Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.249
Filter
1.
Sci Rep ; 14(1): 10763, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730264

ABSTRACT

The association between cooking fuel and hearing loss still needs more research to clarify, and two longitudinal cohort studies were explored to find if solid fuel use for cooking affected hearing in Chinese adults. The data from Chinese Health and Retirement Longitudinal Survey (CHARLS) and Chinese Longitudinal Healthy Longevity Survey (CLHLS) were analyzed. Participants (older than 18) without hearing loss at baseline and follow-up visits were included, which were divided into clean fuel and solid fuel groups. Hearing loss rate was from follow-up visits (both in year 2011) until the recent one (year 2018 in CHARLS and 2019 in CLHLS). Cox regressions were applied to examine the associations with adjustment for potential confounders. Fixed-effect meta-analysis was used to pool the results. A total of 9049 participants (average age 8.34 ± 9.12 [mean ± SD] years; 4247 [46.93%] males) were included in CHARLS cohort study and 2265 participants (average age, 78.75 ± 9.23 [mean ± SD] years; 1148 [49.32%] males) in CLHLS cohort study. There were 1518 (16.78%) participants in CHARLS cohort and 451 (19.91%) participants in CLHLS cohort who developed hearing loss. The group of using solid fuel for cooking had a higher risk of hearing loss (CHARLS: HR, 1.16; 95% CI 1.03-1.30; CLHLS: HR, 1.43; 95% CI 1.11-1.84) compared with the one of using clean fuel. Pooled hazard ratio showed the incidence of hearing loss in the solid fuel users was 1.17 (1.03, 1.29) times higher than that of clean fuel users. Hearing loss was associated with solid fuel use and older people were at higher risk. It is advised to replace solid fuel by clean fuel that may promote health equity.


Subject(s)
Cooking , Hearing Loss , Humans , Male , Hearing Loss/epidemiology , Hearing Loss/etiology , Hearing Loss/chemically induced , Female , Aged , China/epidemiology , Middle Aged , Longitudinal Studies , Cohort Studies , Aged, 80 and over , Adult , Risk Factors
2.
Otolaryngol Pol ; 78(3): 1-5, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38808639

ABSTRACT

<b><br>Introduction:</b> Immune checkpoint inhibitors (ICIs) and T-cell therapies are a modern, well-established cancer treatment. The priority of oncological treatment is to cure cancer. However, treatment-related toxicities, i.e. immune-related adverse events (irAEs), continue to emerge and are not that well understood yet. ICIs can cause profound, multiple, and diverse irAEs - the sequelae of unknown mechanisms. One of the organs susceptible to collateral damage is the hearing organ. Complications related to hearing, tinnitus, and balance disorders are extremely burdensome and significantly impair many aspects of the quality of life of patients and survivors.</br> <b><br>Aim:</b> The aim of the work is to review the literature in the area of ototoxicity of ICIs.</br> <b><br>Materials and method:</b> A systematic search of the Web of Science, PubMed, and Embase databases for studies published until 1 March 2022 was conducted.</br> <b><br>Results:</b> Reported clinical symptoms ranged from sudden bilateral hearing loss and imbalance to mild hearing loss or tinnitus with preserved hearing. It was found that the median time from ICI initiation to hearing loss development was 3 months. The hearing impairment was secondary to bilateral sensorineural hearing loss in the majority of patients (>60%), and at least one other irAE accompanied the hearing loss in 2/3 of patients. Hearing loss significantly improved in 45.7% of the patients.</br> <b><br>Conclusions:</b> The majority of cases of ICI-related hearing loss presented in the literature were reversible. Therefore, it is important to develop and implement routine therapeutic algorithms. Further research is needed to define the true prevalence of ICI-related hearing loss, optimal diagnostics, and management.</br>.


Subject(s)
Immune Checkpoint Inhibitors , Ototoxicity , Humans , Immune Checkpoint Inhibitors/adverse effects , Ototoxicity/etiology , Male , Female , Hearing Loss/chemically induced , Neoplasms/drug therapy , Middle Aged
3.
Sci Rep ; 14(1): 9743, 2024 04 28.
Article in English | MEDLINE | ID: mdl-38679603

ABSTRACT

Recent studies focused on exploring phosphodiesterase type 5 inhibitors (PDE5Is)-related hearing impairment. This study aimed to comprehensively explore real-world hearing impairment associated with PDE5Is based on the US Food and Drug Administration Adverse Event Reporting System (FAERS). The characteristics and correlation of PDE5Is-related hearing impairment reported in the FAERS database from the fourth quarter of 2003 to the second quarter of 2023 were analyzed using disproportionality analysis. The Standardized Medical Dictionary for Regulatory Activities (MedDRA) Queries (SMQs) were used to analyze the adverse events (AEs) of hearing impairment. A total of 1,438 reported cases of hearing impairment were associated with four PDE5Is, revealing statistically significant reporting odds ratio (ROR), proportional reporting ratio (PRR), and information component (IC) with the SMQ. The average age of all patients was more than 55 years, over 70% of AEs were reported in men. Most of the reported cases were from the United States. Reports for all the drugs indicated an increase since 2008, except for avanafil. This study showed that the disability rates of PDE5Is were 8.14-40%, the rates of initial or prolonged hospitalization were 6.21-10.24%, and the rates of required intervention were 3.31-9.45%. The pharmacovigilance study identified a potential risk of hearing impairment associated with PDE5Is, indicating the need for continuous monitoring and appropriate management.


Subject(s)
Adverse Drug Reaction Reporting Systems , Hearing Loss , Phosphodiesterase 5 Inhibitors , United States Food and Drug Administration , Humans , United States/epidemiology , Male , Hearing Loss/chemically induced , Hearing Loss/epidemiology , Phosphodiesterase 5 Inhibitors/adverse effects , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Middle Aged , Female , Aged , Adult , Databases, Factual
4.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563869

ABSTRACT

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Subject(s)
Anti-Bacterial Agents , Calcium Channel Blockers , Calcium , Gentamicins , Hair Cells, Auditory , Neomycin , Verapamil , Zebrafish , Animals , Calcium Channel Blockers/pharmacology , Calcium/metabolism , Verapamil/pharmacology , Neomycin/toxicity , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Gentamicins/toxicity , Anti-Bacterial Agents/toxicity , Reactive Oxygen Species/metabolism , Ototoxicity/prevention & control , Aminoglycosides/toxicity , Lateral Line System/drug effects , Larva/drug effects , Hearing Loss/chemically induced , Hearing Loss/prevention & control
5.
Eur J Med Chem ; 271: 116404, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38631262

ABSTRACT

Hearing loss (HL) is a health burden that seriously affects the quality of life of cancer patients receiving platinum-based chemotherapy, and few FDA-approved treatment specifically targets this condition. The main mechanisms that contribute to cisplatin-induced hearing loss are oxidative stress and subsequent cell death, including ferroptosis revealed by us as a new mechanism recently. In this study, we employed the frontier molecular orbital (FMO) theory approach as a convenient prediction method for the glutathione peroxidase (GPx)-like activity of isoselenazolones and discovered new isoselenazolones with great GPx-like activity. Notably, compound 19 exhibited significant protective effects against cisplatin-induced hair cell (HC) damage in vitro and in vivo and effectively reverses cisplatin-induced hearing loss through oral administration. Further investigations revealed that this compound effectively alleviated hair cell oxidative stress, apoptosis and ferroptosis. This research highlights the potential of GPx mimics as a therapeutic strategy against cisplatin-induced hearing loss. The application of quantum chemistry (QC) calculations in the study of GPx mimics sheds light on the development of new, innovative treatments for hearing loss.


Subject(s)
Cisplatin , Glutathione Peroxidase , Hearing Loss , Cisplatin/pharmacology , Glutathione Peroxidase/metabolism , Animals , Hearing Loss/drug therapy , Hearing Loss/chemically induced , Humans , Quantum Theory , Molecular Structure , Mice , Structure-Activity Relationship , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Oxidative Stress/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Discovery , Dose-Response Relationship, Drug , Apoptosis/drug effects
6.
J Assoc Res Otolaryngol ; 25(3): 259-275, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622383

ABSTRACT

PURPOSE: Cisplatin is a low-cost clinical anti-tumor drug widely used to treat solid tumors. However, its use could damage cochlear hair cells, leading to irreversible hearing loss. Currently, there appears one drug approved in clinic only used for reducing ototoxicity associated with cisplatin in pediatric patients, which needs to further explore other candidate drugs. METHODS: Here, by screening 1967 FDA-approved drugs to protect cochlear hair cell line (HEI-OC1) from cisplatin damage, we found that Tedizolid Phosphate (Ted), a drug indicated for the treatment of acute infections, had the best protective effect. Further, we evaluated the protective effect of Ted against ototoxicity in mouse cochlear explants, zebrafish, and adult mice. The mechanism of action of Ted was further explored using RNA sequencing analysis and verified. Meanwhile, we also observed the effect of Ted on the anti-tumor effect of cisplatin. RESULTS: Ted had a strong protective effect on hair cell (HC) loss induced by cisplatin in zebrafish and mouse cochlear explants. In addition, when administered systemically, it protected mice from cisplatin-induced hearing loss. Moreover, antitumor studies showed that Ted had no effect on the antitumor activity of cisplatin both in vitro and in vivo. RNA sequencing analysis showed that the otoprotective effect of Ted was mainly achieved by inhibiting phosphorylation of ERK. Consistently, ERK activator aggravated the damage of cisplatin to HCs. CONCLUSION: Collectively, these results showed that FDA-approved Ted protected HCs from cisplatin-induced HC loss by inhibiting ERK phosphorylation, indicating its potential as a candidate for preventing cisplatin ototoxicity in clinical settings.


Subject(s)
Antineoplastic Agents , Cisplatin , Hearing Loss , Organophosphates , Oxazoles , Zebrafish , Animals , Cisplatin/toxicity , Cisplatin/adverse effects , Mice , Hearing Loss/prevention & control , Hearing Loss/chemically induced , Oxazoles/pharmacology , Organophosphates/toxicity , Antineoplastic Agents/toxicity , United States Food and Drug Administration , Drug Approval , Hair Cells, Auditory/drug effects , United States , Ototoxicity/prevention & control , Ototoxicity/etiology , Humans
7.
Biochem Pharmacol ; 223: 116132, 2024 May.
Article in English | MEDLINE | ID: mdl-38492782

ABSTRACT

Cisplatin is an effective chemotherapeutic drug for different cancers, but it also causes severe and permanent hearing loss. Oxidative stress and mitochondrial dysfunction in cochlear hair cells (HCs) have been shown to be important in the pathogenesis of cisplatin-induced hearing loss (CIHL). CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) plays a critical role in mitochondrial oxidative capacity and cellular bioenergetics. Targeting CISD1 may improve mitochondrial function in various diseases. However, the role of CISD1 in cisplatin-induced ototoxicity is unclear. Therefore, this study was performed to assess the role of CISD1 in cisplatin-induced ototoxicity. We found that CISD1 expression was significantly increased after cisplatin treatment in both HEI-OC1 cells and cochlear HCs. Moreover, pharmacological inhibition of CISD1 with NL-1 inhibited cell apoptosis and reduced mitochondrial reactive oxygen species accumulation in HEI-OC1 cells and cochlear explants. Inhibition of CISD1 with small interfering RNA in HEI-OC1 cells had similar protective effects. Furthermore, NL-1 protected against CIHL in adult C57 mice, as evaluated by the auditory brainstem response and immunofluorescent staining. Mechanistically, RNA sequencing revealed that NL-1 attenuated CIHL via the PI3K and MAPK pathways. Most importantly, NL-1 did not interfere with the antitumor efficacy of cisplatin. In conclusion, our study revealed that targeting CISD1 with NL-1 reduced reactive oxygen species accumulation, mitochondrial dysfunction, and apoptosis via the PI3K and MAPK pathways in HEI-OC1 cell lines and mouse cochlear explants in vitro, and it protected against CIHL in adult C57 mice. Our study suggests that CISD1 may serve as a novel target for the prevention of CIHL.


Subject(s)
Antineoplastic Agents , Hearing Loss , Mitochondrial Diseases , Ototoxicity , Mice , Animals , Cisplatin/toxicity , Cisplatin/metabolism , Antineoplastic Agents/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Ototoxicity/prevention & control , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Apoptosis , Membrane Proteins/metabolism , Iron-Binding Proteins/pharmacology
8.
Hear Res ; 445: 108995, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518393

ABSTRACT

OBJECTIVE: The genotype-phenotype relationship in cisplatin-induced ototoxicity remains unclear. By assessing early shifts in distortion product otoacoustic emission (DPOAE) levels after initial cisplatin administration, we aimed to discriminate patients' susceptibility to cisplatin-induced ototoxicity and elucidate their genetic background. STUDY DESIGN: A prospective cross-sectional study. SETTING: Tertiary referral hospital in Japan. PATIENTS: Twenty-six patients with head and neck cancer were undergoing chemoradiotherapy with three cycles of 100 mg/m2 cisplatin. INTERVENTIONS: Repetitive pure-tone audiometry and DPOAE measurements, and blood sampling for DNA extraction were performed. Patients were grouped into early ototoxicity presence or absence based on whether DPOAE level shifts exceeded the corresponding reference limits of the 21-day test interval. MAIN OUTCOME MEASURES: Hearing thresholds after each cisplatin cycle, severity of other adverse events, and polymorphisms in cisplatin-induced ototoxicity-associated genes were compared. RESULTS: Early ototoxicity was present in 14 and absent in 12 patients. Ototoxicity presence on DPOAEs was associated with greater progression of hearing loss in frequencies ≥2 kHz throughout therapy and with higher ototoxicity grades compared with ototoxicity absence. Ototoxicity was further associated with grade ≥2 nausea. Ototoxicity presence was genetically associated with the GSTT1 null genotype and G-allele of NFE2L2 rs6721961, whereas ototoxicity absence was associated with the GSTM1 null genotype. Dose-dependent progression of hearing loss was the greatest in the combined genotype pattern of GSTT1 null and the T/G or G/G variants of rs6721961. CONCLUSION: Early DPOAE changes reflected genetic vulnerability to cisplatin-induced ototoxicity. Hereditary insufficiency of the antioxidant defense system causes severe cisplatin-induced hearing loss and nausea.


Subject(s)
Cisplatin , Hearing Loss , NF-E2-Related Factor 2 , Ototoxicity , Humans , Antineoplastic Agents/toxicity , Cisplatin/toxicity , Cross-Sectional Studies , Deafness/chemically induced , Hearing Loss/chemically induced , Hearing Loss/diagnosis , Hearing Loss/genetics , Nausea/chemically induced , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/pharmacology , Otoacoustic Emissions, Spontaneous , Ototoxicity/etiology , Ototoxicity/genetics , Polymorphism, Genetic , Prospective Studies
9.
PLoS One ; 19(2): e0296728, 2024.
Article in English | MEDLINE | ID: mdl-38354178

ABSTRACT

INTRODUCTION: American Tegumentary Leishmaniasis (ATL) treatment is based on pentavalent antimonials (Sb5+), but these drugs have been associated to several adverse effects. Hearing loss and tinnitus during treatment with meglumine antimoniate (MA) have already been reported. This study aimed to describe the usefulness of self-reporting of hearing loss and tinnitus in diagnosing MA-induced ototoxicity. METHODS: A prospective longitudinal study was conducted with 102 patients with parasitological diagnosis of ATL, treated with different MA schemes. The presence of clinical auditory toxicity was defined as the emergence or worsening of self-reporting hearing loss and/or tinnitus during monitoring. Measures of sensitivity, specificity, and the positive and negative predictive value of the patient's self-reporting of hearing loss and tinnitus in relation to the result of the audiometric test (considered the gold standard) were calculated. RESULTS: The age of the evaluated patients ranged from 15 to 81 years, with a median of 41 years, and most were male (73.5%). Seventy-five patients (73.5%) had cutaneous leishmaniasis and 27 (26.5%) mucosal leishmaniasis. Eighty-six patients (84.3%) received intramuscular (IM) treatment and 16 (15.7%) were treated with intralesional MA. During treatment, 18 (17,6%) had tinnitus and 7 (6,9%) had complaint of hearing loss. 53 (52%) patients had cochlear toxicity confirmed by tone threshold audiometry and high frequency audiometry, from which 60% received a dose of 20 mg Sb5+/kg/day (p = 0.015) and 96.2% were treated with IM MA (p = 0.001). Tinnitus has greater specificity and positive predictive value than hearing loss, with a low number of false positives, but with a high false negative value. CONCLUSION: Although the large number of false negatives suggests that self-report of hearing loss or tinnitus cannot be considered a good screening test for referring the patient to an audiometry, the low number of false positives suggests the need to value the patient's complaint for referral. Otherwise, this study reinforces the importance of audiological monitoring during treatment with MA, especially in those patients with self-reporting of hearing loss or tinnitus when treated with 20 mg Sb5+/kg/day via IM.


Subject(s)
Antiprotozoal Agents , Deafness , Hearing Loss , Leishmaniasis, Cutaneous , Organometallic Compounds , Ototoxicity , Tinnitus , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Female , Meglumine Antimoniate/adverse effects , Tinnitus/chemically induced , Tinnitus/diagnosis , Tinnitus/drug therapy , Meglumine/adverse effects , Antiprotozoal Agents/therapeutic use , Longitudinal Studies , Prospective Studies , Organometallic Compounds/adverse effects , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/drug therapy , Hearing Loss/chemically induced , Hearing Loss/diagnosis
10.
BMC Public Health ; 24(1): 623, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413886

ABSTRACT

OBJECTIVE: Benzene, ethylbenzene, meta/para-xylene, and ortho-xylene, collectively referred to as benzene, ethylbenzene, and xylene (BEX), constitute the main components of volatile organic aromatic compounds (VOACs) and can have adverse effects on human health. The relationship between exposure to BEX and hearing loss (HL) in the adult U.S. population was aimed to be assessed. METHODS: Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) for the years 2003-2004, 2011-2012, and 2015-2016 were analyzed. This dataset included complete demographic characteristics, pure-tone audiometry measurements, and volatile organic compound detection data from the NHANES database. A weighted multivariate logistic regression model was employed to investigate the associations between blood BEX concentrations HL, low-frequency hearing loss (SFHL), and high-frequency hearing loss (HFHL). RESULTS: 2174 participants were included, with weighted prevalence rates of HL, SFHL, and HFHL being 46.81%, 25.23%, and 45.86%, respectively. Exposure to benzene, ethylbenzene, meta/para-xylene, and ortho-xylene, and cumulative BEX concentrations increased the risk of hearing loss (odds ratios [ORs] were 1.36, 1.22, 1.42, 1.23, and 1.31, respectively; all P < 0.05). In the analysis with SFHL as the outcome, ethylbenzene, m-/p-xylene, o-xylene, benzene, and overall BEX increased the risk (OR 1.26, 1.21, 1.28, 1.20, and 1.25, respectively; all P < 0.05). For HFHL, exposure to ethylbenzene, m-/p-xylene, o-xylene, benzene, and overall BEX increased the risk (OR 1.36, 1.22, 1.42, 1.22, and 1.31, respectively; all P < 0.05). CONCLUSION: Our study indicated that a positive correlation between individual or cumulative exposure to benzene, ethylbenzene, meta/para-xylene, and ortho-xylene and the risk of HL, SFHL, and HFHL. Further research is imperative to acquire a more comprehensive understanding of the mechanisms by which organic compounds, notably BEX, in causing hearing loss and to validate these findings in longitudinal environmental studies.


Subject(s)
Benzene Derivatives , Deafness , Hearing Loss , Volatile Organic Compounds , Adult , Humans , Benzene/toxicity , Volatile Organic Compounds/adverse effects , Nutrition Surveys , Cross-Sectional Studies , Xylenes/toxicity , Hearing Loss/chemically induced , Hearing Loss/epidemiology
11.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38414247

ABSTRACT

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Subject(s)
Cisplatin , Ferroptosis , Hearing Loss , Mice, Inbred C57BL , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Cisplatin/adverse effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Hearing Loss/chemically induced , Hearing Loss/genetics , Hearing Loss/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Disease Models, Animal , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Ototoxicity/etiology , Ototoxicity/metabolism , Antineoplastic Agents/adverse effects , Apoptosis/drug effects
12.
Biol Reprod ; 110(4): 772-781, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38195246

ABSTRACT

Cisplatin, a platinum-containing alkylating agent, is used in the treatment of various tumors owing to its potent antitumor activity. However, it causes permanent and adverse effects, particularly hearing loss and depletion of ovarian reserve. Until recently, there were no clinically available protective agents to mitigate the adverse side effects of cisplatin-induced cytotoxicity. In 2022, sodium thiosulfate (STS) was approved by the Food and Drug Administration for mitigating hearing loss in children and adolescents undergoing cisplatin treatment. Consequently, our investigation aimed to determine if STS could protect ovarian reserve against cisplatin-induced gonadotoxicity. In an ex vivo culture, the cisplatin-only group exhibited a loss of primordial follicles, while post-STS administration after cisplatin exposure effectively protected primordial follicles. However, when post-STS was administrated either 6 or 4 h after cisplatin exposure, it did not confer protection against cisplatin-induced gonadotoxicity in postnatal day 7 or adolescent mouse models. Immunofluorescence assays using γH2AX and cPARP revealed that oocytes within primordial follicles exhibited DNA damage after cisplatin exposure, irrespective of post-STS administration. This underscores the rapid and heightened sensitivity of oocytes to gonadotoxicity. In addition, oocytes demonstrated an increased expression of pCHK2 rather than pERK, suggesting that the pathway leading to oocyte death differs from the pathway observed in the inner ear cell death following cisplatin exposure. These results imply that while the administration of STS after cisplatin is highly beneficial in preventing hearing loss, it does not confer a protective effect on the ovaries in mouse models.


Subject(s)
Antineoplastic Agents , Hearing Loss , Ovarian Reserve , Thiosulfates , Mice , Child , Female , Animals , Adolescent , Humans , Cisplatin/toxicity , Antineoplastic Agents/toxicity , Hearing Loss/chemically induced
13.
Sci Rep ; 14(1): 183, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167873

ABSTRACT

The increased risk of hearing loss with macrolides remains controversial. We aimed to systematically review and meta-analyze data on the clinical risk of hearing loss, tinnitus, and ototoxicity following macrolide use. A systematic search was conducted across PubMed, MEDLINE, Cochrane, and Embase databases from database inception to May 2023. Medical Subject Heading (MeSH) terms and text keywords were utilized, without any language restrictions. In addition to the electronic databases, two authors manually and independently searched for relevant studies in the US and European clinical trial registries and Google Scholar. Studies that involved (1) patients who had hearing loss, tinnitus, or ototoxicity after macrolide use, (2) intervention of use of macrolides such as azithromycin, clarithromycin, erythromycin, fidaxomicin, roxithromycin, spiramycin, and/or telithromycin, (3) comparisons with specified placebos or other antibiotics, (4) outcomes measured as odds ratio (OR), relative risk (RR), hazard ratio (HR), and mean difference for ototoxicity symptoms using randomized control trial (RCT)s and observational studies (case-control, cross-section, and cohort studies) were included. Data extraction was performed independently by two extractors, and a crosscheck was performed to identify any errors. ORs along with their corresponding 95% confidence intervals (CIs) were estimated using random-effects models. The Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guidelines for RCTs and Meta-Analysis of Observational Studies in Epidemiology guidelines for observational studies were followed. We assessed the hearing loss risk after macrolide use versus controls (placebos and other antibiotics). Based on data from 13 studies including 1,142,021 patients (n = 267,546 for macrolide and n = 875,089 for controls), the overall pooled OR was 1.25 (95% CI 1.07-1.47). In subgroup analysis by study design, the ORs were 1.37 (95% CI 1.08-1.73) for RCTs and 1.33 (95% CI 1.24-1.43) for case-control studies, indicating that RCT and case-control study designs showed a statistically significant higher risk of hearing loss. The group with underlying diseases such as multiple infectious etiologies (OR, 1.16 [95% CI 0.96-1.41]) had a statistically significant lower risk than the group without (OR, 1.53 [95% CI 1.38-1.70] P = .013). The findings from this systematic review and meta-analysis suggest that macrolide antibiotics increase the risk of hearing loss and that healthcare professionals should carefully consider this factor while prescribing macrolides.


Subject(s)
Deafness , Hearing Loss , Ototoxicity , Tinnitus , Humans , Macrolides/adverse effects , Tinnitus/drug therapy , Ototoxicity/drug therapy , Anti-Bacterial Agents/adverse effects , Hearing Loss/chemically induced , Hearing Loss/epidemiology , Hearing Loss/drug therapy
14.
J Neonatal Perinatal Med ; 17(1): 91-100, 2024.
Article in English | MEDLINE | ID: mdl-38189717

ABSTRACT

BACKGROUND: Gentamicin is a commonly used medication in NICUs. It is known to have ototoxic & nephrotoxic side effects. To date there is no consensus about dosing regimen in different institutions. Our study aims to evaluate the Neofax® dosing regimen for gentamicin in neonatal early onset sepsis in relation to trough level before the second dose and its association with the incidence of gentamicin side effects, namely hearing impairment/loss and acute kidney injury. METHODS: Retrospective chart review of newborns admitted to Tawam hospital NICU (June 2019-May 2020) who received gentamicin for early onset sepsis (≤72 hours old). Trough levels before the second dose at 24,36 and 48 hours were reviewed (≥1 mg/L is high). Excluded patients with renal risk factors. Side effects (hearing impairment, acute renal injury) were also assessed. RESULTS: Total of 265 infants were included, among whom 149 patients received gentamicin at 24 hours interval, 99 at 36 and 17 at 48 hours interval. Trough level was high in 76% (P = 0.022), 65% (P = 0.127), and 53% (P = 0.108) of patients who received gentamicin at 24, 36, and 48 hours, respectively. Hearing screening was normal in 99.2% of patients, while 2 patients failed the test (Both with normal trough levels). No patients in our study developed renal injury related to gentamicin use. CONCLUSION: Neofax® gentamicin dosing often results in high trough levels, especially in late preterm/term infants. This study found no correlation between high trough levels and hearing impairment upon discharge or acute kidney injury. Further studies with larger sample size are recommended.


Subject(s)
Acute Kidney Injury , Hearing Loss , Infant , Humans , Infant, Newborn , Gentamicins , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Hearing Loss/chemically induced , Acute Kidney Injury/chemically induced
15.
J Am Soc Nephrol ; 35(1): 22-40, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37962623

ABSTRACT

SIGNIFICANCE STATEMENT: To combat both untoward effects of nephrotoxicity and ototoxicity in cisplatin-treated patients, two potential therapeutic oral anticancer drugs AZD5438 and dabrafenib, a phase-2 clinical trial protein kinase CDK2 inhibitor and an US Food and Drug Administration-approved drug BRAF inhibitor, respectively, were tested in an established mouse AKI model. Both drugs have previously been shown to protect significantly against cisplatin-induced hearing loss in mice. Each drug ameliorated cisplatin-induced increases in the serum biomarkers BUN, creatinine, and neutrophil gelatinase-associated lipocalin. Drugs also improved renal histopathology and inflammation, mitigated cell death by pyroptosis and necroptosis, and significantly enhanced overall survival of cisplatin-treated mice. BACKGROUND: Cisplatin is an effective chemotherapy agent for a wide variety of solid tumors, but its use is dose-limited by serious side effects, including AKI and hearing loss. There are no US Food and Drug Administration-approved drugs to treat both side effects. Recently, two anticancer oral drugs, AZD5438 and dabrafenib, were identified as protective against cisplatin-induced hearing loss in mice. We hypothesize that similar cell stress and death pathways are activated in kidney and inner ear cells when exposed to cisplatin and tested whether these drugs alleviate cisplatin-induced AKI. METHODS: The HK-2 cell line and adult FVB mice were used to measure the protection from cisplatin-induced cell death and AKI by these drugs. Serum markers of kidney injury, BUN, creatinine, and neutrophil gelatinase-associated lipocalin as well as histology of kidneys were analyzed. The levels of markers of kidney cell death, including necroptosis and pyroptosis, pERK, and proliferating cell nuclear antigen, were also examined by Western blotting and immunofluorescence. In addition, CDK2 knockout (KO) mice were used to confirm AZD5438 protective effect is through CDK2 inhibition. RESULTS: The drugs reduced cisplatin-induced cell death in the HK-2 cell line and attenuated cisplatin-induced AKI in mice. The drugs reduced serum kidney injury markers, inhibited cell death, and reduced the levels of pERK and proliferating cell nuclear antigen, all of which correlated with prolonged animal survival. CDK2 KO mice were resistant to cisplatin-induced AKI, and AZD5438 conferred no additional protection in the KO mice. CONCLUSIONS: Cisplatin-induced damage to the inner ear and kidneys shares similar cellular beneficial responses to AZD5438 and dabrafenib, highlighting the potential therapeutic use of these agents to treat both cisplatin-mediated kidney damage and hearing loss.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Hearing Loss , Humans , Mice , Animals , Cisplatin/toxicity , Lipocalin-2 , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/pharmacology , Proliferating Cell Nuclear Antigen/therapeutic use , Creatinine , Drug Repositioning , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Antineoplastic Agents/toxicity , Hearing Loss/chemically induced , Hearing Loss/drug therapy , Mice, Inbred Strains , Mice, Knockout , Apoptosis
16.
Am J Otolaryngol ; 45(2): 104127, 2024.
Article in English | MEDLINE | ID: mdl-38061174

ABSTRACT

INTRODUCTION: In this study we investigated the effect of cisplatin-based chemotherapy on hearing loss in children with cancer. MATERIAL AND METHOD: In this retrospective study, 20 children aged 6 to 17 years with cancer who were treated with cisplatin and had normal results on initial audiometry test were included. The demographic, clinical, and medical information of all children was extracted and recorded. The hearing thresholds were determined for the frequency of >8 kHz by an audiometrist two weeks after receiving the last course of cisplatin. Finally, all data was analyzed. RESULTS: In this study, 20 children with cancer were included of who 9 were girls (45 %) and 11 were boys (55 %). The patients' mean age at the time of diagnosis was 6.65 years. Results showed that children who received cisplatin ≥70 mg/m2 (P.value = 0.09) and ≥ 7 courses of cisplatin (P.value = 0.01), and a cumulative dose higher than 400 mg/m2 (P.value = 0.02) had higher chance of hearing loss. CONCLUSION: According to the results it can be concluded that since higher doses caused higher risk of hearing loss and also since lower doses were effective for treatment of the cancer in children therefore to preventing the hearing loss, lower doses of cisplatin are recommended for cancer treatment in children.


Subject(s)
Antineoplastic Agents , Deafness , Hearing Loss , Neoplasms , Male , Child , Female , Humans , Cisplatin/adverse effects , Antineoplastic Agents/adverse effects , Retrospective Studies , Hearing Loss/chemically induced , Hearing Loss/epidemiology , Neoplasms/drug therapy
17.
Therapie ; 79(2): 283-295, 2024.
Article in English | MEDLINE | ID: mdl-37957052

ABSTRACT

Sensorineural hearing loss (SNHL) is the most common type of hearing loss. Causes include degenerative changes in the sensory hair cells, their synapses and/or the cochlear nerve. As human inner ear hair cells have no capacity for regeneration, their destruction is irreversible and leads to permanent hearing loss. SNHL can be genetically inherited or acquired through ageing, exposure to noise or ototoxic drugs. Ototoxicity generally refers to damage to the structures and functions of the inner ear following exposure to specific drugs. Ototoxicity can be multifactorial, causing damage to cochlear hair cells or cells with homeostatic functions that modulate cochlear hair cell function. Clinical strategies to limit ototoxicity include identifying patients at risk, monitoring drug concentrations, performing serial hearing assessments and switching to less ototoxic therapy. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using the PubMed® database. The search terms "ototoxicity", "hearing loss" and "drugs" were combined. We included studies published between September 2013 and June 2023, and focused on medicines and drugs used in hospitals. The review highlighted a number of articles reporting the main drug classes potentially involved: namely, immunosuppressants, antimalarials, vaccines, antibiotics, antineoplastic agents, diuretics, nonsteroidal anti-inflammatory drugs and analgesics. The presumed ototoxic mechanisms were described, together with the therapeutic and preventive options developed over the last ten years.


Subject(s)
Hearing Loss , Ototoxicity , Humans , Cochlea/physiology , Ototoxicity/etiology , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Anti-Bacterial Agents/adverse effects
18.
Ophthalmology ; 131(1): 30-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37567417

ABSTRACT

PURPOSE: To better characterize the frequency and patterns of hearing dysfunction in patients who have received teprotumumab to treat thyroid eye disease. DESIGN: Noncomparative case series. PARTICIPANTS: Patients who underwent audiology testing before and after completion of teprotumumab infusions. METHODS: A review of patients who underwent audiology testing before and after completion of teprotumumab infusions was carried out. Additional audiogram testing during treatment was included when available. Hearing function was analyzed using audiogram data measuring threshold hearing levels at specific frequencies. Basic demographic data as well as information regarding otologic symptoms also were obtained and analyzed. MAIN OUTCOME MEASURES: Hearing loss demonstrated by a significant change in decibel hearing thresholds or that meets criteria for ototoxicity. RESULTS: Twenty-two patients (44 ears) were included in the study, with baseline and most recent audiology testing after treatment ranging from 84 days before to 496 days after treatment. Fifteen patients (30 ears) also underwent testing during treatment starting after the second infusion up until the day of, but before, the eighth infusion. Hearing loss after treatment met criteria for ototoxicity in 17 of the 44 ears (38.6%), with 11 of the 22 patients (50.0%) meeting criteria in at least 1 ear. The pure-tone average decibel hearing levels (HLs) across all 44 ears demonstrated hearing loss after treatment (P = 0.0029), specifically at high (P = 0.0008) and middle frequencies (P = 0.0042), but not at low frequencies (P = 0.8344). Patients who were older also were more likely to experience hearing loss after treatment (P = 0.0048). CONCLUSIONS: Audiometric data demonstrate that teprotumumab influences hearing function, most significantly at higher frequencies and in older patients. Audiometric testing is critical for counseling patients regarding teprotumumab treatment. A protocol for monitoring hearing during treatment is needed to detect and manage hearing changes associated with teprotumumab use. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Hearing Loss , Ototoxicity , Humans , Aged , Auditory Threshold , Audiometry, Pure-Tone/methods , Hearing Loss/chemically induced , Hearing Loss/diagnosis , Hearing
19.
Ear Hear ; 45(2): 329-336, 2024.
Article in English | MEDLINE | ID: mdl-37700446

ABSTRACT

OBJECTIVES: To evaluate the extent of hearing loss among pottery workers in Mexico exposed to lead. DESIGN: The authors conducted a cross-sectional study including 315 adult pottery workers. Auditory function was evaluated by air conduction pure-tone audiometry (pure-tone average) and distortion-product otoacoustic emission (DPOAE) levels (amplitude and signal-to-noise ratio). Lead exposure was assessed with a single blood sample test and classified as low, medium, and high according to blood lead tertiles. Logistic regression models were calculated for the association between blood lead levels, pure-tone average, and DPOAE records. RESULTS: Median (25th-75th) blood lead levels were 14 µg/dL (7.5-22.6 µg/dL). The audiometric pattern and DPOAE records were similar across blood lead levels groups in all frequencies, and no statistically significant differences were found. Adjusted logistic regression models showed no increase in the odds for hearing thresholds >25 dB (HL) and DPOAE absence associated with blood lead levels, and no dose-response pattern was observed ( p > 0.05). CONCLUSIONS: Given the results from this cross-sectional study, no association was found between blood lead levels and hearing loss assessed with DPOAE. Future longitudinal work should consider chronic lead exposure estimates among underrepresented populations, which can potentially inform safer work practices to minimize the risk of ototoxicity.


Subject(s)
Deafness , Hearing Loss , Ototoxicity , Adult , Humans , Lead , Ototoxicity/etiology , Cross-Sectional Studies , Auditory Threshold/physiology , Otoacoustic Emissions, Spontaneous/physiology , Hearing Loss/chemically induced , Audiometry, Pure-Tone/methods
20.
Annu Rev Pharmacol Toxicol ; 64: 211-230, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37562496

ABSTRACT

Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.


Subject(s)
Hearing Loss , Humans , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Clinical Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...