Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 794
Filter
1.
PLoS One ; 19(5): e0303375, 2024.
Article in English | MEDLINE | ID: mdl-38728348

ABSTRACT

Hearing loss is a pivotal risk factor for dementia. It has recently emerged that a disruption in the intercommunication between the cochlea and brain is a key process in the initiation and progression of this disease. However, whether the cochlear properties can be influenced by pathological signals associated with dementia remains unclear. In this study, using a mouse model of Alzheimer's disease (AD), we investigated the impacts of the AD-like amyloid ß (Aß) pathology in the brain on the cochlea. Despite little detectable change in the age-related shift of the hearing threshold, we observed quantitative and qualitative alterations in the protein profile in perilymph, an extracellular fluid that fills the path of sound waves in the cochlea. Our findings highlight the potential contribution of Aß pathology in the brain to the disturbance of cochlear homeostasis.


Subject(s)
Alzheimer Disease , Cochlea , Disease Models, Animal , Perilymph , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Perilymph/metabolism , Cochlea/metabolism , Cochlea/pathology , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Hearing Loss/metabolism , Hearing Loss/pathology
2.
Hear Res ; 447: 109024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735179

ABSTRACT

Delayed loss of residual acoustic hearing after cochlear implantation is a common but poorly understood phenomenon due to the scarcity of relevant temporal bone tissues. Prior histopathological analysis of one case of post-implantation hearing loss suggested there were no interaural differences in hair cell or neural degeneration to explain the profound loss of low-frequency hearing on the implanted side (Quesnel et al., 2016) and attributed the threshold elevation to neo-ossification and fibrosis around the implant. Here we re-evaluated the histopathology in this case, applying immunostaining and improved microscopic techniques for differentiating surviving hair cells from supporting cells. The new analysis revealed dramatic interaural differences, with a > 80 % loss of inner hair cells in the cochlear apex on the implanted side, which can account for the post-implantation loss of residual hearing. Apical degeneration of the stria further contributed to threshold elevation on the implanted side. In contrast, spiral ganglion cell survival was reduced in the region of the electrode on the implanted side, but apical counts in the two ears were similar to that seen in age-matched unimplanted control ears. Almost none of the surviving auditory neurons retained peripheral axons throughout the basal half of the cochlea. Relevance to cochlear implant performance is discussed.


Subject(s)
Auditory Threshold , Cochlear Implantation , Cochlear Implants , Spiral Ganglion , Cochlear Implantation/instrumentation , Cochlear Implantation/adverse effects , Humans , Spiral Ganglion/pathology , Spiral Ganglion/physiopathology , Hair Cells, Auditory, Inner/pathology , Time Factors , Cell Survival , Male , Hearing , Hearing Loss/physiopathology , Hearing Loss/pathology , Hearing Loss/surgery , Hearing Loss/etiology , Female , Hair Cells, Auditory/pathology , Aged , Nerve Degeneration , Middle Aged , Temporal Bone/pathology , Temporal Bone/surgery
3.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791427

ABSTRACT

Age-related hearing loss (HL), or presbycusis, is a complex and heterogeneous condition, affecting a significant portion of older adults and involving various interacting mechanisms. Metabolic presbycusis, a type of age-related HL, is characterized by the dysfunction of the stria vascularis, which is crucial for maintaining the endocochlear potential necessary for hearing. Although attention on metabolic presbycusis has waned in recent years, research continues to identify strial pathology as a key factor in age-related HL. This narrative review integrates past and recent research, bridging findings from animal models and human studies, to examine the contributions of the stria vascularis to age-related HL. It provides a brief overview of the structure and function of the stria vascularis and then examines mechanisms contributing to age-related strial dysfunction, including altered ion transport, changes in pigmentation, inflammatory responses, and vascular atrophy. Importantly, this review outlines the contribution of metabolic mechanisms to age-related HL, highlighting areas for future research. It emphasizes the complex interdependence of metabolic and sensorineural mechanisms in the pathology of age-related HL and highlights the importance of animal models in understanding the underlying mechanisms. The comprehensive and mechanistic investigation of all factors contributing to age-related HL, including cochlear metabolic dysfunction, remains crucial to identifying the underlying mechanisms and developing personalized, protective, and restorative treatments.


Subject(s)
Aging , Presbycusis , Stria Vascularis , Humans , Stria Vascularis/metabolism , Stria Vascularis/pathology , Animals , Presbycusis/metabolism , Presbycusis/pathology , Presbycusis/physiopathology , Aging/metabolism , Aging/physiology , Cochlea/metabolism , Cochlea/pathology , Hearing Loss/metabolism , Hearing Loss/pathology
4.
Hear Res ; 447: 109012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703433

ABSTRACT

Hearing loss is a common side effect of many tumor treatments. However, hearing loss can also occur as a direct result of certain tumors of the nervous system, the most common of which are the vestibular schwannomas (VS). These tumors arise from Schwann cells of the vestibulocochlear nerve and their main cause is the loss of function of NF2, with 95 % of cases being sporadic and 5 % being part of the rare neurofibromatosis type 2 (NF2)-related Schwannomatosis. Genetic variations in NF2 do not fully explain the clinical heterogeneity of VS, and interactions between Schwann cells and their microenvironment appear to be critical for tumor development. Preclinical in vitro and in vivo models of VS are needed to develop prognostic biomarkers and targeted therapies. In addition to VS, other tumors can affect hearing. Meningiomas and other masses in the cerebellopontine angle can compress the vestibulocochlear nerve due to their anatomic proximity. Gliomas can disrupt several neurological functions, including hearing; in fact, glioblastoma multiforme, the most aggressive subtype, may exhibit early symptoms of auditory alterations. Besides, treatments for high-grade tumors, including chemotherapy or radiotherapy, as well as incomplete resections, can induce long-term auditory dysfunction. Because hearing loss can have an irreversible and dramatic impact on quality of life, it should be considered in the clinical management plan of patients with tumors, and monitored throughout the course of the disease.


Subject(s)
Hearing Loss , Hearing , Neuroma, Acoustic , Humans , Neuroma, Acoustic/pathology , Neuroma, Acoustic/physiopathology , Neuroma, Acoustic/complications , Hearing Loss/physiopathology , Hearing Loss/etiology , Hearing Loss/pathology , Animals , Neurilemmoma/pathology , Neurilemmoma/complications , Neurilemmoma/therapy , Vestibulocochlear Nerve/pathology , Vestibulocochlear Nerve/physiopathology , Risk Factors , Neurofibromatosis 2/genetics , Neurofibromatosis 2/complications , Neurofibromatosis 2/pathology , Neurofibromatosis 2/physiopathology , Neurofibromatosis 2/therapy , Meningioma/pathology , Meningioma/physiopathology , Meningioma/complications
5.
Hear Res ; 447: 109021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703432

ABSTRACT

Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.


Subject(s)
Cochlea , Disease Models, Animal , Hair Cells, Auditory , Regeneration , Animals , Hair Cells, Auditory/pathology , Hair Cells, Auditory/metabolism , Mice , Cochlea/pathology , Cochlea/physiopathology , Humans , Hearing , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/pathology , Hearing Loss/pathology , Hearing Loss/physiopathology , Acoustic Stimulation
6.
Hum Mol Genet ; 33(10): 905-918, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38449065

ABSTRACT

Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.


Subject(s)
Apoptosis Inducing Factor , Disease Models, Animal , Hearing Loss , Animals , Humans , Male , Mice , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , Gene Knock-In Techniques , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Atrophy/metabolism , Mutation , Protein Transport , Spiral Ganglion/metabolism , Spiral Ganglion/pathology
7.
Brain Behav ; 14(1): e3374, 2024 01.
Article in English | MEDLINE | ID: mdl-38376024

ABSTRACT

INTRODUCTION: Previous studies have reported that hearing loss (HL) is associated with dementia, although the mechanistic underpinnings remain elusive. This study aimed to evaluate the changes in brain metabolism in patients with HL and different types of dementia. METHODS: Patients with cognitive impairment (CI) and HL treated at the university-based memory clinic from May 2016 to October 2021 were included. In total, 108 patients with CI and HL prospectively underwent audiometry, neuropsychological test, magnetic resonance imaging, and 18 F-fluorodeoxyglucose positron emission tomography. Twenty-seven individuals without cognitive impairment and hearing loss were enrolled as a control group. Multivariable regression was performed to evaluate brain regions correlated with each pathology type after adjusting for confounding factors. RESULTS: Multivariable regression analyses revealed that Alzheimer's disease-related CI (ADCI) was associated with hypometabolic changes in the right superior temporal gyrus (STG), right middle temporal gyrus (MTG), and bilateral medial temporal lobe. Lewy body disease-related CI (LBDCI) and vascular CI were associated with hypermetabolic and hypometabolic changes in the ascending auditory pathway, respectively. In the pure ADCI group, the degree of HL was positively associated with abnormal increase of brain metabolism in the right MTG, whereas it was negatively associated with decreased brain metabolism in the right STG in the pure LBDCI group. CONCLUSION: Each dementia type is associated with distinct changes in brain metabolism in patients with HL.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dizocilpine Maleate/analogs & derivatives , Hearing Loss , Humans , Fluorodeoxyglucose F18/metabolism , Alzheimer Disease/pathology , Brain/pathology , Positron-Emission Tomography , Cognitive Dysfunction/pathology , Hearing Loss/complications , Hearing Loss/metabolism , Hearing Loss/pathology
8.
Pediatr Radiol ; 54(2): 337-346, 2024 02.
Article in English | MEDLINE | ID: mdl-38182852

ABSTRACT

BACKGROUND: White matter change is a well-known abnormality in congenital cytomegalovirus (cCMV) infection, but grading remains challenging and clinical relevance unclear. OBJECTIVE: To investigate if quantitative measurement of white matter apparent diffusion coefficient (ADC) values in magnetic resonance imaging (MRI) of the neonatal brain can predict outcome in cCMV. MATERIALS AND METHODS: A retrospective, single-center observational study, including patients with cCMV who had a neonatal brain MRI with diffusion-weighted imaging, was performed between 2007 and 2020. Regions of interest were systematically placed in the white matter on the ADC maps. Two pediatric radiologists independently scored additional brain abnormalities. Outcome measures were neonatal hearing and cognitive and motor development. Statistical analysis included simple and penalized elastic net regression. RESULTS: Neonatal brain MRI was evaluated in 255 patients (median age 21 days, 25-75 percentiles: 14-28 days, 121 male). Gyral abnormalities were noted in nine patients (3.5%), ventriculomegaly in 24 (9.4%), and subependymal cysts in 58 (22.7%). General white matter ADC was significantly higher in patients with neonatal hearing loss and cognitive and motor impairment (P< 0.05). For neonatal hearing loss, simple logistic regression using only general white matter was the best prediction model, with a receiver operating characteristic area under the curve (AUC)=0.76. For cognitive impairment, interacting elastic net regression, including other brain abnormalities and frontoparietal white matter ADC, performed best, with AUC=0.89. For motor impairment, interacting elastic net regression, including other brain abnormalities and deep anterior frontal white matter performed best, with AUC=0.73. CONCLUSION: Neonatal white matter ADC was significantly higher in patients with clinical impairments. Quantitative ADC measurement may be a useful tool for predicting clinical outcome in cCMV.


Subject(s)
Brain Diseases , Cytomegalovirus Infections , Hearing Loss , White Matter , Infant, Newborn , Child , Humans , Male , White Matter/diagnostic imaging , Retrospective Studies , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cytomegalovirus Infections/diagnostic imaging , Cytomegalovirus Infections/congenital , Brain Diseases/pathology , Hearing Loss/pathology
9.
Am J Case Rep ; 25: e941558, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163945

ABSTRACT

BACKGROUND Superior semicircular canal dehiscence is an inner-ear pathology which presents with vertigo, disequilibrium, and hearing loss. Although the exact etiology of superior semicircular canal dehiscence is unknown, it is thought that an increase in middle-ear pressure disrupts a thin overlying temporal bone. Superior semicircular canal dehiscence is frequently seen in association with dehiscence of the tegmen tympani, which overlies the middle ear. Here, we present a case report of a 52-year-old Puerto Rican man with vertigo, dizziness, vomiting, and mild hearing loss associated with superior semicircular canal and tegmen tympani dehiscence after performing improper scuba diving techniques. CASE REPORT A 52-year-old Puerto Rican man presented to the emergency department with vertigo, dizziness, vomiting, and mild hearing loss in the right ear. The symptoms began shortly after scuba diving with inadequate decompression techniques on ascent. He was treated with recompression therapy with mild but incomplete improvement in symptoms. Bilateral temporal magnetic resonance imaging was suggestive of segmental dehiscence of the right superior semicircular canal and tegmen tympani. High-resolution computed tomography of the temporal bone confirmed right superior semicircular canal and tegmen tympani dehiscence with an intact left inner ear. CONCLUSIONS The increased inner-ear pressure that occurs during scuba diving can lead to dehiscence of the superior semicircular canal and tegmen tympani, causing vertigo and hearing loss. Performance of improper diving techniques can further increase the risk of dehiscence. Therefore, appropriate radiologic evaluation of the inner ear should be performed in such patients.


Subject(s)
Diving , Hearing Loss , Semicircular Canal Dehiscence , Male , Humans , Middle Aged , Dizziness/complications , Dizziness/pathology , Semicircular Canal Dehiscence/complications , Semicircular Canal Dehiscence/pathology , Diving/adverse effects , Semicircular Canals/diagnostic imaging , Ear, Middle/diagnostic imaging , Vertigo/etiology , Vertigo/pathology , Hearing Loss/complications , Hearing Loss/pathology , Vomiting
10.
World Neurosurg ; 182: e675-e691, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070740

ABSTRACT

OBJECTIVE: The role of surgical management of arachnoid cyst (AC) of the cerebellopontine angle (CPA) is uncertain. This topic has remained controversial with varying contradictory recommendations in the literature, which is limited to mostly case reports. We aimed to provide a comprehensive summary and analysis of symptoms, operative techniques, outcomes, and recurrence of all available surgical cases of AC of the CPA to date. METHODS: A systematic literature search was performed in May 2022 querying several scientific databases. Inclusion criteria specified all studies and case reports of patients with AC located at the CPA for which any relevant surgical procedures were performed. RESULTS: A total of 55 patients from the literature and 5 treated at our institution were included. Mean patient age was 29 years (range, 0.08-79 years), with nearly twice (1.7×) as many female as male patients (37 female, 22 male). Headaches (35%), hearing loss (30%), vertigo (22%), and ataxia (22%) were the most common presentations. Following surgery, 95% experienced symptom improvement, with complete resolution in 64%. Of patients with hearing loss, 44% reported a return to normal. The rate of mortality was 1.69%, and 10% of tumors recurred (mean follow-up 2.3 years [range, 0-15 years]. CONCLUSIONS: Symptomatic AC of the CPA is rare. It exhibits a proclivity for females and commonly manifests with headache, hearing loss, vertigo, and ataxia. While careful selection for surgical candidacy is needed and intervention should be reserved for patients with severe symptoms, surgical decompression is an effective tool for symptom alleviation and recovery.


Subject(s)
Arachnoid Cysts , Deafness , Hearing Loss , Humans , Male , Female , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Cerebellopontine Angle/diagnostic imaging , Cerebellopontine Angle/surgery , Cerebellopontine Angle/pathology , Hearing Loss/etiology , Hearing Loss/surgery , Hearing Loss/pathology , Headache/pathology , Vertigo/etiology , Arachnoid Cysts/diagnostic imaging , Arachnoid Cysts/surgery , Ataxia
11.
J Biol Chem ; 300(1): 105516, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042485

ABSTRACT

Class III myosins localize to inner ear hair cell stereocilia and are thought to be crucial for stereocilia length regulation. Mutations within the motor domain of MYO3A that disrupt its intrinsic motor properties have been associated with non-syndromic hearing loss, suggesting that the motor properties of MYO3A are critical for its function within stereocilia. In this study, we investigated the impact of a MYO3A hearing loss mutation, H442N, using both in vitro motor assays and cell biological studies. Our results demonstrate the mutation causes a dramatic increase in intrinsic motor properties, actin-activated ATPase and in vitro actin gliding velocity, as well as an increase in actin protrusion extension velocity. We propose that both "gain of function" and "loss of function" mutations in MYO3A can impair stereocilia length regulation, which is crucial for stereocilia formation during development and normal hearing. Furthermore, we generated chimeric MYO3A constructs that replace the MYO3A motor and neck domain with the motor and neck domain of other myosins. We found that duty ratio, fraction of ATPase cycle myosin is strongly bound to actin, is a critical motor property that dictates the ability to tip localize within filopodia. In addition, in vitro actin gliding velocities correlated extremely well with filopodial extension velocities over a wide range of gliding and extension velocities. Taken together, our data suggest a model in which tip-localized myosin motors exert force that slides the membrane tip-ward, which can combat membrane tension and enhance the actin polymerization rate that ultimately drives protrusion elongation.


Subject(s)
Actins , Hearing Loss , Myosin Type III , Animals , Actins/genetics , Actins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Chlorocebus aethiops , COS Cells , Hearing Loss/genetics , Hearing Loss/metabolism , Hearing Loss/pathology , Myosin Type III/genetics , Myosin Type III/metabolism , Myosins/genetics , Myosins/metabolism , Stereocilia , Humans
12.
J Int Adv Otol ; 19(6): 454-460, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38088316

ABSTRACT

ACKGROUND: There is a need to operationalize existing clinical data to support precision medicine in progressive hearing loss (HL). By utilizing enlarged vestibular aqueduct (EVA) and its associated inner ear abnormalities as an exemplar, we model data from a large international cohort, confirm prognostic factors for HL, and explore the potential to generate a prediction model to optimize current management paradigms. METHODS: An international retrospective cohort study. Regression analyses were utilized to model frequency-specific HL and identify prognostic factors for baseline average HL severity and progression. Elastic-net regression and machine learning (ML) techniques were utilized to predict future average HL progression based upon routinely measurable clinical, genetic, and radiological data. RESULTS: Higher frequencies of hearing were lost more severely. Prognostic factors for HL were the presence of incomplete partition type 2 (coefficient 12.95 dB, P=.011, 95% CI 3.0-22 dB) and presence of sac signal heterogeneity (P=.009, 95% CI 0.062-0.429) on magnetic resonance imaging. Elastic-net regression outperformed the ML algorithms (R2 0.32, mean absolute error 11.05 dB) with coefficients for baseline average hearing level and the presence of sac heterogeneity contributing the most to prediction outcomes. CONCLUSION: Incomplete partition type 2 and endolymphatic sac signal heterogeneity phenotypes should be monitored closely for hearing deterioration and need for early audiological rehabilitation/cochlear implant. Preliminary prediction models have been generated using routinely collected health data in EVA. This study showcases how international collaborative research can use exemplar techniques to improve precision medicine in relatively rare disease entities.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Vestibular Aqueduct , Humans , Retrospective Studies , Prognosis , Hearing Loss/pathology , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/pathology , Vestibular Aqueduct/diagnostic imaging , Vestibular Aqueduct/pathology
13.
Mol Med ; 29(1): 141, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875793

ABSTRACT

Diabetes mellitus (DM) is a major disease threatening human health and its incidence is increasing year on year. As a chronic complication of DM, hearing loss mostly occurs undetectably. However, the mechanism of this diabetes-related hearing loss (DRHL) remains unclear and there is no effective clinical treatment. Studies of animal or human pathology show that DM causes damage to the blood vessels, spiral ganglion neurons, afferent nerve fibers, the organ of Corti, and the stria vascularis of the inner ear. In recent years, more advances in pathological research have revealed the possible mechanism of DRHL. In addition, a large number of clinical studies suggest that the duration and severity of DM are closely related to the incidence and severity of DRHL. This review focuses on the relationship between DM and hearing loss. The clinical audiological characteristics of diabetic patients, risk factors for DRHL, typical pathology, and potential interventions of DRHL are summarized. This will help reveal the pathogenesis and intervention approaches for DRHL.


Subject(s)
Diabetes Mellitus , Hearing Loss , Animals , Humans , Hearing Loss/epidemiology , Hearing Loss/etiology , Hearing Loss/pathology , Diabetes Mellitus/epidemiology , Stria Vascularis/pathology , Risk Factors
14.
Proc Natl Acad Sci U S A ; 120(34): e2307355120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552762

ABSTRACT

Hearing loss is highly heterogeneous, but one common form involves a failure to maintain the local ionic environment of the sensory hair cells reflected in a reduced endocochlear potential. We used a genetic approach to ask whether this type of pathology can be reversed, using the Spns2tm1a mouse mutant known to show this defect. By activating Spns2 gene transcription at different ages after the onset of hearing loss, we found that an existing auditory impairment can be reversed to give close to normal thresholds for an auditory brainstem response (ABR), at least at low to mid stimulus frequencies. Delaying the activation of Spns2 led to less effective recovery of ABR thresholds, suggesting that there is a critical period for intervention. Early activation of Spns2 not only led to improvement in auditory function but also to protection of sensory hair cells from secondary degeneration. The genetic approach we have used to establish that this type of hearing loss is in principle reversible could be extended to many other diseases using available mouse resources.


Subject(s)
Anion Transport Proteins , Genetic Therapy , Hearing Loss , Animals , Mice , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss/therapy , Anion Transport Proteins/genetics , Transcriptional Activation , Cochlear Microphonic Potentials , Hair Cells, Auditory/pathology
15.
Hear Res ; 435: 108815, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37263113

ABSTRACT

Animal studies have shown that the supporting-cells surviving in the organ of Corti after cochlear insult can be transdifferentiated into hair cells as a treatment for sensorineural hearing loss. Clinical trials of small-molecule therapeutics have been undertaken, but little is known about how to predict the pattern and degree of supporting-cell survival based on audiogram, hearing loss etiology or any other metric obtainable pre-mortem. To address this, we systematically assessed supporting-cell and hair cell survival, as a function of cochlear location in 274 temporal bone cases from the archives at the Massachusetts Eye and Ear and compared the histopathology with the audiograms and hearing-loss etiologies. Results showed that supporting-cell survival was always significantly greater in the apical half than the basal half of the cochlea, that inner pillars were more robust than outer pillars or Deiters' cells, and that total replacement of all supporting cells with a flat epithelium was rare outside of the extreme basal 20% of the cochlea. Supporting cell survival in the basal half of the cochlea was better correlated with the slope of the audiogram than with the mean high-frequency threshold per se: i.e. survival was better with flatter audiograms than with steeply down-sloping audiograms. Cochlear regions with extensive hair cell loss and exceptional supporting cell survival were most common in cases with hearing loss due to ototoxic drugs. Such cases also tended to have less pathology in other functionally critical structures, i.e. spiral ganglion neurons and the stria vascularis.


Subject(s)
Deafness , Hearing Loss , Humans , Cell Survival , Cochlea/pathology , Hair Cells, Auditory/pathology , Stria Vascularis/pathology , Deafness/pathology , Hearing Loss/pathology
16.
FEBS Open Bio ; 13(7): 1365-1374, 2023 07.
Article in English | MEDLINE | ID: mdl-37258461

ABSTRACT

Previous studies have revealed that age-related hearing loss (AHL) in Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1)-knockout mice is associated with pathology in the cochlea. Here, we aimed to identify mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with AHL. Mitochondria in the spiral ganglion neurons (SGNs) and hair cells (HCs) were normal despite senescence; however, the mitochondria of types I, II, and IV spiral ligament fibrocytes were ballooned, damaged, and ballooned, respectively, in the stria vascularis. Our results suggest that the accumulation of dysfunctional mitochondria in the lateral wall, rather than the loss of HCs and SGNs, leads to the onset of AHL. Our results provide valuable information regarding the underlying mechanisms of AHL and the relationship between aberrant tRNA modification-induced hearing loss and mitochondrial dysfunction.


Subject(s)
Cochlea , Hearing Loss , Animals , Mice , Cochlea/metabolism , Cochlea/pathology , Hearing Loss/genetics , Hearing Loss/metabolism , Hearing Loss/pathology , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism
17.
J Assist Reprod Genet ; 40(7): 1721-1732, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37017887

ABSTRACT

PURPOSE: To evaluate the clinical validity of preimplantation genetic testing (PGT) to prevent hereditary hearing loss (HL) in Chinese population. METHODS: A PGT procedure combining multiple annealing and looping-based amplification cycles (MALBAC) and single-nucleotide polymorphisms (SNPs) linkage analyses with a single low-depth next-generation sequencing run was implemented. Forty-three couples carried pathogenic variants in autosomal recessive non-syndromic HL genes, GJB2 and SLC26A4, and four couples carried pathogenic variants in rare HL genes: KCNQ4, PTPN11, PAX3, and USH2A were enrolled. RESULTS: Fifty-four in vitro fertilization (IVF) cycles were implemented, 340 blastocysts were cultured, and 303 (89.1%) of these received a definite diagnosis of a disease-causing variant testing, linkage analysis and chromosome screening. A clinical pregnancy of 38 implanted was achieved, and 34 babies were born with normal hearing. The live birth rate was 61.1%. CONCLUSIONS AND RELEVANCE: In both the HL population and in hearing individuals at risk of giving birth to offspring with HL in China, there is a practical need for PGT. The whole genome amplification combined with NGS can simplify the PGT process, and the efficiency of PGT process can be improved by establishing a universal SNP bank of common disease-causing gene in particular regions and nationalities. This PGT procedure was demonstrated to be effective and lead to satisfactory clinical outcomes.


Subject(s)
Genetic Testing , Hearing Loss , Preimplantation Diagnosis , Female , Humans , Pregnancy , Aneuploidy , Blastocyst/pathology , East Asian People , Fertilization in Vitro , Genetic Testing/methods , Hearing Loss/genetics , Hearing Loss/pathology , Preimplantation Diagnosis/methods
18.
Neurosci Lett ; 793: 136990, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36455693

ABSTRACT

Cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) is a worldwide epidemic. Recent studies have shown that the degree of spiral ganglion neuron (SGN) loss is correlated with hearing loss after CMV infection. We aimed to better understand the pathological mechanisms of CMV-related SGN death and to search for intervention measures. We found that both apoptosis and pyroptosis are involved in CMV-induced SGN death, which may be caused by the simultaneous activation of the p53/JNK and NLRP3/caspase-1 signaling pathways, respectively. Moreover, considering that mixed lineage kinase family (MLK1/2/3) are host restriction factors against viral infection and upstream regulators of the p53/JNK and inflammatory (including NLRP3-caspase1) signaling pathways, we further demonstrated that the MLKs inhibitor URMC-099 exhibited a protective effect against CMV-induced SGN death and hearing loss. These results indicate that MLKs signaling may be a key regulator and promising novel target for preventing apoptosis and even pyroptosis during the CMV infection of SGN cells and for treating hearing loss.


Subject(s)
Cytomegalovirus Infections , Deafness , Hearing Loss, Sensorineural , MAP Kinase Kinase Kinases , Muromegalovirus , Animals , Mice , Apoptosis , Cytomegalovirus , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/pathology , Deafness/metabolism , Deafness/pathology , Hearing Loss/metabolism , Hearing Loss/pathology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Neurons , NLR Family, Pyrin Domain-Containing 3 Protein , Spiral Ganglion/pathology , Tumor Suppressor Protein p53 , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinase Kinase 11
19.
Hear Res ; 428: 108681, 2023 02.
Article in English | MEDLINE | ID: mdl-36584546

ABSTRACT

Hearing preservation may be achieved initially in the majority of patients after cochlear implantation, however, a significant proportion of these patients experience delayed hearing loss months or years later. A prior histological report in a case of delayed hearing loss suggested a potential cochlear mechanical origin of this hearing loss due to tissue fibrosis, and older case series highlight the frequent findings of post-implantation fibrosis and neoosteogenesis though without a focus on the impact on residual hearing. Here we present the largest series (N = 20) of 3-dimensionally reconstructed cochleae based on digitally scanned histologic sections from patients who were implanted during their lifetime. All patients were implanted with multichannel electrodes via a cochleostomy or an extended round window insertion. A quantified analysis of intracochlear tissue formation was carried out via virtual re-sectioning orthogonal to the cochlear spiral. Intracochlear tissue formation was present in every case. On average 33% (SD 14%) of the total cochlear volume was occupied by new tissue formation, consisting of 26% (SD 12%) fibrous and 7% (SD 6%) bony tissue. The round window was completely covered by fibro-osseous tissue in 85% of cases and was associated with an obstruction of the cochlear aqueduct in 100%. The basal part of the basilar membrane was at least partially abutted by the electrode or new tissue formation in every case, while the apical region, corresponding with a characteristic frequency of < 500 Hz, appeared normal in 89%. This quantitative analysis shows that after cochlear implantation via extended round window or cochleostomy, intracochlear fibrosis and neoossification are present in all cases at anatomical locations that could impact normal inner ear mechanics.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Hearing Loss , Humans , Cochlear Implantation/adverse effects , Cochlear Implantation/methods , Osteogenesis , Hearing , Cochlea/diagnostic imaging , Cochlea/surgery , Cochlea/pathology , Hearing Loss/pathology , Deafness/pathology , Round Window, Ear/surgery , Fibrosis , Electrodes, Implanted
20.
J Chem Neuroanat ; 126: 102172, 2022 12.
Article in English | MEDLINE | ID: mdl-36280114

ABSTRACT

Reports have emerged on the sudden opioid-induced auditory hearing loss, and the underlying pathology is not fully understood. The present study aimed to determine the mechanism of action of these drugs in the inner ear. For this purpose, 20 rats were treated with 50 mg/kg tramadol daily for three weeks. Next, the stereological and immunohistochemical alteration of the inner hair cells under chronic exposure to tramadol was evaluated. The results revealed that tramadol induced hair cell degeneration and decreased bipolar neurons of the spiral ganglion and the thickness of stria vascularis. Moreover, immunohistochemistry showed that tramadol caused apoptosis in inner hair cells and bipolar neurons. These findings indicate that tramadol induces apoptosis in auditory hair cells, suggesting that tramadol may cause hearing loss and ototoxicity.


Subject(s)
Hearing Loss , Tramadol , Rats , Male , Animals , Tramadol/toxicity , Hair Cells, Auditory , Stria Vascularis/pathology , Apoptosis , Hearing Loss/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...