisphosphate receptor 3 (Itpr3) was increased and the expression of solute carrier family 38 member 2 (Slc38a2) was decreased in the noise exposure group (P<0.05) . Conclusion: Through proteomic analysis, screening and verification of the differential expression proteins Itpr3 and Slc38a2 in the constructed mouse noise-induced hidden hearing loss model, the glutaminergic synaptic related pathways represented by Itpr3 and Slc38a2 may be involved in the occurrence of hidden hearing loss.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Noise-Induced , Mice, Inbred C57BL , Noise , Proteomics , Animals , Mice , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/physiopathology , Male , Noise/adverse effects , Disease Models, Animal , Auditory Threshold , Ear, Inner/metabolism , Hearing Loss, Hidden
18.
Brain Behav ; 14(4): e3479, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648388

ABSTRACT

OBJECTIVE: To explore the changes in the cerebral microstructure of patients with noise-induced hearing loss (NIHL) using diffusion tensor imaging (DTI). METHOD: Overall, 122 patients with NIHL (mild [MP, n = 79], relatively severe patients [including moderate and severe; RSP, n = 32], and undetermined [lost to follow-up, n = 11]) and 84 healthy controls (HCs) were enrolled. All clinical data, including age, education level, hearing threshold, occupation type, noise exposure time, and some scale scores (including the Mini-Mental State Examination [MMSE], tinnitus handicap inventory [THI], and Hamilton Anxiety Scale [HAMA]), were collected and analyzed. All participants underwent T1WI3DFSPGR and DTI, and tract-based spatial statistics and region of interest (ROI) analysis were used for assessment. RESULTS: The final sample included 71 MP, 28 RSP, and 75 HCs. The HAMA scores of the three groups were significantly different (p < .05). The noise exposure times, hearing thresholds, and HAMA scores of the MP and RSP were significantly different (p < .05). The noise exposure time was positively correlated with the hearing threshold and negatively correlated with the HAMA scores (p < .05), whereas the THI scores were positively correlated with the hearing threshold (p < .05). DTI analysis showed that all DTI parameters (fractional anisotropy [FA], axial diffusivity [AD], mean diffusivity [MD], and radial diffusivity [RD]) were significantly different in the left inferior longitudinal fasciculus (ILF) and left inferior fronto-occipital fasciculus (IFOF) for the three groups (p < .05). In addition, the FA values were significantly lower in the bilateral corticospinal tract (CST), right fronto-pontine tract (FPT), right forceps major, left superior longitudinal fasciculus (temporal part) (SLF), and left cingulum (hippocampus) (C-H) of the MP and RSP than in those of the HCs (p < .05); the AD values showed diverse changes in the bilateral CST, left IFOF, right anterior thalamic radiation, right external capsule (EC), right SLF, and right superior cerebellar peduncle (SCP) of the MP and RSP relative to those of the HC (p < .05). However, there were no significant differences among the bilateral auditory cortex ROIs of the three groups (p > .05). There was a significant negative correlation between the FA and HAMA scores for the left IFOF/ILF, right FPT, left SLF, and left C-H for the three groups (p < .05). There was a significant positive correlation between the AD and HAMA scores for the left IFOF/ILF and right EC of the three groups (p < .05). There were significantly positive correlations between the RD/MD and HAMA scores in the left IFOF/ILF of the three groups (p < .05). There was a significant negative correlation between the AD in the right SCP and noise exposure time of the MP and RSP groups (p < .05). The AD, MD, and RD in the left ROI were significantly positively correlated with hearing threshold in the MP and RSP groups (p < .05), whereas FA in the right ROI was significantly positively correlated with the HAMA scores for the three groups (p < .05). CONCLUSION: The changes in the white matter (WM) microstructure may be related to hearing loss caused by noise exposure, and the WM structural abnormalities in patients with NIHL were mainly located in the syndesmotic fibers of the temporooccipital region, which affected the auditory and language pathways. This confirmed that the auditory pathways have abnormal structural connectivity in patients with NIHL.


Subject(s)
Diffusion Tensor Imaging , Hearing Loss, Noise-Induced , Humans , Male , Female , Adult , Middle Aged , Hearing Loss, Noise-Induced/pathology , Hearing Loss, Noise-Induced/diagnostic imaging , Hearing Loss, Noise-Induced/physiopathology , White Matter/diagnostic imaging , White Matter/pathology , White Matter/physiopathology , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology
19.
BMC Public Health ; 24(1): 1044, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622576

ABSTRACT

BACKGROUND: There are numerous complex barriers and facilitators to continuously wearing hearing protection devices (HPDs) for noise-exposed workers. Therefore, the present study aimed to investigate the relationship between HPD wearing behavior and hearing protection knowledge and attitude, HPD wearing comfort, and work-related factors. METHOD: A cross-sectional study was conducted with 524 noise-exposed workers in manufacturing enterprises in Guangdong Province, China. Data were collected on hearing protection knowledge and attitudes, HPD wearing comfort and behavior, and work-related factors through a questionnaire. Using structural equation modeling (SEM), we tested the association among the study variables. RESULTS: Among the total workers, 69.47% wore HPD continuously, and the attitudes of hearing protection (26.17 ± 2.958) and total HPD wearing comfort (60.13 ± 8.924) were satisfactory, while hearing protection knowledge (3.54 ± 1.552) was not enough. SEM revealed that hearing protection knowledge had direct effects on attitudes (ß = 0.333, p < 0.01) and HPD wearing behavior (ß = 0.239, p < 0.01), and the direct effect of total HPD wearing comfort on behavior was ß = 0.157 (p < 0.01). The direct effect also existed between work shifts and behavior (ß=-0.107, p < 0.05). Indirect relationships mainly existed between other work-related factors, hearing protection attitudes, and HPD wearing behavior through knowledge. Meanwhile, work operation had a direct and negative effect on attitudes (ß=-0.146, p < 0.05), and it can also indirectly and positively affect attitudes through knowledge (ß = 0.08, p < 0.05). CONCLUSION: The behavior of wearing HPD was influenced by hearing protection knowledge, comfort in wearing HPD, and work-related factors. The results showed that to improve the compliance of noise-exposed workers wearing HPD continuously when exposed to noise, the HPD wearing comfort and work-related factors must be taken into consideration. In addition, we evaluated HPD wearing comfort in physical and functional dimensions, and this study initially verified the availability of the questionnaire scale of HPD wearing comfort.


Subject(s)
Hearing Loss, Noise-Induced , Noise, Occupational , Humans , Hearing Loss, Noise-Induced/prevention & control , Cross-Sectional Studies , Latent Class Analysis , Noise, Occupational/adverse effects , Noise, Occupational/prevention & control , Ear Protective Devices , Hearing , Surveys and Questionnaires , China
20.
Radiography (Lond) ; 30(3): 889-895, 2024 May.
Article in English | MEDLINE | ID: mdl-38603992

ABSTRACT

INTRODUCTION: Acoustic noise from magnetic resonance imaging (MRI) can cause hearing loss and needs to be mitigated to ensure the safety of patients and personnel. Capturing MR personnel's insights is crucial for guiding the development and future applications of noise-reduction technology. This study aimed to explore how MR radiographers manage acoustic noise in clinical MR settings. METHODS: Using a qualitative design, we conducted semi-structured individual interviews with fifteen MR radiographers from fifteen hospitals around Sweden. We focused on the clinical implications of participants' noise management, using an interpretive description approach. We also identified sociotechnical interactions between People, Environment, Tools, and Tasks (PETT) by adopting a Human Factors/Ergonomics framework. Interview data were analyzed inductively with thematic analysis (Braun and Clarke). RESULTS: The analysis generated three main themes regarding MR radiographers' noise management: (I) Navigating Occupational Noise: Risk Management and Adaptation; (II) Protecting the Patient and Serving the Exam, and (III) Establishing a Safe Healthcare Environment with Organizational Support. CONCLUSION: This study offers insights into radiographers' experiences of managing acoustic noise within MRI, and the associated challenges. Radiographers have adopted multiple strategies to protect patients and themselves from adverse noise-related effects. However, they require tools and support to manage this effectively, suggesting a need for organizations to adopt more proactive, holistic approaches to safety initiatives. IMPLICATIONS FOR PRACTICE: The radiographers stressed the importance of a soundproofed work environment to minimize occupational adverse health effects and preserve work performance. They acknowledge noise as a common contributor to patient distress and discomfort. Providing options like earplugs, headphones, mold putty, software-optimized "quiet" sequences, and patient information were important tools. Fostering a safety culture requires proactive safety efforts and support from colleagues and management.


Subject(s)
Interviews as Topic , Magnetic Resonance Imaging , Noise, Occupational , Qualitative Research , Humans , Sweden , Female , Male , Adult , Middle Aged , Hearing Loss, Noise-Induced/prevention & control , Occupational Exposure/prevention & control , Risk Management
SELECTION OF CITATIONS
SEARCH DETAIL
...