Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 433
Filter
1.
Mol Cell Biol ; 44(5): 165-177, 2024.
Article in English | MEDLINE | ID: mdl-38758542

ABSTRACT

Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.


Subject(s)
Amyloidosis , Heat Shock Transcription Factors , Kidney , Mice, Knockout , Unfolded Protein Response , Animals , Amyloidosis/metabolism , Amyloidosis/genetics , Amyloidosis/pathology , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Kidney/pathology , Kidney/metabolism , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Disease Models, Animal , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney Diseases/etiology , Mice, Inbred C57BL
2.
Nature ; 629(8014): 1126-1132, 2024 May.
Article in English | MEDLINE | ID: mdl-38750356

ABSTRACT

Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Intrinsically Disordered Proteins , Temperature , Thermosensing , Thermotolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Plant , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Repressor Proteins/metabolism , Thermosensing/genetics , Thermosensing/physiology , Thermotolerance/genetics , Thermotolerance/physiology , Transcription Factors/metabolism , Signal Transduction
3.
FASEB J ; 38(9): e23654, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38717442

ABSTRACT

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Subject(s)
Heat Shock Transcription Factors , Metformin , Myocytes, Cardiac , Unfolded Protein Response , Animals , Male , Rats , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Heat Shock Transcription Factors/drug effects , Heat Shock Transcription Factors/metabolism , Hypertension/metabolism , Hypertension/drug therapy , Metformin/pharmacology , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , Transcription Factors/metabolism , Transcription Factors/genetics , Unfolded Protein Response/drug effects , Ventricular Remodeling/drug effects
4.
BMC Plant Biol ; 24(1): 421, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760734

ABSTRACT

BACKGROUND: The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS: In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS: This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.


Subject(s)
Garlic , Heat Shock Transcription Factors , Phylogeny , Plant Proteins , Garlic/genetics , Garlic/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Genome, Plant , Multigene Family , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Heat-Shock Response/genetics
5.
Biochemistry ; 63(10): 1307-1321, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38688031

ABSTRACT

In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.


Subject(s)
Amino Acids, Aromatic , Cysteine , Heat Shock Transcription Factors , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/chemistry , Heat Shock Transcription Factors/genetics , Cysteine/chemistry , Cysteine/metabolism , Humans , Animals , Amino Acids, Aromatic/metabolism , Amino Acids, Aromatic/chemistry , Protein Multimerization , Heat-Shock Response , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Goldfish/metabolism , Models, Molecular , Protein Domains
6.
Arterioscler Thromb Vasc Biol ; 44(6): 1330-1345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602103

ABSTRACT

BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.


Subject(s)
Calcitonin Receptor-Like Protein , Coronary Artery Disease , Endothelial Cells , Enhancer Elements, Genetic , Polymorphism, Single Nucleotide , Stress, Mechanical , Humans , Endothelial Cells/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Calcitonin Receptor-Like Protein/genetics , Calcitonin Receptor-Like Protein/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Mechanotransduction, Cellular , Cells, Cultured , Gene Expression Regulation , Protein Binding , Genetic Predisposition to Disease , Binding Sites
7.
Nat Commun ; 15(1): 3330, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684656

ABSTRACT

Meiotic prophase progression is differently regulated in males and females. In males, pachytene transition during meiotic prophase is accompanied by robust alteration in gene expression. However, how gene expression is regulated differently to ensure meiotic prophase completion in males remains elusive. Herein, we identify HSF5 as a male germ cell-specific heat shock transcription factor (HSF) for meiotic prophase progression. Genetic analyzes and single-cell RNA-sequencing demonstrate that HSF5 is essential for progression beyond the pachytene stage under non-stress conditions rather than heat stress. Chromatin binding analysis in vivo and DNA-binding assays in vitro suggest that HSF5 binds to promoters in a subset of genes associated with chromatin organization. HSF5 recognizes a DNA motif different from typical heat shock elements recognized by other canonical HSFs. This study suggests that HSF5 is an atypical HSF that is required for the gene expression program for pachytene transition during meiotic prophase in males.


Subject(s)
Heat Shock Transcription Factors , Meiotic Prophase I , Spermatogenesis , Mice , Male , Heat Shock Transcription Factors/metabolism , Mice, Knockout , Mice, Inbred C57BL , Testis/metabolism , Heat-Shock Response , Female
8.
Plant Cell Physiol ; 65(5): 809-822, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38564325

ABSTRACT

Drought is the most severe form of stress experienced by plants worldwide. Cucumber is a vegetable crop that requires a large amount of water throughout the growth period. In our previous study, we identified that overexpression of CsHSFA1d could improve cold tolerance and the content of endogenous jasmonic acid in cucumber seedlings. To explore the functional diversities of CsHSFA1d, we treat the transgenic plants under drought conditions. In this study, we found that the heat shock transcription factor HSFA1d (CsHSFA1d) could improve drought stress tolerance in cucumber. CsHSFA1d overexpression increased the expression levels of galactinol synthase (CsGolS3) and raffinose synthase (CsRS) genes, encoding the key enzymes for raffinose family oligosaccharide (RFO) biosynthesis. Furthermore, the lines overexpressing CsHSFA1d showed higher enzymatic activity of GolS and raffinose synthase to increase the content of RFO. Moreover, the CsHSFA1d-overexpression lines showed lower reactive oxygen species (ROS) accumulation and higher ROS-scavenging enzyme activity after drought treatment. The expressions of antioxidant genes CsPOD2, CsAPX1 and CsSOD1 were also upregulated in CsHSFA1d-overexpression lines. The expression levels of stress-responsive genes such as CsRD29A, CsLEA3 and CsP5CS1 were increased in CsHSFA1d-overexpression lines after drought treatment. We conclude that CsHSFA1d directly targets and regulates the expression of CsGolS3 and CsRS to promote the enzymatic activity and accumulation of RFO to increase the tolerance to drought stress. CsHSFA1d also improves ROS-scavenging enzyme activity and gene expression indirectly to reduce drought-induced ROS overaccumulation. This study therefore offers a new gene target to improve drought stress tolerance in cucumber and revealed the underlying mechanism by which CsHSFA1d functions in the drought stress by increasing the content of RFOs and scavenging the excessive accumulation of ROS.


Subject(s)
Cucumis sativus , Galactosyltransferases , Gene Expression Regulation, Plant , Oligosaccharides , Plant Proteins , Plants, Genetically Modified , Raffinose , Reactive Oxygen Species , Cucumis sativus/genetics , Cucumis sativus/physiology , Cucumis sativus/metabolism , Reactive Oxygen Species/metabolism , Raffinose/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oligosaccharides/metabolism , Galactosyltransferases/metabolism , Galactosyltransferases/genetics , Droughts , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Stress, Physiological/genetics
9.
Biochem Biophys Res Commun ; 708: 149817, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38537528

ABSTRACT

Epidermal keratinocytes, forming the outermost layer of the human body, serve as a crucial barrier against diverse external stressors such as ultraviolet radiation. Proper keratinocyte differentiation and effective responses to external stimuli are pivotal for maintaining barrier integrity. Heat is one such stimulus that triggers the synthesis of heat shock proteins (HSPs) when cells are exposed to temperatures above 42 °C. Additionally, activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) occurs at 42 °C. Here, we explore the interplay between TRPV1 signaling and HSP induction in human keratinocytes. Both heat and capsaicin, a TRPV1 agonist, induce expression of HSP27, HSP70, and HSP90 in keratinocytes. Interestingly, pharmacological inhibition of TRPV1 attenuates heat-induced HSP27 expression, but not that of HSP70 or HSP90. Furthermore, both heat and capsaicin stimulation result in distinct phosphorylation patterns of heat shock factor 1 (HSF1), with phosphorylation at serine 326 being a common feature. Notably, genetic manipulation to mimic dephosphorylation of HSF1 at serine 326 reduces HSP27 levels. Additionally, ΔNp63, a key regulator of epidermal differentiation, negatively modulates HSP27 expression independently of HSF1 phosphorylation status. While heat stimulation has no effect on ΔNp63 expression, capsaicin reduces its levels. The precise role of TRPV1 signaling in keratinocytes warrants further investigation for a comprehensive understanding of its impact on barrier function.


Subject(s)
Capsaicin , HSP27 Heat-Shock Proteins , Humans , HSP27 Heat-Shock Proteins/genetics , HSP27 Heat-Shock Proteins/metabolism , Capsaicin/pharmacology , Phosphorylation , Serine/metabolism , Ultraviolet Rays , Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Keratinocytes/metabolism , Heat-Shock Response , Heat Shock Transcription Factors/metabolism
10.
Plant Physiol Biochem ; 210: 108541, 2024 May.
Article in English | MEDLINE | ID: mdl-38552264

ABSTRACT

Heat shock transcription factors (Hsfs) play multifaceted roles in plant growth, development, and responses to environmental factors. However, their involvement in seed dormancy and germination processes has remained elusive. In this study, we identified a wheat class B Hsf gene, TaHsf-7A, with higher expression in strong-dormancy varieties compared to weak-dormancy varieties during seed imbibition. Specifically, TaHsf-7A expression increased during seed dormancy establishment and subsequently declined during dormancy release. Through the identification of a 1-bp insertion (ins)/deletion (del) variation in the coding region of TaHsf-7A among wheat varieties with different dormancy levels, we developed a CAPS marker, Hsf-7A-1319, resulting in two allelic variations: Hsf-7A-1319-ins and Hsf-7A-1319-del. Notably, the allele Hsf-7A-1319-ins correlated with a reduced seed germination rate and elevated dormancy levels, while Hsf-7A-1319-del exhibited the opposite trend across 175 wheat varieties. The association of TaHsf-7A allelic status with seed dormancy and germination levels was confirmed in various genetically modified species, including Arabidopsis, rice, and wheat. Results from the dual luciferase assay demonstrated notable variations in transcriptional activity among transformants harboring distinct TaHsf-7A alleles. Furthermore, the levels of abscisic acid (ABA) and gibberellin (GA), along with the expression levels of ABA and GA biosynthesis genes, showed significant differences between transgenic rice lines carrying different alleles of TaHsf-7A. These findings represent a significant step towards a comprehensive understanding of TaHsf-7A's involvement in the dormancy and germination processes of wheat seeds.


Subject(s)
Gene Expression Regulation, Plant , Germination , Heat Shock Transcription Factors , Plant Dormancy , Plant Proteins , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Plant Dormancy/genetics , Germination/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Seeds/genetics , Seeds/growth & development , Plants, Genetically Modified , Arabidopsis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Alleles
11.
Int J Biol Macromol ; 267(Pt 2): 131256, 2024 May.
Article in English | MEDLINE | ID: mdl-38556243

ABSTRACT

Given the detrimental impact of global warming on crop production, it is particularly important to understand how plants respond and adapt to higher temperatures. Using the non-invasive micro-test technique and laser confocal microscopy, we found that the cascade process of early signals (K+, H2O2, H+, and Ca2+) ultimately resulted in an increase in the cytoplasmic Ca2+ concentration when Arabidopsis was exposed to heat stress. Quantitative real-time PCR demonstrated that heat stress significantly up-regulated the expression of CAM1, CAM3 and HSFA2; however, after CAM1 and CAM3 mutation, the upregulation of HSFA2 was reduced. In addition, heat stress affected the expression of LOX3 and OPR3, which was not observed when HSFA2 was mutated. Luciferase reporter gene expression assay and electrophoretic mobility shift assay showed that HSFA2 regulated the expression of both genes. Determination of jasmonic acid (JA) content showed that JA synthesis was promoted by heat stress, but was damaged when HSFA2 and OPR3 were mutated. Finally, physiological experiments showed that JA reduced the relative electrical conductivity of leaves, enhanced chlorophyll content and relative water content, and improved the survival rate of Arabidopsis under heat stress. Together, our results reveal a new pathway for Arabidopsis to sense and transmit heat signals; HSFA2 is involved in the JA synthesis, which can act as a defensive compound improving Arabidopsis heat tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cyclopentanes , Gene Expression Regulation, Plant , Heat Shock Transcription Factors , Heat-Shock Response , Oxylipins , Signal Transduction , Thermotolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Oxylipins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Thermotolerance/genetics , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Calcium/metabolism , Mutation
12.
FEBS Lett ; 598(6): 635-657, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366111

ABSTRACT

The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).


Subject(s)
Saccharomyces cerevisiae Proteins , Transcription Factors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Proteotoxic Stress , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
13.
Arch Biochem Biophys ; 754: 109947, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417690

ABSTRACT

The Human Immunodeficiency Virus-1 (HIV-1) tends to activate cellular promoters driving expression of pro-viral genes by complex host-virus interactions for productive infection. We have previously demonstrated that expression of such a positive host factor HSF1 (heat shock factor 1) is elevated during HIV-1 infection; however, the mechanism remains to be elucidated. In the present study, we therefore examined whether HSF1 promoter is induced during HIV-1 infection leading to up-regulation of hsf1 gene expression. We mapped the putative transcription start site (TSS) predicted by Eukaryotic promoter database and deletion constructs of the predicted promoter region were tested through luciferase assay to identify the active promoter. The 347 bp upstream to 153 bp downstream region around the putative TSS displayed the highest activity and both Sp1 (stimulating protein 1) and HSF1 itself were identified to be important for its basal activation. Activity of HSF1 promoter was further stimulated during HIV-1 infection in CD4+ T cells, where interestingly the HSF1-site itself seems to play a major role. In addition, HIV-1 protein Nef (negative factor) was also observed to be responsible for the virus-mediated induction of hsf1 gene expression. Chromatin-immunoprecipitation assays further demonstrate that Nef and HSF1 are co-recruited to the HSF1-binding site and cooperatively act on this promoter. The interplay between host HSF1 and viral Nef on HSF1 promoter eventually leads to increase in HSF1 expression during HIV-1 infection. Understanding the mechanism of HSF1 up-regulation during HIV-1 infection might contribute to future antiviral strategies as HSF1 is a positive regulator of virus replication.


Subject(s)
HIV Infections , HIV-1 , Heat Shock Transcription Factors , nef Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/physiology , Promoter Regions, Genetic , Transcriptional Activation , Viral Proteins/genetics , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , HIV Infections/metabolism , Up-Regulation
14.
Molecules ; 29(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398658

ABSTRACT

Dendrobium nobile is a traditional Chinese herb with anti-inflammatory, antioxidant, and neuroprotective properties. However, its antiaging effects are unclear. Herein, we studied the aging-related functions and the mechanism of action of the alcohol extract of Dendrobium nobile (DnAE) in the model organism Caenorhabditis elegans. The results indicated that 1 mg/mL DnAE slowed lipofuscin accumulation, decreased the levels of reactive oxygen species, elevated superoxide dismutase activity, enhanced oxidative and heat stress resistance, extended the lifespan of nematodes, protected their dopamine neurons from 6-hydroxydopamine-induced neurodegeneration, and reduced Aß-induced neurotoxicity. DnAE upregulated the mRNA expression of the transcription factors DAF-16 and HSF-1, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2. However, it had no effect on the lifespan of DAF-16 mutants. Thus, DnAE can significantly extend lifespan, enhance heat stress tolerance, and delay age-related diseases through a DAF-16-dependent pathway.


Subject(s)
Caenorhabditis elegans Proteins , Dendrobium , Animals , Longevity , Caenorhabditis elegans , Dendrobium/metabolism , Oxidative Stress , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Reactive Oxygen Species/metabolism , Heat Shock Transcription Factors/metabolism , Ethanol/metabolism , Forkhead Transcription Factors/metabolism
15.
Front Biosci (Landmark Ed) ; 29(2): 53, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38420805

ABSTRACT

BACKGROUND: Recently, miRNAs are demonstrated to restrain mRNA translation through novel pattern with bind complementary sites in the coding sequence (CDS). Heat Shock Transcription Factor 4 (HSF4) has been newly described as a tumor-associated transcription factor. Therefore, the present study intends to explore miRNAs that bind CDS region of HSF4, and identify the function of their interactions in the malignant biological behavior of colorectal cancer (CRC). METHODS: Prognostic value of HSF4 and correlation between HSF4 and MACC1 expression were estimated via bioinformatics with the Cancer Genome Atlas (TCGA) data. HSF4 and downstream MACC1/STAT3 signaling cascade was characterized by immunoblotting. To characterize the effects of miR-330-5p and HSF4 on the malignant phenotype of CRC cells by functional experiments. The binding activity of miR-330-5p to coding sequence (CDS) of HSF4 was identified using DIANA-microT-CDS algorithm and dual-luciferase reporter assay. RESULTS: HSF4 was aberrantly overexpressed and associated with poor outcomes of CRC patients. Overexpression of HSF4 was correlated with Tumor Node Metastasis stage, and positively regulated malignant behaviors such as growth, migration, invasion of CRC cells. Moreover, miR-330-5p suppressed CRC cell growth, colony formation, migration and invasive. Interestingly, miR-330-5p recognized complementary sites within the HSF4 CDS region to reduce HSF4 expression. In rescue experiments, restoration of HSF4 expression functionally alleviated miR-330-5p-induced inhibition of cell growth, colon formation, invasion, and wound healing of CRC cells. HSF4 was associated positively with the well-known oncogenic factor MACC1 in TCGA cohort CRC samples, and knockdown of HSF4 resulted in downregulation of MACC1. In mechanism, MACC1 was suppressed upon miR-330-5p-induced downregulation of HSF4, leading to inactivation of phosphorylation of downstream STAT3. CONCLUSION: miR-330-5p suppresses tumors by directly inhibiting HSF4 to negatively modify activity of MACC1/STAT3 pathway.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , Colorectal Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation/genetics , Signal Transduction/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Trans-Activators/genetics
16.
Sci Rep ; 14(1): 3158, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326350

ABSTRACT

Magnolol is a naturally occurring polyphenolic compound in many edible plants, which has various biological effects including anti-aging and alleviating neurodegenerative diseases. However, the underlying mechanism on longevity is uncertain. In this study, we investigated the effect of magnolol on the lifespan of Caenorhabditis elegans and explored the mechanism. The results showed that magnolol treatment significantly extended the  lifespan of nematode and alleviated senescence-related decline in the nematode model. Meanwhile, magnolol enhanced stress resistance to heat shock, hydrogen peroxide (H2O2), mercuric potassium chloride (MeHgCl) and paraquat (PQ) in nematode. In addition, magnolol reduced reactive oxygen species and malondialdehyde (MDA) levels, and increased superoxide dismutase and catalase (CAT) activities in nematodes. Magnolol also up-regulated gene expression of sod-3, hsp16.2, ctl-3, daf-16, skn-1, hsf-1, sir2.1, etc., down-regulated gene expression of daf-2, and promoted intranuclear translocation of daf-16 in nematodes. The lifespan-extending effect of magnolol were reversed in insulin/IGF signaling (IIS) pathway-related mutant lines, including daf-2, age-1, daf-16, skn-1, hsf-1 and sir-2.1, suggesting that IIS signaling is involved in the modulation of longevity by magnolol. Furthermore, magnolol improved the age-related neurodegeneration in PD and AD C. elegans models. These results indicate that magnolol may enhance lifespan and health span through IIS and sir-2.1 pathways. Thus, the current findings implicate magnolol as a potential candidate to ameliorate the symptoms of aging.


Subject(s)
Biphenyl Compounds , Caenorhabditis elegans Proteins , Lignans , Longevity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Heat Shock Transcription Factors/metabolism , Insulin/metabolism , Oxidative Stress , Forkhead Transcription Factors/metabolism
17.
Plant Physiol ; 195(1): 812-831, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38270532

ABSTRACT

High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Plant Proteins , Thermotolerance , Transcription Factors , Capsicum/genetics , Capsicum/physiology , Thermotolerance/genetics , Thermotolerance/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Nicotiana/genetics , Nicotiana/physiology , Plants, Genetically Modified , Heat-Shock Response/genetics , Hot Temperature , Abscisic Acid/metabolism
18.
EMBO J ; 43(3): 437-461, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228917

ABSTRACT

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Heat-Shock Response/genetics , Heat Shock Transcription Factors/metabolism , Transcriptional Activation , Nucleotidyltransferases/metabolism , Mediator Complex/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism
19.
Cancer Immunol Immunother ; 73(2): 25, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280079

ABSTRACT

Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Animals , Humans , Mice , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Drug Resistance , Etoposide/pharmacology , Heat Shock Transcription Factors/metabolism , Heat-Shock Response , Transcription Factors/metabolism , Tumor-Associated Macrophages/metabolism
20.
Biogerontology ; 25(1): 147-160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37707683

ABSTRACT

Brain aging is a major risk factor for cognitive diseases such as Alzheimer's disease (AD) and vascular dementia. The rate of aging and age-related pathology are modulated by stress responses and repair pathways that gradually decline with age. However, recent reports indicate that exceptional longevity sustains and may even enhance the stress response. Whether normal and exceptional aging result in either attenuated or enhanced stress responses across all organs is unknown. This question arises from our understanding that biological age differs from chronological age and evidence that the rate of aging varies between organs. Thus, stress responses may differ between organs and depend upon regenerative capacity and ability to manage damaged proteins and proteotoxicity. To answer these questions, we assessed age-dependent changes in brain stress responses with normally aged wild type and long-lived Dwarf mice. Results from this study show that normal aging unfavorably impacts activation of the brain heat shock (HS) axis with key changes noted in the transcription factor, HSF1, and its regulation. Exceptional aging appears to preserve and strengthen many elements of HSF1 activation in the brain. These results support the possibility that reconstitution of aging brain stress responses requires a multi-factorial approach that addresses HSF1 protein levels, its DNA binding, and regulatory elements such as phosphorylation and protein interactions.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Mice , Animals , DNA-Binding Proteins/genetics , Heat Shock Transcription Factors/metabolism , Transcription Factors/genetics , Aging/metabolism , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...