Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.348
Filter
1.
Genes (Basel) ; 15(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790267

ABSTRACT

Brugada syndrome is a rare arrhythmogenic syndrome associated mainly with pathogenic variants in the SCN5A gene. Right ventricle outflow tract fibrosis has been reported in some cases of patients diagnosed with Brugada syndrome. Pulmonary atresia with an intact ventricular septum is characterized by the lack of a functional pulmonary valve, due to the underdevelopment of the right ventricle outflow tract. We report, for the first time, a 4-year-old boy with pulmonary atresia with an intact ventricular septum who harbored a pathogenic de novo variant in SCN5A, and the ajmaline test unmasked a type-1 Brugada pattern. We suggest that deleterious variants in the SCN5A gene could be implicated in pulmonary atresia with an intact ventricular septum embryogenesis, leading to overlapping phenotypes.


Subject(s)
Brugada Syndrome , NAV1.5 Voltage-Gated Sodium Channel , Pulmonary Atresia , Humans , Pulmonary Atresia/genetics , Pulmonary Atresia/pathology , Male , Brugada Syndrome/genetics , Brugada Syndrome/pathology , Child, Preschool , NAV1.5 Voltage-Gated Sodium Channel/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Ventricular Septum/pathology
2.
Nat Commun ; 15(1): 4166, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755146

ABSTRACT

Failure of proper ventricular trabeculation is often associated with congenital heart disease. Support from endocardial cells, including the secretion of extracellular matrix and growth factors is critical for trabeculation. However, it is poorly understood how the secretion of extracellular matrix and growth factors is initiated and regulated by endocardial cells. We find that genetic knockout of histone deacetylase 3 in the endocardium in mice results in early embryo lethality and ventricular hypotrabeculation. Single cell RNA sequencing identifies significant downregulation of extracellular matrix components in histone deacetylase 3 knockout endocardial cells. Secretome from cultured histone deacetylase 3 knockout mouse cardiac endothelial cells lacks transforming growth factor ß3 and shows significantly reduced capacity in stimulating cultured cardiomyocyte proliferation, which is remarkably rescued by transforming growth factor ß3 supplementation. Mechanistically, we identify that histone deacetylase 3 knockout induces transforming growth factor ß3 expression through repressing microRNA-129-5p. Our findings provide insights into the pathogenesis of congenital heart disease and conceptual strategies to promote myocardial regeneration.


Subject(s)
Endocardium , Histone Deacetylases , Mice, Knockout , MicroRNAs , Myocytes, Cardiac , Animals , Endocardium/metabolism , Mice , MicroRNAs/metabolism , MicroRNAs/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Myocytes, Cardiac/metabolism , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/genetics , Cell Proliferation , Myocardium/metabolism , Endothelial Cells/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Extracellular Matrix/metabolism , Female
3.
Narra J ; 4(1): e579, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798867

ABSTRACT

Research on noncoding RNA, particularly microRNAs (miRNAs), is growing rapidly. Advances in genomic technologies have revealed the complex roles of miRNAs in pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD). It has been demonstrated that the progression of PAH associated with CHD is characterized by particular dysregulation of miRNAs and is related to cardiovascular remodeling, cell death, and right ventricle dysfunction. This review provides a comprehensive overview of the current state of knowledge regarding the involvement of miRNAs in the pathogenesis and progression of PAH associated with CHD. We commence by explaining the process of miRNA synthesis and its mode of action, as well as the role of miRNA in PAH associated with CHD. Moreover, the article delves into current breakthroughs in research, potential clinical implications, and prospects for future investigations. The review provides the insight into novel approaches for diagnosis, prognosis, and therapy of PAH associated with CHD.


Subject(s)
Heart Defects, Congenital , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Disease Progression , Prognosis
4.
BMC Pediatr ; 24(1): 309, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711130

ABSTRACT

Schinzel-Giedion syndrome (SGS) is a severe multisystem disorder characterized by distinctive facial features, profound intellectual disability, refractory epilepsy, cortical visual impairment, hearing loss, and various congenital anomalies. SGS is attributed to gain-of-function (GoF) variants in the SETBP1 gene, with reported variants causing canonical SGS located within a 12 bp hotspot region encoding SETBP1 residues aa868-871 (degron). Here, we describe a case of typical SGS caused by a novel heterozygous missense variant, D874V, adjacent to the degron. The female patient was diagnosed in the neonatal period and presented with characteristic facial phenotype (midface retraction, prominent forehead, and low-set ears), bilateral symmetrical talipes equinovarus, overlapping toes, and severe bilateral hydronephrosis accompanied by congenital heart disease, consistent with canonical SGS. This is the first report of a typical SGS caused by a, SETBP1 non-degron missense variant. This case expands the genetic spectrum of SGS and provides new insights into genotype-phenotype correlations.


Subject(s)
Abnormalities, Multiple , Carrier Proteins , Hand Deformities, Congenital , Mutation, Missense , Nails, Malformed , Humans , Female , Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Infant, Newborn , Nuclear Proteins/genetics , Intellectual Disability/genetics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/complications , Clubfoot/genetics , Phenotype , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Degrons
5.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791509

ABSTRACT

Fibrillin-1 and fibrillin-2, encoded by FBN1 and FBN2, respectively, play significant roles in elastic fiber assembly, with pathogenic variants causing a diverse group of connective tissue disorders such as Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCD). Different genomic variations may lead to heterogeneous phenotypic features and functional consequences. Recent high-throughput sequencing modalities have allowed detection of novel variants that may guide the care for patients and inform the genetic counseling for their families. We performed clinical phenotyping for two newborn infants with complex congenital heart defects. For genetic investigations, we employed next-generation sequencing strategies including whole-genome Single-Nucleotide Polymorphism (SNP) microarray for infant A with valvular insufficiency, aortic sinus dilatation, hydronephrosis, and dysmorphic features, and Trio whole-exome sequencing (WES) for infant B with dextro-transposition of the great arteries (D-TGA) and both parents. Infant A is a term male with neonatal marfanoid features, left-sided hydronephrosis, and complex congenital heart defects including tricuspid regurgitation, aortic sinus dilatation, patent foramen ovale, patent ductus arteriosus, mitral regurgitation, tricuspid regurgitation, aortic regurgitation, and pulmonary sinus dilatation. He developed severe persistent pulmonary hypertension and worsening acute hypercapnic hypoxemic respiratory failure, and subsequently expired on day of life (DOL) 10 after compassionate extubation. Cytogenomic whole-genome SNP microarray analysis revealed a deletion within the FBN1 gene spanning exons 7-30, which overlapped with the exon deletion hotspot region associated with neonatal Marfan syndrome. Infant B is a term male prenatally diagnosed with isolated D-TGA. He required balloon atrial septostomy on DOL 0 and subsequent atrial switch operation, atrial septal defect repair, and patent ductus arteriosus ligation on DOL 5. Trio-WES revealed compound heterozygous c.518C>T and c.8230T>G variants in the FBN2 gene. Zygosity analysis confirmed each of the variants was inherited from one of the parents who were healthy heterozygous carriers. Since his cardiac repair at birth, he has been growing and developing well without any further hospitalization. Our study highlights novel FBN1/FBN2 variants and signifies the phenotype-genotype association in two infants affected with complex congenital heart defects with and without dysmorphic features. These findings speak to the importance of next-generation high-throughput genomics for novel variant detection and the phenotypic variability associated with FBN1/FBN2 variants, particularly in the neonatal period, which may significantly impact clinical care and family counseling.


Subject(s)
Fibrillin-1 , Fibrillin-2 , Heart Defects, Congenital , Marfan Syndrome , Humans , Fibrillin-1/genetics , Marfan Syndrome/genetics , Fibrillin-2/genetics , Male , Infant, Newborn , Heart Defects, Congenital/genetics , High-Throughput Nucleotide Sequencing , Female , Polymorphism, Single Nucleotide , Mutation , Genomics/methods , Phenotype , Exome Sequencing , Adipokines
6.
Circ Res ; 134(10): e112-e132, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38618720

ABSTRACT

BACKGROUND: The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS: Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS: The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS: Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.


Subject(s)
Aorta, Thoracic , Endothelial Cells , Heart Defects, Congenital , T-Box Domain Proteins , Vascular Endothelial Growth Factor Receptor-2 , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Mice , Aorta, Thoracic/embryology , Aorta, Thoracic/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Heart Defects, Congenital/embryology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Cell Differentiation , Mice, Inbred C57BL
7.
PLoS One ; 19(4): e0302642, 2024.
Article in English | MEDLINE | ID: mdl-38687747

ABSTRACT

BACKGROUND: Conotruncal congenital heart defects (CTD) are a subset of congenital heart diseases (CHD) that involve structural anomalies of the right, left, or both cardiac outflow tracts. CHD is caused by multifactorial inheritance and changes in the genes or chromosomes. Recently, CHD was found to be due to epigenetic alterations, which are a combination of genetic and other environmental factors. Epigenetics is the study of how a gene's function changes as a result of environmental and behavioral influences. These causative factors can indirectly cause CHD by altering the DNA through epigenetic modifications. This is a protocol for a systematic review and meta-analysis that aims to explore whether the strength of association between various epigenetic changes and CTD types varies by race. Furthermore, to determine and compare the changes in gene expression of each mutation. METHODS: Our protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol (PRISMA-P) guidelines. A comprehensive pre-search has been developed in PubMed and PubMed's Medical Subject Headings (MeSH). The final search will be performed in June 2023 in PubMed, Embase, Scopus, Web of Science, Cochrane Library, CIANHL, and PsycInfo, without restrictions on publication years. The Covidence systematic review software will be used for blinded screening and selection. Conflicts will be resolved by a third, independent reviewer. The risk of bias in selected studies will be assessed using the National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The data to be extracted will cover basic information on the included studies, study sample size, number of patients with various types of epigenetic changes, number of patients with various CTD types, measures of association and their 95% confidence interval between each epigenetic change and each CTD. The protocol has been registered with the International Prospero Register of Systematic Review (PROSPERO) [CRD42023377597]. DISCUSSION: To the best of our knowledge, this protocol outlines the first systematic review and meta-analysis of the epigenetics of CTD. There is a growing body of evidence on epigenetics and its indirect involvement in disease by altering the DNA through epigenetic modifications in the genes associated with the causative factors for CHD. We will conduct a comprehensive and systematic search for literature in the above-mentioned seven core biomedical databases. It is very important to identify population-specific risk factors for CHD, which will have significant creative, custom-made, and effective prevention programs for the future generation.


Subject(s)
Epigenesis, Genetic , Heart Defects, Congenital , Meta-Analysis as Topic , Systematic Reviews as Topic , Humans , Heart Defects, Congenital/genetics
8.
Pediatr Neurol ; 155: 8-17, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569228

ABSTRACT

BACKGROUND: TRAF7-related cardiac, facial, and digital anomalies with developmental delay (CAFDADD), a multisystemic neurodevelopmental disorder caused by germline missense variants in the TRAF7 gene, exhibits heterogeneous clinical presentations. METHODS: We present a detailed description of 11 new TRAF7-related CAFDADD cases, featuring eight distinct variants, including a novel one. RESULTS: Phenotypic analysis and a comprehensive review of the 58 previously reported cases outline consistent clinical presentations, emphasizing dysmorphic features, developmental delay, endocrine manifestations, and cardiac defects. In this enlarged collection, novelties include a wider range of cognitive dysfunction, with some individuals exhibiting normal development despite early psychomotor delay. Communication challenges, particularly in expressive language, are prevalent, necessitating alternative communication methods. Autistic traits, notably rigidity, are observed in the cohort. Also, worth highlighting are hearing loss, sleep disturbances, and endocrine anomalies, including growth deficiency. Cardiac defects, frequently severe, pose early-life complications. Facial features, including arched eyebrows, contribute to the distinct gestalt. A novel missense variant, p.(Arg653Leu), further underscores the complex relationship between germline TRAF7 variants and somatic changes linked to meningiomas. CONCLUSIONS: Our comprehensive analysis expands the phenotypic spectrum, emphasizing the need for oncological evaluations and proposing an evidence-based schedule for clinical management. This study contributes to a better understanding of TRAF7-related CAFDADD, offering insights for improved diagnosis, intervention, and patient care.


Subject(s)
Developmental Disabilities , Heart Defects, Congenital , Phenotype , Humans , Developmental Disabilities/genetics , Male , Female , Child , Child, Preschool , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Infant , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Mutation, Missense , Adolescent
9.
Genes (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674439

ABSTRACT

Extracardiac anomalies (ECAs) are strong predictors of genetic disorders in infants with congenital heart disease (CHD), but there are no prior studies assessing performance of ECA status as a screen for genetic diagnoses in CHD patients. This retrospective cohort study assessed this in our comprehensive inpatient CHD genetics service focusing on neonates and infants admitted to the intensive care unit (ICU). The performance and diagnostic utility of using ECA status to screen for genetic disorders was assessed using decision curve analysis, a statistical tool to assess clinical utility, determining the threshold of phenotypic screening by ECA versus a Test-All approach. Over 24% of infants had genetic diagnoses identified (n = 244/1013), and ECA-positive status indicated a 4-fold increased risk of having a genetic disorder. However, ECA status had low-moderate screening performance based on predictive summary index, a compositive measure of positive and negative predictive values. For those with genetic diagnoses, nearly one-third (32%, 78/244) were ECA-negative but had cytogenetic and/or monogenic disorders identified by genetic testing. Thus, if the presence of multiple congenital anomalies is the phenotypic driver to initiate genetic testing, 13.4% (78/580) of infants with isolated CHD with identifiable genetic causes will be missed. Given the prevalence of genetic disorders and limited screening performance of ECA status, this analysis supports genetic testing in all CHD infants in intensive care settings rather than screening based on ECA.


Subject(s)
Genetic Testing , Heart Defects, Congenital , Humans , Heart Defects, Congenital/genetics , Heart Defects, Congenital/diagnosis , Genetic Testing/methods , Infant, Newborn , Female , Male , Retrospective Studies , Infant , Intensive Care Units , Clinical Decision-Making
10.
Pediatr Cardiol ; 45(5): 1036-1047, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570366

ABSTRACT

To estimate if there is an association between partial AVSD with chromosomal abnormalities, cardiac and extracardiac malformations, and to report the outcomes of prenatally diagnosed AVSD in a large, contemporary cohort. This is a retrospective cohort study of 190 prenatally diagnosed fetal AVSD between 2014 and 2023. Type of AVSD (complete vs partial), additional cardiac findings, extracardiac findings, presence of a heterotaxy, results of prenatal karyotype, and pregnancy outcomes were documented and analyzed. A total of 190 cases of fetal AVSD were analyzed. Complete AVSDs comprised 141 (74.2%) of the cohort, while partial AVSDs comprised 49 (25.7%). Karyotype was completed in 131 cases, and in 98 (74.8%) cases chromosomal abnormalities were identified, with trisomy 21 being the most common (53/131, 40.5%). Complete AVSDs were associated with trisomy 21 (45.5%, p = 0.04), Isolated cases of complete AVSDs (p = 0.03). Partial AVSDs were associated with trisomy 18 (53.1%, p < 0.001). In cases of partial AVSDs with aneuploidies, 7 (70%) had an ostium primum defect and 20 (90.9%) of AV canal type VSD. Isolated partial AVSD had no clear association with aneuploidies. There were additional cardiac anomalies in 96 (50.5%) and extracardiac anomalies in 134 (70.5%) of the cohort. There were no differences between partial and complete AVSD in rate of additional cardiac and extracardiac anomalies. AVSD was part of a heterotaxy in 47 (24.7%) of cases, and heterotaxy was associated with complete AVSD in the majority of cases (43/47, 91.4%, p = 0.003). Fetal partial AVSDs are associated with trisomy 18. Fetal complete AVSDs, even isolated, are associated with trisomy 21. There were no differences in association of other aneuploidies, additional cardiac findings, or extracardiac anomalies between prenatally diagnosed complete AVSDs and partial AVSDs.


Subject(s)
Chromosome Aberrations , Down Syndrome , Ultrasonography, Prenatal , Humans , Female , Retrospective Studies , Pregnancy , Down Syndrome/genetics , Heart Septal Defects/genetics , Adult , Karyotyping , Pregnancy Outcome , Prenatal Diagnosis/methods , Male , Heart Defects, Congenital/genetics
11.
Genome Med ; 16(1): 53, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570875

ABSTRACT

BACKGROUND: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-ß/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. METHODS: We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. RESULTS: Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G > A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. CONCLUSION: Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model.


Subject(s)
Heart Defects, Congenital , Heterotaxy Syndrome , Transposition of Great Vessels , Animals , Humans , Arteries , Comparative Genomic Hybridization , Heart Defects, Congenital/genetics , Heterotaxy Syndrome/genetics , Phenotype
12.
Cell Mol Life Sci ; 81(1): 197, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664263

ABSTRACT

Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.


Subject(s)
Drug Evaluation, Preclinical , Heart , Tissue Engineering , Humans , Animals , Drug Evaluation, Preclinical/methods , Tissue Engineering/methods , Organoids/metabolism , Organoids/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Heart Defects, Congenital/genetics , Lab-On-A-Chip Devices
13.
J Cell Mol Med ; 28(8): e18305, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647244

ABSTRACT

NKAP mutations are associated with Hackmann-Di Donato-type X-linked syndromic intellectual developmental disorder (MRXSHD, MIM: #301039). Here, we elucidate the potential prenatal manifestation of NKAP mutation-associated disorder for the first time, alongside revealing the relationship between NKAP mutations and congenital heart defect (CHD) in the Chinese population. An NKAP mutation (NM_024528.4: c.988C>T, p.Arg330Cys) was identified in two foetuses presenting with CHD. Subsequent mechanistic exploration revealed a marked downregulation of NKAP transcription within HEK293T cells transfected with NKAP p.R330C. However, no significant change was observed at the protein level. Moreover, the mutation led to a dysregulation in the transcription of genes associated with cardiac morphogenesis, such as DHRS3, DNAH11 and JAG1. Additionally, our research determined that NKAP p.R330C affected Nkap protein intra-nuclear distribution, and binding with Hdac3. Summarily, our study strengthens NKAP mutations as a cause of CHD and prompts the reclassification of NKAP p.R330C as likely pathogenic, thereby establishing a prospective prenatal phenotypic spectrum that provides new insight into the prenatal diagnosis of CHD. Our findings also provide evidence of NKAP p.R330C pathogenicity and demonstrate the potential mechanism by which p.R330C dysregulates cardiac developmental gene transcription by altering Nkap intra-nuclear distribution and obstructing the interaction between Nkap and Hdac3, thereby leading to CHD.


Subject(s)
Heart Defects, Congenital , Mutation , Phenotype , Humans , Heart Defects, Congenital/genetics , Mutation/genetics , Female , HEK293 Cells , Genetic Predisposition to Disease , Male , Pregnancy
14.
Environ Pollut ; 349: 123938, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38588970

ABSTRACT

With the increasing use of triazole fungicides in agriculture, triazole pesticides have aroused great concern about their toxicity and ecological risk. The current study investigated the impairments of embryonic exposure to fenbuconazole (FBZ) on cardiac transgenerational toxicity and related mechanisms. The fertilized eggs were exposed to 5, 50 and 500 ng/L FBZ for 72 h, and the larvae were then raised to adulthood in clean water. The adult fish were mated with unexposed fish to produce maternal and paternal F1 and F2 embryos, respectively. The results showed that increased arrhythmia were observed in F0, F1 and F2 larvae. Transcriptome sequencing indicated that the pathway of adrenergic signaling in cardiomyocytes was enriched in F0 and F2 larvae. In both F0 and F1 adult zebrafish hearts, ADRB2 protein expression decreased, and transcription of genes related to cardiac development and Ca2+ homeostasis was downregulated. These alterations might cause cardiac developmental defects. Significantly decreased protein levels of H3K9Ac and H3K14Ac might be linked with the downregulation in transcription of cardiac development genes. Protein‒protein interaction analysis exhibited that the pathway affecting the heart was well inherited in the paternal line. These results provide new ideas for the analysis and prevention of congenital heart disease.


Subject(s)
Fungicides, Industrial , Triazoles , Zebrafish , Animals , Fungicides, Industrial/toxicity , Triazoles/toxicity , Heart/drug effects , Larva/drug effects , Larva/growth & development , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Female , Heart Defects, Congenital/chemically induced , Heart Defects, Congenital/genetics , Male
15.
Genomics ; 116(3): 110840, 2024 May.
Article in English | MEDLINE | ID: mdl-38580085

ABSTRACT

Conotruncal heart defects (CTD), subtypes of congenital heart disease, result from abnormal cardiac outflow tract development (OFT). FOXC1 and FOXC2 are closely related members of the forkhead transcription factor family and play essential roles in the development of OFT. We confirmed their expression pattern in mouse and human embryos, identifying four variants in FOXC1 and three in FOXC2 by screening these two genes in 605 patients with sporadic CTD. Western blot demonstrated expression levels, while Dual-luciferase reporter assay revealed affected transcriptional abilities for TBX1 enhancer in two FOXC1 variants and three FOXC2 variants. This might result from the altered DNA-binding abilities of mutant proteins. These results indicate that functionally impaired FOXC1 and FOXC2 variants may contribute to the occurrence of CTD.


Subject(s)
Forkhead Transcription Factors , Heart Defects, Congenital , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Animals , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
16.
Ital J Pediatr ; 50(1): 63, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589916

ABSTRACT

BACKGROUND: This study aims to thoroughly study the connection between congenital heart disease (CHD) and neurodevelopmental disorders (NDDs) through observational and Mendelian randomization (MR) designs. METHODS: This observational study uses data from the National Survey of Children's Health (2020-2021). Multivariable logistic regression and propensity score matching (PSM) were performed to analyze the association. PSM was used to minimize bias for covariates such as age, race, gender, maternal age, birth weight, concussion or brain injury, preterm birth, cerebral palsy, Down syndrome, and other inherited conditions. In MR analyses, inverse variance-weighted measures, weighted median, and MR-Egger were employed to calculate causal effects. RESULTS: A total of 85,314 children aged 0-17 were analyzed in this study. In regression analysis, CHD (p = 0.04), the current heart condition (p = 0.03), and the severity of current heart condition (p < 0.05) had a suggestive association with speech or language disorders. The severity of current heart condition (p = 0.08) has a potential statistically significant association with attention deficit hyperactivity disorder(ADHD). In PSM samples, ADHD(p = 0.003), intellectual disability(p = 0.012), and speech or language disorders(p < 0.001) were all significantly associated with CHD. The severity of current heart condition (p < 0.001) also had a significant association with autism. MR analysis did not find causality between genetically proxied congenital cardiac malformations and the risk of NDDs. CONCLUSIONS: Our study shows that children with CHD have an increased risk of developing NDDs. Heart conditions currently and severity of current heart conditions were also significantly associated with these NDDs. In the future, we need to try more methods to clarify the causal relationship between CHD and NDDs.


Subject(s)
Heart Defects, Congenital , Language Disorders , Neurodevelopmental Disorders , Premature Birth , Child , Female , Humans , Infant, Newborn , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Mendelian Randomization Analysis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Infant , Child, Preschool , Adolescent , Male
17.
Mol Genet Genomic Med ; 12(4): e2428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581124

ABSTRACT

BACKGROUND: RASopathies are associated with an increased risk of autism spectrum disorder (ASD). For neurofibromatosis type 1 (NF1) there is ample evidence for this increased risk, while for other RASopathies this association has been studied less. No specific ASD profile has been delineated so far for RASopathies or a specific RASopathy individually. METHODS: We conducted a systematic review to investigate whether a specific RASopathy is associated with a specific ASD profile, or if RASopathies altogether have a distinct ASD profile compared to idiopathic ASD (iASD). We searched PubMed, Web of Science, and Open Grey for data about ASD features in RASopathies and potential modifiers. RESULTS: We included 41 articles on ASD features in NF1, Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Individuals with NF1, NS, CS, and CFC on average have higher ASD symptomatology than healthy controls and unaffected siblings, though less than people with iASD. There is insufficient evidence for a distinct ASD phenotype in RASopathies compared to iASD or when RASopathies are compared with each other. We identified several potentially modifying factors of ASD symptoms in RASopathies. CONCLUSIONS: Our systematic review found no convincing evidence for a specific ASD profile in RASopathies compared to iASD, or in a specific RASopathy compared to other RASopathies. However, we identified important limitations in the research literature which may also account for this result. These limitations are discussed and recommendations for future research are formulated.


Subject(s)
Autism Spectrum Disorder , Costello Syndrome , Heart Defects, Congenital , Neurofibromatosis 1 , Noonan Syndrome , Humans , Autism Spectrum Disorder/genetics , Noonan Syndrome/genetics , Heart Defects, Congenital/genetics , Costello Syndrome/genetics , Failure to Thrive/genetics , Neurofibromatosis 1/genetics
18.
Radiographics ; 44(5): e230153, 2024 May.
Article in English | MEDLINE | ID: mdl-38602868

ABSTRACT

RASopathies are a heterogeneous group of genetic syndromes caused by germline mutations in a group of genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. RASopathies include neurofibromatosis type 1, Legius syndrome, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome, central conducting lymphatic anomaly, and capillary malformation-arteriovenous malformation syndrome. These disorders are grouped together as RASopathies based on our current understanding of the Ras/MAPK pathway. Abnormal activation of the Ras/MAPK pathway plays a major role in development of RASopathies. The individual disorders of RASopathies are rare, but collectively they are the most common genetic condition (one in 1000 newborns). Activation or dysregulation of the common Ras/MAPK pathway gives rise to overlapping clinical features of RASopathies, involving the cardiovascular, lymphatic, musculoskeletal, cutaneous, and central nervous systems. At the same time, there is much phenotypic variability in this group of disorders. Benign and malignant tumors are associated with certain disorders. Recently, many institutions have established multidisciplinary RASopathy clinics to address unique therapeutic challenges for patients with RASopathies. Medications developed for Ras/MAPK pathway-related cancer treatment may also control the clinical symptoms due to an abnormal Ras/MAPK pathway in RASopathies. Therefore, radiologists need to be aware of the concept of RASopathies to participate in multidisciplinary care. As with the clinical manifestations, imaging features of RASopathies are overlapping and at the same time diverse. As an introduction to the concept of RASopathies, the authors present major representative RASopathies, with emphasis on their imaging similarities and differences. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Subject(s)
Costello Syndrome , Ectodermal Dysplasia , Heart Defects, Congenital , Noonan Syndrome , Infant, Newborn , Humans , Noonan Syndrome/diagnostic imaging , Noonan Syndrome/genetics , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/genetics , Ectodermal Dysplasia/diagnostic imaging , Ectodermal Dysplasia/genetics , Radiologists
19.
BMC Pregnancy Childbirth ; 24(1): 244, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580914

ABSTRACT

BACKGROUND: Chromosomal microarray analysis (CMA) has emerged as a critical instrument in prenatal diagnostic procedures, notably in assessing congenital heart diseases (CHD). Nonetheless, current research focuses solely on CHD, overlooking the necessity for thorough comparative investigations encompassing fetuses with varied structural abnormalities or those without apparent structural anomalies. OBJECTIVE: This study sought to assess the relation of single nucleotide polymorphism-based chromosomal microarray analysis (SNP-based CMA) in identifying the underlying causes of fetal cardiac ultrasound abnormalities. METHODS: A total of 2092 pregnant women who underwent prenatal diagnosis from 2017 to 2022 were included in the study and divided into four groups based on the presence of ultrasound structural abnormalities and the specific type of abnormality. The results of the SNP-Array test conducted on amniotic fluid samples from these groups were analyzed. RESULTS: Findings from the study revealed that the non-isolated CHD group exhibited the highest incidence of aneuploidy, overall chromosomal abnormalities, and trisomy 18, demonstrating statistically significant differences from the other groups (p < 0.001). Regarding the distribution frequency of copy number variation (CNV) segment size, no statistically significant distinctions were observed between the isolated CHD group and the non-isolated CHD group (p > 0.05). The occurrence rates of 22q11.2 and 15q11.2 were also not statistically different between the isolated CHD group and the non-isolated congenital heart defect group (p > 0.05). CONCLUSION: SNP-based CMA enhances the capacity to detect abnormal CNVs in CHD fetuses, offering valuable insights for diagnosing chromosomal etiology and facilitating genetic counseling. This research contributes to the broader understanding of the utility of SNP-based CMA in the context of fetal cardiac ultrasound abnormalities.


Subject(s)
DNA Copy Number Variations , Heart Defects, Congenital , Pregnancy , Female , Humans , Prenatal Diagnosis/methods , Chromosome Aberrations , Ultrasonography/adverse effects , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/genetics , Microarray Analysis/methods
20.
C R Biol ; 347: 9-18, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488639

ABSTRACT

Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.


Les malformations cardiaques congénitales touchent 1 naissance sur 100 et résultent d'anomalies du développement cardiaque. La croissance du tube cardiaque précoce se produit par l'ajout progressif de cellules progénitrices du second champ cardiaque (SHF) aux pôles cardiaques. Le SHF contribue au myocarde septal ventriculaire, au myocarde ventriculaire droit et au myocarde de la voie de sortie au pôle artériel, et au myocarde auriculaire, y compris le myocarde septal auriculaire, au pôle veineux. Le déploiement du SHF est essentiel pour la septation cardiaque et a été impliqué dans la formation du boucle cardiaque et, avec les cellules de la crête neurale, dans l'orchestration du développement de la voie efférente. Perturbation génétique ou environnementale du déploiement du SHF est donc à l'origine d'un spectre de formes communes de maladies cardiaques congénitales affectant la morphogenèse conotroncale et septale. Ici, nous passons en revue les principales propriétés des cellules du SHF ainsi que les découvertes récentes sur les programmes de développement qui contrôlent l'ajout de cellules progénitrices cardiaques ainsi que les origines des malformations cardiaques congénitales.


Subject(s)
Heart Defects, Congenital , Heart , Humans , Heart Defects, Congenital/genetics , Myocardium , Stem Cells , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...